RNDr. Pavel Bakala, PhD
Transkript
RNDr. Pavel Bakala, PhD
Pavel Bakala K některým aspektům optických efektů v blı́zkosti černých děr a neutronových hvězd (komentovaný soubor článků) DIZERTAČNÍ PRÁCE Slezská univerzita v Opavě, Filozoficko-přı́rodovědecká fakulta Ústav fyziky K některým aspektům optických efektů v blı́zkosti černých děr a neutronových hvězd (komentovaný soubor článků) DIZERTAČNÍ PRÁCE Vedoucı́: prof. RNDr. Zdeněk Stuchlı́k, CSc. Konzultant: RNDr. Stanislav Hledı́k, Ph.D. Opava 2010 Pavel Bakala Poděkovánı́ Na tomto mı́stě bych v prvé řadě rád poděkoval svým rodičům. Můj otec, který se bohužel obhajoby mé dizertace již nedožije, mi již od dětstvı́ vždy svou přı́tomnostı́ vytvářel intelektuálně inspirujı́cı́ prostředı́. Mé matce vděčı́m za důvěru a podporu poskytovanou mi kdykoli během mého studia, ač si nedokáži představit jı́ vzdálenějšı́ vědnı́ obor, než je teoretická fyzika a astrofyzika. Za mnohé vděčı́m také svým přátelům a blı́zkým pro mne zcela nezbytným pro udrženı́ mé duševnı́ rovnováhy, které jenom z nedostatku mı́sta zde nemohu vyjmenovat. Zvláštnı́ poděkovánı́ však patřı́ těm přátelům, kteřı́ jsou mi zároveň blı́zkými spolupracovnı́ky, Evě Šrámkové, Gabrielu Törökovi a Martinu Urbancovi. Poděkovánı́ samozřejmě patřı́ mému školiteli Zdeňku Stuchlı́kovi za vedenı́ mého doktorského studia, inspirativnı́ náměty i diskuze a v neposlednı́ řadě za přátelský přı́stup. Podobné poděkovánı́ náležı́ i mému konzultantu Stanislavu Hledı́kovi. Závěrem bych rád poděkoval mé drahé dceři Alence za jejı́ nekonečnou trpělivost s otcem trávı́cı́m své večery studiem. Obsah Úvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry a povrchu neutronové hvězdy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Kontext a motivace . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Optické zobrazenı́ ve sféricky symetrických prostoročasech . . . . . 1.2.1. Pohyb fotonů ve sféricky symetrických prostoročasech . . . 1.2.2. Konstrukce optického zobrazenı́ . . . . . . . . . . . . . . . 1.2.3. Geometrie optického zobrazenı́ . . . . . . . . . . . . . . . . 1.3. Softwarová implementace . . . . . . . . . . . . . . . . . . . . . . . 1.3.1. Modul vstupů . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2. Modul relativistického raytracingu . . . . . . . . . . . . . . 1.3.3. Modul zpracovánı́ výstupů . . . . . . . . . . . . . . . . . . 1.4. Vizualizačnı́ výstupy simulacı́ . . . . . . . . . . . . . . . . . . . . . 1.4.1. Statický pozorovatel v blı́zkosti Schwarzschildovy černé dı́ry 1.4.2. Pozorovatel radiálně volně padajı́cı́ do Schwarzschildovy černé dı́ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.3. Povrch rotujı́cı́ superkompaktnı́ neutronové či kvarkové hvězdy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5. Shrnutı́ a perspektiva . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 5 7 9 12 12 13 13 14 14 15 20 22 Kapitola 2. QPOs: Pohled z nekonečna . . . . . . . . . . . . . . . . . 25 2.1. Fenomén kvaziperiodických oscilacı́ (QPOs) . . . . . . . . . . 2.1.1. kHz QPOs v systémech s neutronovou hvězdou . . . . 2.1.2. Frekvenčnı́ korelace hornı́ch a dolnı́ch QPOs . . . . . 2.1.3. Klastrovánı́ twin-peak QPOs v okolı́ poměrů malých celých čı́sel. . . . . . . . . . . . . . . . . . . . . . . . . 2.2. Orbitálnı́ modely vzniku QPOs . . . . . . . . . . . . . . . . . 2.2.1. Relativistický precesnı́ model . . . . . . . . . . . . . . 2.2.2. Preferované kruhové orbity . . . . . . . . . . . . . . . 2.2.3. Odhady hmotnosti a spinu s použitı́m relativistického precesnı́ho modelu: Circinus X-1 . . . . . . . . . . . . 2.3. Shrnutı́ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 . . . 28 . . . 29 . . . . . . . . . . . . 31 34 36 38 . . . 38 . . . 41 Kapitola 3. Magnetická pole . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1. Observačnı́ motivace . . . . . . . . . . . . . . . . . . . . . . . . . . 45 vii 3.2. Perturbovaný kruhový orbitálnı́ pohyb nabitých testovacı́ch částic v dipólovém magnetickém poli na schwarzschildovském pozadı́ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1. Dipólové magnetické pole na pozadı́ Schwarzschildovy prostoročasové geometrie . . . . . . . . . . . . . . . . . . . 3.2.2. Frekvence perturbovaného kruhového orbitálnı́ho pohybu . 3.2.3. Chovánı́ negeodeticky korigovaných frekvencı́, existence a stabilita kruhových orbit . . . . . . . . . . . . . . . . . . 3.2.4. Aplikace na relativistický precesnı́ model . . . . . . . . . . 3.3. Perspektiva dalšı́ho výzkumu: magnetické pole pomalu rotujı́cı́ neutronové hvězdy . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1. Lenseova–Thirringova metrika . . . . . . . . . . . . . . . . 3.3.2. Geodetický kvazikruhový orbitálnı́ pohyb . . . . . . . . . . 3.3.3. Dipólové magnetické pole na Lenseově–Thirringově pozadı́ 46 46 48 50 52 54 55 56 57 Literatura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Přı́lohy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 viii Úvod Pro svou dizertačnı́ práci jsem zvolil formu komentovaného souboru článků shrnujı́cı́ch výsledky výzkumu dosažené v rámci mého doktorského studia pod vedenı́m školitele prof. RNDr. Zdeňka Stuchlı́ka, CSc. Tématem dizertačnı́ práce jsou optické efekty v blı́zkosti černých děr a relativisticky kompaktnı́ch hvězd. V práci zahrnuté publikace se tématu dotýkajı́ ze třı́ odlišných úhlů, což je reflektováno volbou formy komentovaného souboru článků i rozčleněnı́m úvodnı́ho textu do třı́ téměř autonomnı́ch kapitol. Ve shodě s tématickým rozčleněnı́m jsou publikace seřazeny v přı́lohách a očı́slovány následujı́cı́m způsobem: 1. P. Bakala, P. Čermák, S. Hledı́k, Z. Stuchlı́k, K. Truparová (2007): Extreme gravitational lensing in vicinity of Schwarzschild–de Sitter black holes, Central European Journal of Physics, 5/4, 599 2. G. Török, M. A. Abramowicz, P. Bakala, M. Bursa, J. Horák, W. Kluźniak, P. Rebusco, Z. Stuchlı́k (2008): Distribution of Kilohertz QPO Frequencies and Their Ratios in the Atoll Source 4U 1636-53, Acta Astronomica, 58, 15 3. G. Török, M. A. Abramowicz, P. Bakala, M. Bursa, J. Horák, P. Rebusco, Z. Stuchlı́k (2008): On the origin of clustering of frequency ratios in the atoll source 4U 1636-53, Acta Astronomica, 58, 113 4. G. Török, P. Bakala, Z. Stuchlı́k, P. Čech (2008): Modelling the twin peak QPO distribution in the atoll source 4U 1636-53, Acta Astronomica, 58, 1 5. G. Török, Z. Stuchlı́k, P. Bakala (2007): A remark about possible unity of the neutron star and black hole high frequency QPOs, Central European Journal of Physics, 5/4, 457 1 2 Úvod 6. G. Török, P. Bakala, E. Šrámková, Z. Stuchlı́k (2010): On Mass Constraints Implied by the Relativistic Precession Model of Twin-peak Quasi-periodic Oscillations in Circinus X-1, Astrophysical Journal, 714/1, 748 7. P. Bakala, E. Šrámková, Z. Stuchlı́k, G. Török (2008): On magnetic-field induced non-geodesic corrections to the relativistic precession QPO model, Cool Disc, Hot Flows: The Varying Faces of Accreting Compact Objects. AIP Conference Proceedings, 1054, 123 8. P. Bakala, E. Šrámková, Z. Stuchlı́k, G. Török (2010): On magnetic-field-induced non-geodesic corrections to relativistic orbital and epicyclic frequencies, Classical and Quantum Gravity, 27/4, 045001 V prvnı́ kapitole je diskutována simulace a vizualizace optického zobrazovánı́ vzdáleného vesmı́ru pro pozorovatele nacházejı́cı́ se v těsné blı́zkosti sféricky symetrických černých děr. Po krátkém přehledu teorie pohybu fotonů ve sféricky symetrických prostoročasech se zřetelem na vliv elektrického a hypotetického slapového náboje černých děr i repulzivnı́ kosmologické konstanty je dále popisována geometrie optického zobrazovánı́ a softwarové řešenı́ vyvinutého simulačnı́ho kódu. Závěr kapitoly je doplněn obrazovými výstupy simulacı́. Druhá kapitola je po stručném úvodu do fenomenologie kvaziperiodických oscilacı́ (QPOs) a některých teoretických východisek jejich popisu pomocı́ orbitálnı́ho pohybu v silném gravitačnı́m poli věnována analýze observačnı́ch dat rentgenových LMXB zdrojů 4U 1636-53 a Circinus X-1. Zkoumány jsou distribuce dolnı́ch, hornı́ch i twin-peak kHz QPOs a jejich klastrovánı́ v okolı́ význačných poměrů frekvencı́ kHz QPOs. Na pozadı́ relativisticky precesnı́ho modelu je analyzována souvislost klastrovánı́ detekcı́ s existencı́ preferovaných kruhových orbit a diskutovány možnosti odhadu hmotnostı́ a spinu neutronových hvězd. S optickými efekty již relativně volně spojená třetı́ kapitola je věnována analýze kruhového orbitálnı́ho pohybu nabitých testovacı́ch částic v okolı́ zmagnetizovaných neutronových hvězd. Právě negeodetické korekce orbitálnı́ho pohybu však mohou hrát nezanedbatelnou úlohu při vysvětlenı́ detailů QPO modulace rentgenových toků přicházejı́cı́ch z blı́zkosti akreujı́cı́ch kompaktnı́ch objektů, tak jak jsou diskutovány v předcházejı́cı́ kapitole. Kapitola 1 Virtuálnı́ výlet k horizontu černé dı́ry a povrchu neutronové hvězdy . . . Kolem Země pluje svět, připomı́ná tér čtvrtý rozměr bránou je, zmatek černejch děr Podı́vám se zblı́zka . . . — Zuzana Michnová & Marsyas 1.1. Kontext a motivace Článek Extreme gravitational lensing in vicinity of Schwarzschild–de Sitter black holes, který je obsahem přı́lohy 1, je věnován analýze výsledků počı́tačové simulace vzhledu vzdáleného vesmı́ru pro pozorovatele nacházejı́cı́ho se v těsné blı́zkosti Schwarzschildovy–de Sitterovy černé dı́ry, tedy ve výrazně zakřiveném sféricky symetrickém prostoročase a za přı́tomnosti repulzivnı́ kosmologické konstanty. Ohyb světla v gravitačnı́m poli (gravitačnı́ lensing) byl jednou z prvnı́ch astrofyzikálnı́ch predikcı́ obecné teorie relativity a také byl předmětem jejı́ho prvnı́ho Eddingtonova experimentálnı́ho testu. Přı́pad slabého gravitačnı́ho lensingu (weak lensing), efekt ohybu světla vzdáleného vesmı́rného objektu mezilehlou hvězdou (galaxiı́) vystupujı́cı́ v roli gravitačnı́ čočky byl v roce 1936 poprvé analyzován A. Einsteinem, který ovšem zůstával skeptický k možnostem jeho potvrzenı́ pozorovánı́mi [29]. V současné době jsou však právě efekty slabého gravitačnı́ho lensingu běžným observačnı́m nástrojem při zkoumánı́ objektů v hlubokém vesmı́ru, při hledánı́ exoplanet, i při detekci temné hmoty, hrajı́cı́ klı́čovou úlohu v současných kosmologických modelech [69]. Naproti tomu vizualizace a simulace vzhledu oblohy pro pozorovatele v blı́zkosti černých děr jistě nepatřı́ k fenoménům v současnosti a pravděpodobně i v blı́zké budoucnosti experimentálně testovatelným, 3 4 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . nicméně poskytuje působivou ilustraci výrazných rozdı́lů mezi optikou v prostředı́ silného gravitačnı́ho pole a optikou v plochém prostoročase, kterou známe z každodennı́ho života a jejı́ž zdánlivě samozřejmé vlastnosti formovaly naše vnı́mánı́ prostoru a tı́m i naši intuici a představivost. Takto formulovaná úloha také zcela jistě naplňuje význam termı́nu teoretická ” astrofyzika“. Teoretický rozbor optického zobrazovánı́ vzdáleného vesmı́ru pro pozorovatele v blı́zkosti Schwarzschildovy černé dı́ry byl poprvé publikován C. T. Cunnighamem [25]. Odpovı́dajı́cı́ výsledky počı́tačové simulace vzhledu oblohy pro pozorovatele v blı́zkosti Schwarzschildovy černé dı́ry nebo neutronové hvězdy lze nalézt ve studii R. J. Nemiroffa [58]. Současné kosmologické testy ukazujı́, že expanze vesmı́ru je v současnosti urychlována tzv. temnou energiı́, která může být popsána v Einsteinových rovnicı́ch gravitačnı́ho pole efektivnı́ repulzivnı́ kosmologickou konstantou [42, 61]. V článku, který je obsahem přı́lohy 1, je proto analýza optické projekce pro statické i radiálně volně padajı́cı́ pozorovatele v silném sféricky symetrickém gravitačnı́m poli o vliv repulzivnı́ kosmologickém konstanty rozšı́řena. Dalšı́m teoreticky možným parametrem sféricky symetrické metriky je kvadrát elektrického náboje spojeného s centrálnı́ hmotnostı́. Pokud se jedná o asymptoticky ploché řešenı́, hovořı́me o Reissnerově–Nordströmově prostoročase, v přı́padě přı́tomnosti repulzivnı́ kosmologické konstanty pak o prostoročase Reissnerově–Nordströmově–de Sitterově [80]. Vzhledem k celkové elektrické neutralitě hmoty ve vesmı́ru, ze které gravitačnı́m kolapsem stelárnı́ či supermasivnı́ černé dı́ry vznikajı́, nejsou nejspı́še elektricky nabité černé dı́ry astrofyzikálně realistické. I pokud připustı́me vznik nabitých černých děr, jejich náboj by byl pravděpodobně velmi rychle neutralizován atrakcı́ částic s nábojem opačným. Nicméně nabitá řešenı́ v současné době zažı́vajı́ určitou astrofyzikálnı́ renesanci v souvislosti s novými vı́cedimenzionálnı́mi bránovými kosmologickými modely, ve kterých existuje třı́da řešenı́ Einsteinových rovnic popisujı́cı́ prostoročasy v okolı́ relativisticky sféricky symetrických kompaktnı́ch objektů vázaných na náš tzv. bránový svět formálně právě Reissnerovou–Nordströmovou metrikou [26, 30]. V takovém přı́padě je ovšem kvadrát elektrického náboje nahrazen novým parametrem metriky, nábojem slapovým. Tento parametr oproti kvadrátu elektrického náboje může nabývat kladných i záporných hodnot, a zdá se dokonce, že jeho záporná hodnota je fyzikálně přirozenějšı́ [30]. Simulačnı́ kód BHimpaCt použitý ke generovánı́ publikovaných výsledků (přı́loha 1) v současné verzi proto umožňuje modelovat jak vliv kosmolo- 1.2. Optické zobrazenı́ ve sféricky symetrických prostoročasech 5 gické konstanty tak i elektrického či slapového náboje na vlastnosti optického zobrazovánı́ v sféricky symetrických černoděrových prostoročasech. Kód umožňuje simulovat přı́spěvky světelných geodetik vyššı́ch řádů (s orbitami ve tvaru vı́cenásobných smyček kolem gravitačnı́ho centra) k optické projekci, zohledňuje efekty dopplerovského i gravitačnı́ho frekvenčnı́ho posunu (blueshift, redshift) a gravitačnı́m polem indukované amplifikace intenzity. Následujı́cı́ kapitola je po stručném přehledu teorie pohybu fotonů ve sféricky symetrických prostoročasech věnována diskuzi vlastnostı́ optického zobrazovánı́ ve sféricky symetrických prostoročasech, popisu softwarové architektury kódu BHimpaCt a demonstraci jeho vizualizačnı́ch výstupů. 1.2. Optické zobrazenı́ ve sféricky symetrických prostoročasech 1.2.1. Pohyb fotonů ve sféricky symetrických prostoročasech Prostoročas v okolı́ sféricky symetrické černé dı́ry nebo relativisticky kompaktnı́ (neutronové či podivné) hvězdy lze reprezentovat metrikou s elementem prostoročasového intervalu zapsaným ve standardnı́ch Schwarzschildových souřadnicı́ch zapsaným s použitı́m geometrických jednotek (M = G = c = 1) ve tvaru ds2 = −B(r, β, Λ)dt2 + B(r, β, Λ)−1dr 2 + r 2 (dθ2 + sin2 θ dφ2 ) , (1.1) kde funkce B(r, β, Λ) je dána vztahem B(r, β, Λ) ≡ 1 − β Λ 2 + 2 − r2 . r r 3 (1.2) Parametr β v přı́padě bránových řešenı́ značı́ slapový náboj, v přı́padě nabité černé dı́ry má pak význam kvadrátu elektrického náboje spojeného s centrálnı́m objektem ( β = Q2 ) a konečně Λ je kosmologická konstanta. Přı́slušným nastavenı́m parametrů tak metrika ve tvaru 1.1 může reprezentovat čistě Schwarzschildův prostoročas, Schwarzschildovo–de Sitterovo řešenı́ analyzované v přı́loze 1 anebo elektricky popřı́padě slapově nabitá řešenı́ Reissnerova–Nordströmova typu. Ve sféricky symetrických prostoročasech je pohyb fotonů určen impaktnı́m parametrem definovaným jako b≡ Φ , E (1.3) 6 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . kde Φ a E jsou pohybové konstanty odpovı́dajı́cı́ Killingovým vektorům ξ(t) and ξ(φ) generovaným přı́slušnými symetriemi prostoročasu [56]. Symetrie prostoročasu implikuje zachovánı́ celkového momentu hybnosti a tı́m i centrálnı́ roviny pohybu fotonů a lze tedy bez újmy na obecnosti předpokládat, že pohyb fotonů probı́há v ekvatoriálnı́ rovině. Kovariantnı́ komponenty čtyřhybnosti fotonů lze pak zapsat ve tvaru pt = −E, pr = A(r, β, Λ) , B(r, β, Λ) pφ = Φ, pθ = 0, (1.4) kde A(r, β, Λ) ≡ sA r 1 − B(r, β, Λ) b2 . r2 (1.5) Znaménko sA nabývá hodnoty + pro fotony vzdalujı́cı́ se od centrálnı́ho kompaktnı́ho objektu, − pro přibližujı́cı́ se fotony. Diskuse vlastnostı́ trajektoriı́ fotonů přicházejı́cı́ch z nekonečna nebo v přı́padě přı́tomnosti repulzivnı́ kosmologické konstanty z blı́zkosti statického poloměru a tedy reprezentujı́cı́ch zářenı́ objektů vzdáleného vesmı́ru je pro Schwarzschildův–de Sitterův prostoročas podrobně provedena v [10, 79, 81] a v přı́loze 1 aplikována na konstrukci optického zobrazenı́. Kvalitativnı́ rysy chovánı́ takových geodetik zůstávajı́ zachovány i v přı́padě nabitých černoděrových prostoročasů [80]. Připomeňme, že existujı́ principálně dva druhy nulových geodetik přicházejı́cı́ch ze vzdáleného vesmı́ru, které můžeme snadno odlišit dle hodnoty jejich impaktnı́ho parametru b. Pokud označı́me bcrit impaktnı́ parametr fotonů, které, přicházejı́ce ze vzdáleného vesmı́ru nebo naopak z blı́zkosti černoděrového horizontu, budou zachyceny na nestabilnı́ kruhové fotonové orbitě, pak všechny geodetiky s b < bcrit odpovı́dajı́ fotonům finálně dopadajı́cı́m na horizont černé dı́ry a naopak fotony emitované ve vzdáleném vesmı́ru s b > bcrit se po dosaženı́ svého bodu obratu od černé dı́ry opět vzdalujı́ a unikajı́ zpět do nekonečna. Pohyb fotonů je determinován Binetovým vzorcem nabývajı́cı́m v prostoročase s metrikou 1.1 tvaru 1 dφ = ±q du b−2 − u2 + 2u3 − β 2 u4 + Λ 3 , u = r −1 . (1.6) 1.2. Optické zobrazenı́ ve sféricky symetrických prostoročasech 7 Tvar Binetova vzorce přirozeně implikuje podmı́nku existence pohybu fotonů ve tvaru Λ −2 2 3 2 4 C (b, u, β, Λ) ≡ b − u + 2u + β u + ≥ 0. (1.7) 3 Bod obratu geodetik přicházejı́cı́ch ze vzdáleného vesmı́ru rturn = 1/uturn s b > bcrit je určen kořenem rovnice C (b, u, β, Λ) = 0 (1.8) ležı́cı́m v intervalu mezi hodnotou radiálnı́ souřadnice nestabilnı́ kruhové fotonové orbity rph a statickým poloměrem (pro Λ = 0 jdoucı́m do nekonečna). Fotony na takových geodetikách tak nikdy nedosáhnou polohy pod nestabilnı́ kruhovou fotonovou orbitou. Naopak pro nulové geodetiky s b < bcrit je podmı́nka existence splněna na každé hodnotě radiálnı́ souřadnice a takové fotony přicházejı́cı́ ze vzdáleného vesmı́ru svou trajektoriı́ nestabilnı́ kruhovou fotonovou orbitu protı́najı́ a dopadajı́ na černoděrový horizont. Meznı́m přı́padem jsou pak geodetiky s b = bcrit , které odpovı́dajı́ záchytu fotonů právě na nestabilnı́ kruhové orbitě, jejı́ž poloha rph = 1/uph odpovı́dá minimu funkce C (b, u, β, Λ), které nezávisı́ na hodnotě kosmologické konstanty a je dáno vztahem1 rph = p 1 3 + 3 − 8β . 2 (1.9) Odpovı́dajı́cı́ kritickou hodnotu impaktnı́ho parametru bcrit lze pak snadno zı́skat dosazenı́m rph do rovnice 1.8 . 1.2.2. Konstrukce optického zobrazenı́ Uvažujme nynı́ nulové geodetiky spojujı́cı́ zdroj se souřadnicemi (rsource , π/2, φsource ) a pozorovatele se souřadnicemi (robs , π/2, 0), tedy ležı́cı́ v ekvatoriálnı́ rovině. Pak integrálnı́ rovnici vyjadřujı́cı́ impaktnı́ parametr b jako implicitnı́ funkci okrajových podmı́nek (souřadnic zdroje a pozorovatele) a parametrů metriky můžeme zapsat ve tvaru ∆φ (b, robs , rsource , β, Λ) + φsource + 2kπ = 0 , 1 (1.10) Podrobnějšı́ diskuzi o existenci a charakteru kruhových fotonových orbit i statických poloměrů v souvislosti s černoděrovým nebo nahosingulárnı́m charakterem sféricky symetrických prostoročasů lze nalézt v [79, 80]. 8 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . kde ∆φ je změna souřadnice φ podél přı́slušné geodetiky a lze ji zı́skat integracı́ Binetova vzorce 1.6. Parametr k značı́ řád obrazu a udává počet fotonem opsaných smyček kolem gravitačnı́ho centra. Pro geodetiky orbitujı́cı́ pravotočivě a generujı́cı́ tzv. přı́mé obrazy parametr k nabývá hodnot 0, 1, 2, . . . , +∞ , zatı́mco pro geodetiky orbitujı́cı́ levotočivě a generujı́cı́ tzv. obrazy nepřı́mé nabývá k hodnot −1, −2, . . . , −∞. Nekonečné hodnoty k = ±∞ pak korespondujı́ se záchytem fotonů na nestabilnı́ kruhové fotonové orbitě [10]. Diskuze řešenı́ rovnice 1.10 a integrace Binetova vzorce vzhledem k orientaci geodetiky, existenci a poloze bodu obratu je podrobně provedena v přı́loze 1 a v [10]. Poznamenejme zde pouze, že tvar podmı́nky existence pohybu fotonů 1.7 implikuje pro pozorovatele umı́stěného nad nestabilnı́ kruhovou fotonovou orbitou (robs = 1/uobs > rph ) existenci maximálnı́ hodnoty impaktnı́ho parametru dané vztahem 1/2 Λ 2 3 2 4 . bmax (robs ) = uobs − 2uobs + β u − 3 (1.11) Fotony přicházejı́cı́ ze vzdáleného vesmı́ru s b > bmax nikdy nedosáhnou pozice pozorovatele a procházejı́ svým bodem obratu již na rturn > robs . Maximálnı́ impaktnı́ parametr bmax (robs ) tak odpovı́dá vcházejı́cı́m nulovým geodetikám s bodem obratu právě na radiálnı́ souřadnici pozorovatele. Pro pozorovatele umı́stěné pod nestabilnı́ kruhovou fotonovou orbitou jsou relevantnı́ pouze vcházejı́cı́ geodetiky s b < bcrit a maximálnı́ impaktnı́ parametr pro takové pozorovatele je přirozeně totožný s kritickým impaktnı́m parametrem bcrit . Hodnoty impaktnı́ho parametru b a znaménka sA , zı́skané řešenı́m rovnice 1.10, postačujı́ k určenı́ komponent čtyřhybnosti fotonu na souřadnicı́ch pozorovatele a ty po nezbytné transformaci do lokálnı́ho referenčnı́ho systému spojeného s pozorovatelem jednoznačně určujı́ směrový úhel, pod kterým danou geodetikou generovaný obraz pozorovatel uvidı́. Směrový úhel α a odpovı́dajı́cı́ frekvenčnı́ posuv g fotonů (poměr pozorované a emitované energie) lze pomocı́ lokálnı́ch komponent čtyřhybnosti fotonu zapsat vztahy (t) (r) cos α = − pobs (t) pobs , g= pobs (t) psource . (1.12) Gravitačnı́ pole provádı́ časovou, energetickou i prostorovou redistribuci toku fotonů – intenzity zářenı́ – ze vzdáleného vesmı́ru na oblohu pozorovatele. Časovou redistribuci lze chápat jako změnu dopadajı́cı́ho počtu 1.2. Optické zobrazenı́ ve sféricky symetrických prostoročasech 9 fotonů za časovou jednotku dı́ky rozdı́lnému tempu plynutı́ času v lokálnı́ch systémech spojených s pozorovatelem a zdrojem zářenı́, energetická je pak způsobena frekvenčnı́m posuven g (blueshift, redshift) Celkovou amplifikaci bolometrické intenzity zdroje lze zapsat vztahem Atotal = Atime · Aangular , (1.13) kde faktor Atime = g 4 reprezentuje právě časovou a energetickou redistribuci intenzity zdroje a prostorová část amplifikace Aangular souvisı́ s fokusacı́ fotonových svazků gravitačnı́m polem. Uvažujeme-li malý izotropně zářı́cı́ zdroj ve vzdáleném vesmı́ru, pak faktor Aangular pro konkrétnı́ obraz zdroje je dán poměrem prostorového úhlu, který obraz vytı́ná na pozorovatelově obloze a prostorového úhlu, který by zdroj vytı́nal na obloze bez přı́tomnosti gravitačnı́ho pole a může být vyjádřen vztahem sin γ dγ Aangular = , (1.14) sin β dβ kde γ je úhlová vzdálenost gravitačnı́ho centra a zdroje a β úhlová vzdálenost gravitačnı́ho centra a obrazu [58]. 1.2.3. Geometrie optického zobrazenı́ Sférická symetrie gravitačnı́ho pole se manifestuje i v odpovı́dajı́cı́ geometrii optického zobrazenı́. Klı́čovou roli v transformaci optické projekce hraje optická osa definovaná jako přı́mka spojujı́cı́ pozici pozorovatele a gravitačnı́ho centra. V nepřı́tomnosti gravitačnı́ho pole na obloze pozorovaná kružnice se středem právě na optické ose a s poloměrem určujı́cı́m tak souřadnici zdrojů φsource na nı́ ležı́cı́ch2 je efekty extrémnı́ho gravitačnı́ho lensingu projektována na sérii koncentrických kružnic s poloměry klesajı́cı́mi spolu se vzrůstajı́cı́ absolutnı́ hodnotou přı́slušného řádu obrazu k, přičemž přı́mé obrazy o řádu k+ jsou bezprostředně následovány nepřı́mými o řádu k− = −(k+ + 1). Chovánı́ směrových úhlů α(φsource , k) pro libovolné obrazy odlišných řádů lze pak charakterizovat relacemi α(φsource 1 , k+ ) > α(φsource 2 , k− = −(k+ + 1) ) , (1.15) α(φsource 1 , |k + 1|) > α(φsource 2 , |k|) , α(φsource , k) < π . 2 Připomeňme, že ekvatoriálnı́ rovinu je možno dı́ky sférické symetrii metriky (1.1) volit arbitrárně. 10 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . Na oblohu pozorovatele v silném gravitačnı́m poli jsou tedy projektována koncentrická zobrazenı́ celého zářı́cı́ho vzdáleného vesmı́ru tak, že přı́mé obrazy jsou vždy následovány nepřı́mými a směrový úhel α(φsource , k) klesá spolu s |k|. Je však nutno podotknout, že celkový úhlový rozměr a tedy i pozorovaná intenzita zářenı́ jednotlivých obrazů se vzrůstajı́cı́m |k| klesá exponenciálně [60], a proto lze na vizualizačnı́ch výstupech simulacı́ rozumně modelovat i rozlišit pouze prvnı́ trojici obrazů (nultý přı́mý a prvnı́ přı́mý i nepřı́mý obraz). Obrazy vyššı́ch řádů splývajı́ do jasného prstence s poloměrem odpovı́dajı́cı́m maximálnı́ hodnotě směrového úhlu αmax (robs ) pro danou hodnotu radiálnı́ souřadnice pozorovatele robs . V přı́padě pozorovatele umı́stěného nad nestabilnı́ kruhovou fotonovou orbitou (robs > rph ) úhel αmax (robs ) koresponduje s trajektoriemi fotonů s impaktnı́m parametrem b → b+ crit , tedy fotonů mnohokrát spirálujı́cı́ch v těsné blı́zkosti kruhové fotonové orbity, avšak finálně dosahujı́cı́ch bodu obratu a poté unikajı́cı́ch směrem do vzdáleného vesmı́ru. Naopak v přı́padě pozorovatele s robs ≤ rph maximálnı́ hodnota směrového úhlu αmax (robs ) koresponduje s trajektoriemi fotonů obdobně mnohokrát spirálujı́cı́ch, avšak s impaktnı́m parametrem b → b− crit , a tedy finálně dopadajı́cı́ch na černoděrový horizont. Maximálnı́ směrový úhel αmax tak vymezuje na pozorovatelově obloze černý region, do kterého nejsou již projektovány žádné obrazy objektů vzdáleného vesmı́ru a přı́padné zářenı́ pozorované v této oblasti musı́ nutně přicházet ze zdrojů v těsné blı́zkosti černoděrového horizontu [25,81]. Hranice tohoto regionu je tedy možno interpretovat jako zobrazenı́ nestabilnı́ kruhové fotonové orbity (fotosféry obalujı́cı́ černou dı́ru) a jeho úhlová velikost může být nazývána zdánlivou úhlovou velikostı́ černé dı́ry S(robs ) = 2 αmax (robs ). (1.16) Směrový úhel α je na dané hodnotě radiálnı́ souřadnice robs obecně závislý na parametrech metriky 1.1 i volbě lokálnı́ho referenčnı́ho systému spojeného s pozorovatelem. Kvalitativnı́ a i kvantitativnı́ vlastnosti αmax (robs ) a tedy i S(robs ) jsou pro statické i radiálně volně padajı́cı́ pozorovatele ve Schwarzschildově–de Sitterově prostoročase podrobně diskutovány v přı́loze 1. Pro statického pozorovatele umı́stěného nad nestabilnı́ kruhovou fotonovou orbitou (robs > rph ) je S(robs ) antikorelována k Λ, zatı́mco pro pozorovatele s robs < rph S(robs ) spolu s Λ roste. Vliv elektrického a slapového náboje černé dı́ry byl s pomocı́ kódu BHimpaCt analyzován v diplomové práci M. Vindyše vedené autorem [87]. Přı́tomnost elektrického náboje zdánlivou 1.2. Optické zobrazenı́ ve sféricky symetrických prostoročasech 11 Obrázek 1.1. Zdánlivá úhlová velikost černé dı́ry S(robs ) pro statického pozorovatele jako funkce robs v prostoročasech s rozdı́lnou velikostı́ kvadrátu náboje Q2 = β a kosmologické konstanty Λ. Plné křivky označujı́ chovánı́ v prostoročasech s Λ = 0, přerušované křivky odpovı́dajı́ prostoročasům s Λ = 5 × 10−3 M −2 . Zdánlivá úhlová velikost klesá k nule na kosmologickém horizontu a naopak dosahuje maxima S(robs ) = 2π na horizontu černoděrovém. úhlovou velikost černé dı́ry S(robs ) pro statického pozorovatele na daném robs zvětšuje, zatı́mco přı́tomnost náboje slapového má opačný efekt. Ve významném přı́padě statického pozorovatele umı́stěného právě na nestabilnı́ kruhové fotonové orbitě je však zdánlivá úhlová velikost černé dı́ry S(robs ) invariantně rovna π nezávisle na hodnotách Q2 = β i Λ a černý region pro takové pozorovatele vyplňuje vždy celou hemisféru oblohy orientovanou směrem k černé dı́ře. Obrázek 1.1 ilustruje chovánı́ S(robs ) v elektricky i slapově nabitých prostoročasech včetně vlivu repulzivnı́ kosmologické konstanty [87]. Zajı́mavou a charakteristickou vlastnostı́ optického zobrazenı́ extrémně silným sféricky symetrickým gravitačnı́m polem je odlišný charakter přı́mých a nepřı́mých obrazů. Zatı́mco přı́mé obrazy zářenı́ vzdáleného vesmı́ru je pouze úhlově deformovány – komprimovány, transformace zobrazenı́ pro nepřı́mé obrazy je poněkud dramatičtějšı́. Nepřı́mé obrazy jsou nejenom úhlově komprimovány, ale i úhlově invertovány a navı́c otočeny o úhel π kolem optické osy zobrazenı́. 12 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . Dalšı́m dobře známým a charakteristickým efektem gravitačnı́ho lensingu sféricky symetrickým gravitačnı́m polem jsou Einsteinovy kroužky [25, 29, 58, 69], zobrazenı́ světelných zdrojů ležı́cı́ch na optické ose do koncentrických zářı́cı́ch prstenců. V přı́padě lensingu zářenı́ vzdáleného vesmı́ru existujı́ dvě sady Einsteinových kroužků. Prvnı́ sada, zobrazujı́cı́ zdroj zářenı́ ve vzdáleném vesmı́ru s φsource = π (tedy z hlediska pozorovatele za černou dı́rou) tvořı́ hranice přı́mých řádu k+ s nepřı́mými o řádu k− = −(k+ + 1). Druhou sadu, zobrazujı́cı́ protilehlý zdroj s φsource = 0 (za zády pozorovatele hledı́cı́ho směrem k černé dı́ře) lze pak lokalizovat na hranicı́ch přı́mých obrazů s nepřı́mými opačného řádu. Ačkoli intenzita obrazů globálně klesá s ∆φ (b, robs , rsource , β, Λ) a tedy i s |k|, v těsném okolı́ Einsteinových kroužků naopak lokálně prudce vzrůstá a v použitém přiblı́ženı́ geometrické optiky v Einsteinových kroužcı́ch diverguje do nekonečna [60]. Prvnı́ Einsteinův kroužek se tak stává nutně velmi signifikantnı́m observačnı́m fenoménem [69]. 1.3. Softwarová implementace Současná verze kódu BHimpaCt je vyvinuta na bázi programovacı́ho jazyka C++ a je rozdělena na tři základnı́ softwarové moduly implementované jako C++ objektové třı́dy. 1.3.1. Modul vstupů Modul vstupů definuje zdroje zářenı́ vstupujı́cı́ do simulace. Na povrchu zářı́cı́ch objektů zavedené souřadnice umožňujı́ precizovat intenzitu, RGB barevné komponenty i časovou variabilitu pixelem emitovaného zářenı́ na úrovni buňky mřı́žky (pixelu gridu) s volitelným rozlišenı́m. Zvolené softwarové řešenı́ tak mimo jiné dovoluje namapovat na povrch objektů obrázkové textury, což je právě mechanismus využitý při simulacı́ch vzhledu vzdáleného vesmı́ru. V současné verzi jsou v kódu BHimpaCt implementovány dvě třı́dy zářı́cı́ch objektů, vzdálené rovinné stı́nı́tko a sféra se středem v počátku souřadnic metriky. Objektová architektura ovšem dovoluje snadno pomocı́ mechanismů dědičnosti a zapouzdřenı́ v programovacı́m jazyce C++ vytvořit třı́dy pro reprezentaci dalšı́ch a odlišných zářı́cı́ch objektů. 1.3. Softwarová implementace 13 1.3.2. Modul relativistického raytracingu Modul relativistického raytracingu ve sféricky symetrických prostoročasech definuje metriku časoprostoru, zvolený lokálnı́ souřadný systém pozorovatele a na základě zadaných parametrů metriky 1.1 vypočı́tává polohu fotonových orbit, černoděrových i kosmologických horizontů a statických poloměrů. Jeho hlavnı́ funkcı́ je však řešenı́ problému emitor–observer, tedy nalezenı́ nulových geodetik spojujı́cı́ch zdroj a detektor zářenı́. Navazujı́cı́ funkcı́ modulu je pak výpočet veličin spojených s nalezenými nulovými geodetikami a nezbytných pro konstrukci optického zobrazenı́ v lokálnı́m referenčnı́m systému pozorovatele, jmenovitě směrového úhlu α, hodnoty frekvenčnı́ho posuvu g, amplifikace intenzity Atotal a také časového zpožděnı́ paprsku. Použitá implementace ovšem použı́vá metodu přenosové funkce a neprovádı́ raytracing v technickém slova smyslu, tak jak je obvykle chápán. Pro úspěšné modelovánı́ obrazů vyššı́ch řádů je klı́čová přesnost výpočtu impaktnı́ho parametru b, který se v přı́padě nulových geodetik odpovı́dajı́cı́ch obrazům vyššı́ch řádů měnı́ spolu s velkým ∆φ (b, robs , rsource , β, Λ) jen velmi pomalu a také se jen velmi málo lišı́ od limitnı́ hodnoty bcrit . Obdobně i body obratu se pro takové geodetiky nacházejı́ v těsné blı́zkosti nestabilnı́ kruhové fotonové orbity. Modul relativistického raytracingu počı́tá hodnotu impaktnı́ho parametru i polohu bodů obratu s přesnostı́ 10−15 M, což ve většině situacı́ postačuje k modelovánı́ obrazů prvnı́ch čtyř řádů pro k ∈ (−2, −1, 0, 1). K akceleraci výpočtů optické projekce je využı́vána sférická symetrie metriky, ale objektové rozhranı́ je navrženo takovým způsobem, aby modul bylo možno snadno nahradit softwarově kompatibilnı́m modulem raytracingu v odlišných, napřı́klad axiálně symetrických prostoročasech. 1.3.3. Modul zpracovánı́ výstupů Konečně modul zpracovánı́ výstupů upravuje výstupy simulacı́ do požadovaného datového formátu. Vizualizačnı́m výstupem je dvojice bitmapových obrázků pozorovatelovy oblohy, hemisféra oblohy orientovaná směrem ke gravitačnı́mu centru a projektovaná na virtuálnı́ stı́nı́tko kolmé na optickou osu spolu s obdobnou projekcı́ hemisféry opačné. Nezbytnou součástı́ softwarového řešenı́ je proto rutina pro transformaci RGB barevných komponent na základě hodnoty frekvenčnı́ho posuvu g, převzatá z kódu LightSpeed! [28]. Dalšı́m možným výstupem generovaným v přı́padě dynamické simulace je světelná křivka zářı́cı́ho objektu, tedy tabulka 14 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . časového průběhu světelného toku detekovaného pozorovatelem a integrovaného přes celý zářı́cı́ objekt. Tento druh výstupu je možno použı́t pro modelovánı́ časově proměnného zářenı́ horkých skvrn na povrchu kompaktnı́ch hvězd popřı́padě akrečnı́ch disků. 1.4. Vizualizačnı́ výstupy simulacı́ 1.4.1. Statický pozorovatel v blı́zkosti Schwarzschildovy černé dı́ry Obrázek 1.2. Gravitačnı́m polem nedeformovaný snı́mek Galaxie v Andromedě M31 spolu se satelitnı́mi galaxiemi M32 (nahoře) a M110 (dole). Vizualizačnı́ výstupy prvnı́ simulace demonstrujı́ základnı́ rysy geometrie optické projekce pro statického pozorovatele v blı́zkosti sféricky symetrické černé dı́ry, tedy optickou deformaci odpovı́dajı́cı́ sférické symetrii gravitačnı́ho pole, invertovaný charakter nepřı́mých obrazů i formovánı́ Einsteinových kroužků. V simulaci byly modelovány přı́spěvky nulových geodetik pro prvnı́ čtyři obrazy, k ∈ (−2, −1, 0, 1). Dı́ky zvolenému relativně vysokému rozlišenı́ výstupů jsou detaily obrazů vyššı́ch řádů dobře 1.4. Vizualizačnı́ výstupy simulacı́ 15 Obrázek 1.3. Simulace optického zkreslenı́ gravitačnı́m polem černé dı́ry ležı́cı́ mezi pozorovatelem a vzdálenou Galaxie v Andromedě M31. Statický pozorovatel je vzdálen od virtuálnı́ černé dı́ry o robs = 27M . rozlišitelné, a výstupy simulace tak dokumentujı́ dosahovanou přesnost integračnı́ho jádra kódu BHimpaCt. Objekty vzdáleného vesmı́ru v podobě nezkreslené gravitačnı́m polem jsou reprezentovány snı́mkem Galaxie v Andromedě M31 spolu se dvěma satelity M32 a M110 v rozlišenı́ 6000×4800 pixelů [46], viz Obr. 1.2. Výstupy simulace na obrázcı́ch 1.3, 1.4 a 1.5 odpovı́dajı́ optické projekci pro statického pozorovatele umı́stěného nad kruhovou fotonovou orbitou, obrázek 1.6 naopak ilustruje přı́pad statického pozorovatele pod rph . 1.4.2. Pozorovatel radiálně volně padajı́cı́ do Schwarzschildovy černé dı́ry Analyzujeme-li vzhled vzdáleného vesmı́ru pro pozorovatele z nekonečna radiálně volně padajı́cı́ho do Schwarzschildovy černé dı́ry, pak k efektům způsobeným silným gravitačnı́m pole přistupujı́ dı́ky pohybu pozorovatele 16 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . Obrázek 1.4. Detail oblasti maximálnı́ optické deformace obr. 1.3. Zřetelně lze rozlišit prvnı́ Einsteinův kroužek, invertovaný charakter prvnı́ho nepřı́mého obrazu i obrazy vyššı́ch řádů splývajı́cı́ spolu s odpovı́dajı́cı́mi Einsteinovými kroužky v jasný prstenec ohraničujı́cı́ černý region. 1.4. Vizualizačnı́ výstupy simulacı́ 17 Obrázek 1.5. Dalšı́ zvětšenı́ části oblasti formovánı́ obrazů vyššı́ch řádů Galaxie M31 pro statického pozorovatele na robs = 27M . V detailech druhého přı́mého obrazu je rozlišitelný (nahoře vlevo) obraz satelitnı́ galaxie M110. Sekundárnı́ Einsteinův kroužek ohraničujı́cı́ druhý přı́mý obraz a druhý nepřı́mý obraz splývajı́ opět v jasný prstenec ohraničujı́cı́ černý region. 18 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . Obrázek 1.6. Změna charakteru optické projekce pro statického pozorovatele robs = 2.7M . Pozorovatel je nynı́ umı́stěn pod kruhovou fotonovou orbitou a tedy zobrazenı́ celého vzdáleného vesmı́ru je přesunuto na hemisféru oblohy odvrácenou od černé dı́ry. Vnitřnı́ okraj projekce je tak vnějšı́ hranicı́ obrazu prvnı́ho řádu a naopak hranice černého regionu zabı́rajı́cı́ho pro takového pozorovatele vı́ce než polovinu oblohy je vnějšı́ hranicı́ zobrazenı́. Výrazný modrý posuv je na výstupu simulace jasně rozlišitelný, část viditelného zářenı́ je přesunuta do neviditelného spektrálnı́ho oboru. 19 1.4. Vizualizačnı́ výstupy simulacı́ Nezkreslený obrázek robs = 200M robs = 50M robs = 30M robs = 15M robs = 10M robs = 5M robs = 1.5M Obrázek 1.7. Simulace vzhledu galaxie M104 Sombrero pro radiálně volně padajı́cı́ho pozorovatele do Schwarzschildovy černé dı́ry na rozdı́lných hodnotách radiálnı́ souřadnice. 20 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . i efekty speciálně relativistické. Chovánı́ zdánlivé úhlové velikosti černé dı́ry S(robs ) jako funkce radiálnı́ souřadnice volně padajı́cı́ho pozorovatele robs je oproti statickému přı́padu výrazně kvalitativně odlišné. Hodnota S(robs ) pro takového pozorovatele je vždy menšı́ než odpovı́dajı́cı́ hodnota pro pozorovatele statického a radiálnı́ souřadnice kruhové fotonové orbity zde oproti statickému přı́padu nevystupuje v nikterak význačné roli. Volně padajı́cı́ pozorovatel uvidı́ černý region okupujı́cı́ polovinu oblohy S(robs ) = π až při dosaženı́ centrálnı́ singularity. Také chovánı́ frekvenčnı́ho posuvu g je kvalitativně odlišné dı́ky kombinaci gravitačnı́ho blueshiftu a speciálně relativistického dopplerovského posuvu způsobeného pohybem pozorovatele. Pozorovaný frekvenčnı́ posuv zářenı́ vzdáleného vesmı́ru tak nutně závisı́ na úhlových souřadnicı́ch zdrojů. Série vizualizačnı́ch výstupů simulace na obr. 1.7 ilustruje tyto efekty pro padajı́cı́ho pozorovatele v relativně velké vzdálenosti od černé dı́ry i pro pozorovatele, jenž svým volným pádem dospěl již pod černoděrový horizont. Objekty vzdáleného vesmı́ru v podobě nezkreslené gravitačnı́m polem jsou reprezentovány snı́mkem Galaxie M104 Sombrero v rozlišenı́ 1200 × 655 pixelů [21]. 1.4.3. Povrch rotujı́cı́ superkompaktnı́ neutronové či kvarkové hvězdy Simulace vzhledu povrchu rotujı́cı́ relativisticky kompaktnı́ hvězdy (s poloměrem Rstar ∼ rph ) pro vzdáleného pozorovatele v nekonečnu je úlohou částečně komplementárnı́ k úloze, které byly věnovány předešlé simulace. Pokud prostoročas v okolı́ takového hvězdného objektu aproximativně popisujeme metrikou ve tvaru 1.1, lze dı́ky stacionaritě tohoto řešenı́ rovnici 1.10 snadno adaptovat pro přı́pad určenı́ impaktnı́ch parametrů nulových geodetik spojujı́cı́ch povrch hvězdy a vzdáleného pozorovatele pouhou vzájemnou záměnou robs a rsource = Rstar . Analogicky i modrý posuv zářenı́ vzdáleného vesmı́ru pozorovaný v blı́zkosti černé dı́ry je v přı́padě vzdáleného pozorovatele kompaktnı́ hvězdy nahrazen posuvem rudým. Přirozený předpoklad neprůhlednosti hvězdy ovšem omezuje obor možných řešenı́ rovnice 1.10 na vycházejı́cı́ geodetiky s b < bmax (Rstar ). Proto maximálnı́mu impaktnı́mu parametru bmax (Rstar ) odpovı́dá maximálnı́ možná změna úhlové souřadnice podél geodetiky a tedy i maximálnı́ hodnotě souřadnice φ = φmax source (Rstar ) na které je izotropně zářı́cı́ bodový zdroj na rovnı́ku hvězdy (θsource = π/2) ještě viditelný.3 V přı́padě plochého 3 Připomeňme opět, že ekvatoriálnı́ rovinu je možno dı́ky sférické symetrii metriky 1.1 volit arbitrárně. 1.4. Vizualizačnı́ výstupy simulacı́ 21 prostoročasu a tedy přı́močarého šı́řenı́ světla je φmax source roven π/2 a vzdálený pozorovatel vždy vidı́ pouze přivrácenou hemisféru povrchu hvězdy. Za přı́tomnosti sféricky symetrického gravitačnı́ho pole a při fixované hmotnosti hvězdy však φmax source (Rstar ) s klesajı́cı́m poloměrem hvězdy Rstar roste a tak narůstá i viditelná část povrchu hvězdy. Pokud poloměr hvězdy dosáhne kritické hodnoty Rc ≃ 3.445M, je φmax source (Rc ) roven π a viditelným se stává celý povrch. Pro zobrazenı́ povrchu hvězd s Rstar ≤ Rc se tı́m stávajı́ relevantnı́mi i přı́spěvky obrazů povrchu vyššı́ch řádů. Pro hvězdy s Rstar ≤ rph max pak φmax source (Rstar ) diverguje k nekonečnu. Závislost φsource (Rstar ) na poloměru hvězdy Rstar ilustruje obrázek 1.8. Obrázek 1.8. Úhel φmax source (Rstar ) jako funkce poloměru hvězdy Rstar . K efektům způsobeným gravitačnı́m polem přistupujı́ obdobně jako v přı́padě padajı́cı́ho pozorovatele i efekty speciálnı́ relativity zapřı́činěné rychlostı́ rotace povrchu a vzhled povrchu hvězdy je ovlivněn relativistickým Dopplerovým jevem i aberacı́. K ilustraci výše diskutovaných efektů byl použit hračkový model superkompaktnı́ hvězdy (Rstar = 2.4M) s červeně vyzařujı́cı́m povrchem (λ = 700 nm) a dvojicı́ protilehlých bı́le vyzařujı́cı́ch skvrn o úhlovém rozměru 0.6π. Hvězda rotuje s vysokou frekvencı́ νstar = Ωstar /2π = 2000 Hz a osa rotace svı́rá s optickou osou úhel ǫ = 0.57π. 22 Kapitola 1. Virtuálnı́ výlet k horizontu černé dı́ry. . . Obrázek 1.9. Simulace vzhledu povrchu superkompaktnı́ hvězdy s vyloučenı́m vlivu gravitačnı́ho rudého posuvu. Dı́ky vysoké superkompaktnosti hvězdy (Rstar = 2.4M ) je pro vzdáleného pozorovatele viditelný přı́mý i nepřı́mý obraz úplného povrchu hvězdy. Vlevo: Procesován je pouze speciálně relativistický Dopplerův frekvenčnı́ posuv. Poměrně komplikovaná barevná mapa povrchu vzniká kompozicı́ klasického a transverzálnı́ho Dopplerova jevu. Zřetelně rozeznatelné je umı́stěnı́ pólů osy rotace hvězdy i přesun vyzařovánı́ části povrchu pohybujı́cı́ho se směrem od pozorovatele do infračervené oblasti.Vpravo: Stejná situace jako na levém panelu, avšak se zahrnutı́m vlivu amplifikace zářenı́ povrchu. Oba panely Obr. 1.9 ilustrujı́ všechny výše zmiňované efekty s výjimkou gravitačnı́ho rudého posuvu, který by pouze přesunul zářenı́ povrchu do neviditelné oblasti elektromagnetického spektra. 1.5. Shrnutı́ a perspektiva Optické zobrazovánı́ ovlivněné extrémně silným gravitačnı́m polem kompaktnı́ch objektů, at’ již diskutované pro přı́pad pozorovatelů v blı́zkosti zdroje gravitačnı́ho pole nebo naopak pro pozorovatele vzdálené, je v současné době již teoreticky velmi dobře popsáno analytickými i numerickými metodami [25, 58, 60, 86]. Existujı́cı́ analytická řešenı́ i softwarové kódy umožňujı́ detailnı́ analýzu optických efektů ve sféricky i axiálně symetrických prostoročasech. Zde jsou popisovány výsledky zı́skané pomocı́ kódu BHimpaCt, který je pokusem o vytvořenı́ relativně (i relativisticky) univerzálnı́ softwarové platformy pro modelovánı́ optických efektů v blı́zkosti 1.5. Shrnutı́ a perspektiva 23 hvězdných kompaktnı́ch objektů. Počı́tačové simulace toků elektromagnetického zářenı́ ovlivněného silnou gravitacı́ jsou často použı́vány k modelovánı́ observačnı́ch astrofyzikálnı́ch fenoménů, jako jsou např. kvaziperiodické oscilace v rentgenovém zářenı́ akrečnı́ch disků binárnı́ch systémů s černými děrami či neutronovými hvězdami nebo také zářenı́ horkých skvrn na povrchu neutronových a podivných hvězd [11, 24, 67, 78]. Vizualizace optického zobrazenı́ v silném gravitačnı́m poli se v kontextu takových aplikacı́ relativistické optiky jistě může zdát pouhou hřı́čkou, avšak kromě názorného přiblı́ženı́ vlastnostı́ silně zakřivených prostoročasů může skýtat i estetický požitek, který snad i v současné době může hrát úlohu inspirace a motivace vědeckého poznánı́. Předmětem dalšı́ho plánovaného vývoje kódu BHimpaCt je vytvořenı́ interaktivnı́ho uživatelsky přı́větivého rozhranı́, implementace raytracingu v jiných než sféricky symetrických černoděrových prostoročasech a podpora přı́mého generovanı́ videoklipů jakožto výstupů dynamických simulacı́. Kapitola 2 QPOs: Pohled z nekonečna Šedivá je teorie, ale věčně zelený je strom života. — Johann Wolfgang von Goethe 2.1. Fenomén kvaziperiodických oscilacı́ (QPOs) Předešlá kapitola byla věnována analýze observacı́ virtuálnı́ch pozorovatelů v blı́zkosti černých děr či neutronových hvězd. Skutečné možnosti pozorovánı́ optických efektů způsobených silným gravitačnı́m polem relativisticky kompaktnı́ch hvězdných objektů jsou však omezeny nejen mezihvězdnými či intergalaktickými vzdálenostmi, ale i vlastnostmi zemské atmosféry, která bohužel bránı́ průchodu a tı́m i detekci elektromagnetického zářenı́ o vlnových délkách, které jsou relevantnı́ právě pro pozorovánı́ binárnı́ch hvězdných systémů obsahujı́cı́ch černé dı́ry nebo neutronové hvězdy. Až otevřenı́ nového rentgenového pozorovacı́ho okna za pomoci satelitnı́ch observatořı́ uvedlo na scénu relativistické astrofyziky neočekávaný optický observačnı́ fenomén, výskyt ostrých pı́ků ve výkonovém spektru (power density spectrum – dále jen PDS) zı́skávaném Fourierovou transformacı́ rentgenových světelných křivek nı́zkohmotnostnı́ch binárnı́ch systémů s černou dı́rou či neutronovou hvězdou (LMXB).1 Je všeobecně přijı́máno, že pozorované rentgenové zářenı́ LMXB systémů je generováno akrecı́ hmoty na černou dı́ru či neutronovou hvězdu, přesněji řečeno disipacı́ potenciálnı́ a kinetické energie akreovaného materiálu. Neutronovou hvězdou je v tomto kontextu mı́něn relativisticky kompaktnı́ produkt stelárnı́ho kolapsu s parametry neumožňujı́cı́mi dosáhnout finálnı́ho stadia černé dı́ry. Může se tedy jednat skutečně o neutronové hvězdy, kvarkové hvězdy nebo i dalšı́ kompaktnı́ hvězdné objekty 1 Low Mass X-ray Binaries: Binárnı́ systémy, ve kterých je hmotnost průvodce nižšı́ než hmotnost černé dı́ry či neutronové hvězdy. 25 26 Kapitola 2. QPOs: Pohled z nekonečna složené z hypotetických bizarnı́ch forem hmoty.2 V LMXB systémech je předpokládána existence akrečnı́ch disků orbitujı́cı́ch kolem centrálnı́ho kompaktnı́ho objektu a zářı́cı́ch v rentgenovém oboru a přı́padně také existence obdobně zářı́cı́ch horkých skvrn na povrchu neutronových ohřı́vaných dopadajı́cı́m akreovaným materiálem. Na pozadı́ relativně dobře zmapovaných spektrálnı́ stavů akreujı́cı́ch LMXB systémů je v PDS pozorován aperiodický výskyt prozatı́m s obtı́žemi vysvětlovaných výrazných ostrých pı́ků s charakteristickými vlastnostmi, kvaziperiodických oscilacı́ neboli QPOs [38]. Slovnı́ spojenı́ ostré pı́ky je ovšem nutno interpretovat v kontextu současných observačnı́ch možnostı́. Analyzovaná PDS jsou zı́skávána sofistikovanými softwarovými metodami zpracovávajı́cı́mi satelitnı́ observačnı́ data pro relativně dlouhé časové úseky, přičemž identifikace jednotlivých pı́ků je na hranicı́ch možnostı́ použı́vaných detekčnı́ch i softwarových technologiı́ [13, 52, 53]. Obvykle uváděný rozsah pozorovaných QPO frekvencı́ LMXB zdrojů je 10−2 Hz → 103 Hz. Na základě pozorované frekvence i dalšı́ fenomenologie jsou QPOs obvykle třı́děny do následujı́cı́ch skupin: • Nı́zkofrekvenčnı́ QPOs (low frequency QPOs, LFQPOs). Skupina s relativně komplexnı́m chovánı́m je shora obvykle ohraničována frekvencı́ 100 Hz • Hektohertz QPOs. Tato jsou pro daný zdroj pozorována na vı́ceméně konstantnı́ frekvenci v intervalu 100–200 Hz • Vysokofrekvenčnı́ QPOs (high frequency QPOs, HFQPOs) nebo také kHz QPOs. Běžně uváděný frekvenčnı́ rozsah pro LMXB zdroje je 200–1200 Hz. Skupina kHz QPOs, vykazujı́cı́ pravděpodobně nejbohatšı́ spektrum vlastnostı́, se těšı́ největšı́ pozornosti teoretických astrofyziků i pozorovatelů. Zdůrazněme však, že hodnota pozorované frekvence zde nenı́ jediným klasifikačnı́m znakem. Pro některé zdroje s neutronovou hvězdou může napřı́klad dolnı́ hranice frekvenčnı́ho rozsahu kHz QPO dosahovat až 50 Hz. 2 V současnosti je diskutována napřı́klad možnost existence tzv. elektroslabých hvězd, v jejichž jádru by mělo dı́ky v něm panujı́cı́m extrémnı́m podmı́nkám docházet k elektroslabému sjednocenı́. Mechanismus tzv. elektroslabého hořenı́ by pravděpodobně mohl působit proti gravitačnı́mu kolapsu podobně jako termonukleárnı́ reakce u běžných hvězd [27]. Jinými často diskutovanými superkompaktnı́mi objekty jsou hypotetické gravastary [34, 51]. 2.1. Fenomén kvaziperiodických oscilacı́ (QPOs) 27 Obrázek 2.1. Výkonové spektrum LMXB zdroje 4U 1608-52 s jasně zřetelnou přı́tomnostı́ dvojice QPO pı́ků (fitovaných lorentziány). Převzato z [38] a graficky upraveno. Dalšı́m a neméně důležitým kritériem je chovánı́ pı́ku odpovı́dajı́cı́ dané skupině; pro systémy s neutronovou hvězdou je kritériem existence vlastnostı́ pı́ku korespondujı́cı́ch s vlastnostmi charakteristických kHz QPO módů, které jsou podrobněji diskutovány nı́že. Tato kapitola si ovšem v žádném přı́padě neklade za cı́l poskytnout úplný přehled rozsáhlé QPOs fenomenologie a teoretických modelů, který lze najı́t např v [38]. Následujı́cı́ text je věnován kHz QPOs v LMXB systémech s neutronovou hvězdou, předmětu publikacı́ prezentovaných v přı́lohách 2–5. Termı́nem QPOs (kHz QPOs) bez dalšı́ch přı́vlastků budou dále mı́něny právě QPOs pozorované v rentgenových tocı́ch přicházejı́cı́ch z LMXB systémů obsahujı́cı́ch neutronovou hvězdu. 28 Kapitola 2. QPOs: Pohled z nekonečna 2.1.1. kHz QPOs v systémech s neutronovou hvězdou V systémech s neutronovou hvězdou lze pro kHz QPOs rozlišit dva odlišné módy pozorované v širokém rozsahu časově proměnných frekvencı́.3 Módy jsou charakterizované odlišnou korelacı́ nı́že podrobně diskutovaných parametrů pı́ku s jeho frekvencı́ [12, 13, 54]. Pokud jsou oba QPO módy detekovány současně, hodnoty frekvencı́ obou pı́ků splňujı́ vždy shodnou nerovnost a proto hovořı́me o hornı́m (upper ) a dolnı́m (lower ) QPO módu s odpovı́dajı́cı́mi frekvencemi svázanými relacı́ νu > νl . Zdůrazněme však, že tato relace je relevantnı́ pouze pro současnou detekci a ve frekvenčnı́m pásmu konkrétnı́ho zdroje mohou hornı́ QPO být detekována na frekvenci menšı́ než nesimultánně pozorovaná dolnı́ QPO. Částečně zavádějı́cı́ terminologie tak může snadno vést k principiálnı́m nedorozuměnı́m, kterých byl autor svědkem i na mezinárodnı́ch prestižně obsazených astrofyzikálnı́ch konferencı́ch. Pro simultánnı́ detekci obou módů je často použı́váno označenı́ twin-peak kHz QPO.4 Tvar frekvenčnı́ch pı́ků v zı́skaných PDS je při dalšı́m procesovánı́ fitován lorentziánem a popisován parametry Q a S. Faktor kvality Q je definován jako centrálnı́ frekvence pı́ku dělená jeho šı́řkou (frekvenčnı́m pásmem ∆ν) v polovině maximálnı́ výšky (amplitudy). Za předpokladu QPO pı́ku generovaného jednı́m harmonickým oscilátorem faktor kvality Q charakterizuje tlumenı́ oscilacı́, vyššı́m hodnotám Q (ostřejšı́m pı́kům) tak odpovı́dajı́ méně tlumené kmity. V přı́padě vı́ce oscilátorů s blı́zkými frekvencemi Q navı́c charakterizuje i distribuci frekvencı́. Signifikance S popisujı́cı́ relaci mezi integrálem plochy pod lorentziánovským fitem pı́ku a chybou měřenı́ může být vyjádřena formulı́ S = k(t)A2 p Q/ν , (2.1) kde A je rms amplituda pı́ku o frekvenci ν, definovaná jako podı́l energie pı́ku (dané integrálem plochy pod lorentziánovským fitem) √ k celkové energii vyzařované zdrojem. Časově proměnný faktor k(t) = I(t) T (count rate) 3 V binárnı́ch systémech s černou dı́rou jsou pozorována kHz QPOs na konstantnı́ch frekvencı́ch charakteristických pro daný zdroj. Pokud jsou detekovaná v párech, dvojice frekvencı́ obvykle odpovı́dajı́ poměrům malých celých čı́sel, typicky 3:2 [1, 50]. 4 53]. Simultánnı́ detekcı́ je zde ovšem nutno chápat v termı́nech integračnı́ doby měřenı́ [52, 2.1. Fenomén kvaziperiodických oscilacı́ (QPOs) 29 je úměrný počtu detekcı́ fotonů během doby observace časového pozorovacı́ho okna T a a tedy i intenzitě zdroje v okamžiku detekce I(t). Obvykle použı́vaný dolnı́ limit pro zpracovánı́ pı́ku jako QPO je S ≥ 2–4. Vzhledem k citlivosti současných detektorů může právě nastavenı́ hodnoty dolnı́ho limitu signifikance QPO pı́ků výrazně ovlivňovat vlastnosti zkoumaných setů observačnı́ch dat a tı́m i interpretace pozorovánı́. Kompletnı́ a detailnı́ popis procedury klasifikace QPO pı́ků lze nalézt v [37]. Pro hornı́ QPOs je faktor kvality obvykle malý a zůstává v celém frekvenčnı́m rozsahu téměř konstantnı́ na hodnotě Q ∼ 10, naproti tomu pro dolnı́ QPOs Q roste spolu s frekvencı́ a dosahuje maximálnı́ hodnoty Q ∼ 200. Amplitudy hornı́ch QPO monotónně klesajı́ s frekvencı́, zatı́mco pro dolnı́ QPOs vykazujı́ zpočátku strmý růst a po dosaženı́ maxima obdobně strmě klesajı́ [12–15]. Typické chovánı́ ukazuje obrázek 2.2. Obrázek 2.2. Chovánı́ faktoru kvality Q (vlevo), rms amplitudy zde značené r (uprostřed) a z předchozı́ch parametrů odvozené signifikance S v observačnı́ch datech zdroje 4U 1636-53. Observačnı́ data v prvnı́ch dvou panelech jsou převzata z [13], červenými body jsou značeny dolnı́ QPOs, modrými hornı́ QPOs. Spojité fitujı́cı́ křivky jsou konstruovány sumou exponenciál, korelace stupnic frekvencı́ na hornı́ a dolnı́ frekvenčnı́ p ose odpovı́dá relaci 2.2. Profil signifikance S je modelován jako úměrný r 2 Q/ν , tedy s použitı́m předpokladů konstantnı́ svı́tivosti zdroje a fixované observačnı́ doby. 2.1.2. Frekvenčnı́ korelace hornı́ch a dolnı́ch QPOs Na obrázku 2.3 ukazujı́cı́m distribuci detekcı́ twin-peak QPO v rovině νu -νl je existence korelace přı́liš se neodlišujı́cı́ od lineárnı́ závislosti mezi frekvencemi dolnı́ch o hornı́ch pı́ku vı́ce než zřetelná. Pás detekcı́ twin-peak QPOs protı́ná přı́mku odpovı́dajı́cı́ poměru frekvencı́ νu : νl = 3 : 2 v blı́zkosti hodnot νu = 900 Hz , νl = 600 Hz a masivnı́ klastrovánı́ detekcı́ poblı́ž tohoto bodu je ilustrováno i histogramem v pravé části obrázku. Rozlišitelné jsou však i méně výrazné klastry detekcı́ v okolı́ poměrů frekvencı́ 4:3 a 5:4. 30 Kapitola 2. QPOs: Pohled z nekonečna Globálně lineárnı́ charakter korelace frekvencı́ lze aproximovat empirickou relacı́ [6, 17, 93] νU ≈ 0.7νL + 520 Hz. (2.2) Obrázek 2.3. Nahoře: Detekce twin peak kHz QPOs v rovině νl - νu pro odlišné skupiny LMXB zdrojů s neutronovou hvězdou, data jsou převzata z [18,22,49,90]. Přerušovaná čára odpovı́dá poměru νu : νl = 3 : 2 a šedě je vyznačeno pásmo odchylky ±5%. Dole: Odchylka od poměru νu : νl = 3 : 2 jako funkce νl . 2.1. Fenomén kvaziperiodických oscilacı́ (QPOs) 31 Obrázek 2.4. Vlevo: Frekvenčnı́ histogram detekcı́ dolnı́ch QPOs zdroje 4U 1636-53. Tmavšı́m odstı́nem (v legendě lower in twin) jsou značeny detekce odpovı́dajı́cı́ twin-peak QPOs. Vpravo: Analogický histogram pro hornı́ QPOs. 2.1.3. Klastrovánı́ twin-peak QPOs v okolı́ poměrů malých celých čı́sel. Detekce twin-peak QPOs vykazujı́ výrazné klastrovánı́ v okolı́ poměrů frekvencı́ odpovı́dajı́cı́ch podı́lům malých celých čı́sel s výraznou dominancı́ hodnoty νu : νl = 3 : 2 [3]. Obrázek 2.4 ukazuje distribuci separátnı́ch hornı́ch, dolnı́ch i twin-peak QPOs v observačnı́ch datech LXMB zdroje 4U 1636-53 [13]. Existence preferovaných poměrů frekvencı́ twin-peak kHz QPO naznačujı́cı́ i možnou přı́tomnost fyzikálnı́ho mechanismu ležı́cı́ho v pozadı́ pozorovaných distribucı́ byla předmětem řady studiı́ a také i určitých kontroverzı́ [3, 12–15, 17, 18]. Oproti některým publikovaným tvrzenı́m o závislosti distribucı́ frekvencı́ hornı́ch a dolnı́ch QPOs [17, 18] výsledky analýzy skutečně pozorovaných distribucı́ publikované v článcı́ch, které jsou obsahem přı́lohy 2 a 3, ukazujı́ odlišný obraz. Skutečně pozorované distribuce hornı́ i dolnı́ch QPOs zdroje 4U 1636-53 neodpovı́dajı́ předpokládaným distribucı́m odvozeným pomocı́ relace 2.2 z distribucı́ jejich partnerů. Co se týče kvantitativnı́ho zhodnocenı́ odlišnosti takto predikovaných a pozorovaných partnerských distribucı́ frekvencı́, po porovnánı́ pomocı́ odpovı́dajı́cı́ch kumulativnı́ch distribucı́ zı́skáváme velmi nı́zké Kolmogorovovy–Smirnovovy (dále jen K-S) pravděpodobnosti pro shodu predikcı́ a observacı́ pL,KS = 2.35 × 10−5 a pU,KS = 2.24 × 10−3 . Navı́c je zřejmé z histogramů na obrázku 2.4, že hornı́ QPO jsou detekována převážně ve spodnı́ části frekvenčnı́ho rozsahu zdroje a naopak. V tomto smyslu lze distribuce hornı́ch a dolnı́ch pı́ků považovat za komplementárnı́. Distribuce poměrů frekvencı́ νu a νl v přı́padě detekcı́ twin-peak QPOs ukazuje levý panel obrázku 2.5. Histogram detekcı́ naznačuje přı́tomnost 32 Kapitola 2. QPOs: Pohled z nekonečna dvou význačným pı́ků distribuce v okolı́ poměrů 3:2 a 5:4. Observačnı́ data byla fitována modelovou distribucı́ p2 (r) konstruovanou jako suma dvou lorentziánů formulı́ p2 (r) = f λ1 /π λ2 /π + (1 − f ) , 2 2 (r − r1 ) + λ1 (r − r2 )2 + λ22 (2.3) kde r = νU /νL je poměr frekvencı́ a r1 , r2 , λ1 , λ2 a f jsou volné parametry. Při dosaženı́ maximálnı́ K-S pravděpodobnosti shody pozorované a fitujı́cı́ distribuce p2,KS = 0.918 volné parametry nabývajı́ hodnot r1 = 1.52, r2 = 1.28, λ1 = 0.0327, λ2 = 0.0913 a f = 0.722. Naproti tomu nejlepšı́ fit standardnı́ Lorentzovou distribucı́ s jednı́m pı́kem a parametry r0 = 1.50, λ0 = 0.0597 dosahuje K-S pravděpodobnosti pouze p1,KS = 0.340. Lze tedy konstatovat, že pozorované distribuci poměrů frekvencı́ twin-peak QPOs zdroje 4U 1636-53 odpovı́dá s velkou pravděpodobnostı́ výrazná preference dvou hodnot poměru frekvencı́, 3:2 a 5:4. Pozorovanou distribuci frekvenčnı́ch poměrů a obě modelové distribuce porovnává pravý panel obrázku 2.5. Souvislost závislosti amplitud pı́ků na jejich frekvenci a pozorovaného klastrovánı́ detekcı́ v okolı́ význačných poměrů frekvencı́ byla analyzována v článku, který je obsahem přı́lohy 3. Článek je věnována softwarovým simulacı́m pozorovaných frekvenčnı́ch distribucı́ twin-kHz QPOs. Simulace vycházejı́ z předpokladu, že dolnı́ a hornı́ QPO jsou vždy zdrojem produkovány v párech, jejichž frekvence jsou spojeny relacı́ 2.2, avšak dı́ky poměrně nı́zké citlivosti družicových detektorů jsou ne vždy detekovány oba partnerské pı́ky. V simulacı́ch použité aproximativnı́ průběhy rms amplitudy A a faktoru kvality Q konfrontuje s reálnými observačnı́mi daty levý a střednı́ panel obrázku 2.2. Pokud byla simulována náhodná distribuce twin-peak QPOs v pozorovaném frekvenčnı́m rozsahu zdroje 4U 1636-53 s výše uvedenými vlastnostmi a za dodatečného předpokladu konstantnı́ luminozity zdroje (k = 1), podařilo se v obdržené distribuci reprodukovat klastr detekcı́ v oblasti poměrů frekvencı́ 3:2, nikoli však sekundárnı́ klastr v okolı́ poměru 5:4. Pokud však byla simulace provedena takovým způsobem, že parametr k zůstával konstantnı́ (k = 1) až do νl = 700 Hz a poté narůstal lineárně s frekvencı́ tak aby na νl = 950 Hz nabýval hodnoty k = 2.5, obdržená distribuce nápadně připomı́nala distribuci skutečných observačnı́ch dat. Takový nárůst k nebyl ovšem zvolen zcela arbitrárně, naopak je v souladu v observačnı́mi daty [13, 53]. V simulaci byl nastaven práh detekce pı́ku pro signifikanci S na úrovnı́ 3σ a při takovém nastavenı́ se podařilo reproduko- 2.1. Fenomén kvaziperiodických oscilacı́ (QPOs) 33 vat i vlastnosti distribucı́ nesimultánnı́ch detekcı́ hornı́ch a dolnı́ch QPOs. Výsledky jsou ilustrovány obrázkem 2.6. Lze tedy konstatovat, že s použitı́m předpokladu korelace luminozity zdroje s frekvencı́ kHz QPO pı́ků je možno velmi dobře modelovat pozorovaná observačnı́ data. Pozitivnı́ výsledky výše diskutovaných simulacı́ ovšem nikterak dále nekonkretizujı́ fyzikálnı́ mechanismy stojı́cı́ v pozadı́ pozorovaných distribucı́ frekvencı́ i poměrů frekvencı́ kHz QPOs. Obrázek 2.5. Vlevo: Detekce twin-peak QPOs zdroje 4U 1636-53 v rovině νl -νu . Klastrovánı́ detekcı́ v okolı́ poměrů malých celých čı́sel je poměrně zřetelné. Vpravo: Kumulativnı́ distribuce frekvenčnı́ch poměrů pozorovaných twin-peak QPOs (stupňovitá křivka), modelová kumulativnı́ distribuce p2 (r) konstruovaná sumou dvou lorentziánů (silná plná křivka) a modelová kumulativnı́ standardnı́ lorentzovská distribuce p1 (r) (slabá přerušovaná křivka). Obrázek 2.6. Pozorované a simulované distribuce frekvenčnı́ch poměrů kHz QPOs zdroje 4U 1636-53. Vlevo: Pozorovaná distribuce frekvenčnı́ch poměrů twin-peak kHz QPOs. Uprostřed: Simulovaná distribuce (oranžově) twin-peak kHz QPOs v porovnánı́ s distribucı́ pozorovanou (šedě). Vpravo: Simulovaná distribuce nesimultánnı́ch detekcı́ hornı́ch a dolnı́ch kHz QPOs. 34 Kapitola 2. QPOs: Pohled z nekonečna 2.2. Orbitálnı́ modely vzniku QPOs V současné astrofyzikálnı́ komunitě věnujı́cı́ se QPO fenoménu bohužel neexistuje konsensuálně sdı́lená teoretická báze. Detekované frekvence kHz QPO se pohybujı́ na škále odpovı́dajı́cı́ frekvencı́m orbitálnı́ho pohybu testovacı́ch částic v těsné blı́zkosti kompaktnı́ch hvězdných objektů a proto je nezanedbatelná skupina QPO modelů založena na ztotožněnı́ pozorovaných QPO frekvencı́ právě s frekvencemi charakterizujı́cı́mi relativistický orbitálnı́ pohyb [38, 44] . Relativistický popis orbitálnı́ho pohybu se v řadě důležitých aspektů kvalitativně odlišuje od newtonovského přı́padu [56]. Eliptické orbitálnı́ trajektorie v newtonovském centrálnı́m poli bodové hmotnosti jsou uzavřeny [45], což v je přı́padě perturbovaného kvazikruhového orbitálnı́ho pohybu ekvivalentnı́ rovnosti orbitálnı́ frekvence νK , radiálnı́ epicyklické frekvence νr a vertikálnı́ epicyklické frekvence νθ . Poměrně rozsáhlou analýzu newtonovského i relativistického orbitálnı́ho perturbovaného pohybu neovlivněného jinými než gravitačnı́mi vlivy i explicitnı́ formule pro přı́mý výpočet epicyklických frekvencı́ z koeficientů metricky lze nalézt v [5]. Podrobnějšı́ diskuze relativistického přı́padu včetně zahrnutı́ negeodetických vlivů je předmětem třetı́ kapitoly této práce, na tomto mı́stě pouze připomeňme, že epicyklické frekvence popisujı́ časovou závislost malé perturbace polohy částice na stabilnı́ kruhové orbitě a existence oscilačnı́ho charakteru perturbovaného pohybu testovacı́ částice je ekvivalentnı́ tvrzenı́ o stabilitě kruhové orbity vůči radiálnı́m či vertikálnı́m perturbacı́m [5, 7, 8, 59]. Rovnost frekvencı́ νK a νr je však porušena již v přı́padě relativistického sféricky symetrického gravitačnı́ho pole popsaného Schwarzschildovou metrikou [56]. Nutným důsledkem nerovnosti frekvencı́ je vznik nového efektu precese periastra5 radiálně perturbované kruhové orbity s frekvencı́ [74]. νP = νK − νr . (2.4) Porušenı́ sférické symetrie metriky rotacı́ centrálnı́ hvězdy způsobujı́cı́ efekt strhávánı́ souřadných systémů (frame-dragging) [82] vede dále i k porušenı́ 5 Newtonovský efekt precese periastra obdržı́me v přı́padě porušenı́ sférické symetrie potenciálu, tedy v přı́padě polárnı́ho zploštěnı́ centrálnı́ho hvězdného objektu [45, 55]. 35 2.2. Orbitálnı́ modely vzniku QPOs rovnosti νK a νθ manifestujı́cı́ se precesı́ orbitálnı́ roviny (často nazývané Lenseovou–Thirringovou či nodálnı́) s frekvencı́ [73] νnodal = νK − νθ . (2.5) Konečně lze také hovořit o totálnı́ precesi s frekvencı́ νT = νP − νnodal = νθ − νr (2.6) a s periodou odpovı́dajı́cı́ časovému intervalu, po kterém periastron i inklinace orbity zaujmou původnı́ pozice. Zdůrazněme však, že i simultánnı́ opakovánı́ pozice periastra a orbitálnı́ roviny neznamená bez dalšı́ch požadavků kladených na hodnoty frekvencı́ uzavřenost orbitálnı́ trajektorie. Dobře známé formule pro úhlové frekvence orbitálnı́ho pohybu v černoděrovém Kerrově prostoročase s použitı́m Boyerových– –Lindquistových souřadnic a soustavy jednotek, kde G = c = 1 nabývajı́ tvarů [5, 7, 59] −1 1 3/2 r +a , M = Ω2K , 1 − 4 a r −3/2 + 3a2 r −2 , (2.7) ΩK = ωθ2 ωr2 = Ω2K 1− 6r −1 + 8ar −3/2 2 − 3a r (2.8) −2 , (2.9) kde spin a je definován pomocı́ vnitřnı́ho momentu hybnosti černé dı́ry (nahé singularity) J a jejı́ hmotnosti M relacı́ a = J/M 2 , r má význam radiálnı́ souřadnice škálované v jednotkách hmotnosti M. Explicitnı́ tvar vztahů pro frekvence orbitálnı́ho pohybu pro prostoročas v okolı́ rotujı́cı́ch neutronových hvězd aproximovaný Hartleovou–Thornovou metrikou [33] lze nalézt v [2] i v přı́loze 4. V přı́padě geodetického orbitálnı́ho pohybu v axiálně symetrických prostoročasech orbitálnı́ a epicyklické frekvence splňujı́ nerovnost νK ≥ νθ > νr . Podrobná diskuze chovánı́ všech třı́ frekvencı́ 2.9, 2.9 a 2.9 je pro přı́pad černých děr i hypotetických nahých singularit předmětem studie [83]. Zde pouze připomeňme, že radiálnı́ epicyklická frekvence νr po dosaženı́ maxima na r > rISCO klesá spolu radiálnı́ souřadnicı́ až nulové hodnotě, kterou dosahuje právě na meznı́ stabilnı́ orbitě rISCO , kde již jakákoli radiálnı́ perturbace vede k pádu testovacı́ částice na centrálnı́ hvězdný objekt. Relativistické škálovánı́ 1/M je jednı́m z hlavnı́ch argumentů podporujı́cı́ch ztotožněnı́ pozorovaných kHz QPO frekvencı́ s frekvencemi orbitálnı́ho pohybu. Předpoklad oblasti vyzařovánı́ akrečnı́ch disků v blı́zkosti 36 Kapitola 2. QPOs: Pohled z nekonečna jejich vnitřnı́ch okrajů přirozeně vede k možnému ztotožněnı́ maximálnı́ pozorované QPO frekvence daného zdroje s orbitálnı́ frekvencı́ právě na vnitřnı́m okraji akrečnı́ho disku. V přı́padě tenkých disků modelovaných geodetickým pohybem volných částic je vnitřnı́ okraj disku vymezen radiálnı́ souřadnicı́ kruhové meznı́ stabilnı́ orbity rISCO s odpovı́dajı́cı́ orbitálnı́ frekvencı́ νK (rISCO ) [39]. V přı́padě disků stabilizovaných tlakovými gradienty je pak vnitřnı́ okraj disku vymezen meznı́ vázanou orbitou s radiálnı́ souřadnicı́ rmb a odpovı́dajı́cı́ orbitálnı́ rychlost je vyššı́ než νK (rISCO ) [41]. Pozorované rozsahy kHz QPO frekvencı́ u galaktických LMXB zdrojů spolu s přı́slušnými odhady hmotnostı́ takovému ztotožněnı́ odpovı́dajı́. Sama identifikace kHz QPO frekvencı́ s orbitálnı́mi frekvencemi jak geodetického pohybu testovacı́ch částic tak i frekvencemi vztahujı́cı́mi se k chovánı́ orbitujı́cı́ch diskových struktur je uvažována mnoha způsoby, jmenujme zde bez nároků na úplnost alespoň beat frequency model předpokládajı́cı́ interakci orbitálnı́ frekvence s frekvencı́ rotace povrchu neutronových hvězd [9,43], model nelineárnı́ rezonance [1,3,4] a různé varianty diskoseizmologie [36, 47, 48, 57, 65, 66, 72, 88, 89, 91, 92]. Poněkud podrobnějšı́ přehled orbitálnı́ch QPO modelů lze nalézt v úvodu přı́lohy 7. Následujı́cı́ text bude věnován aplikacı́m často diskutovaného [18, 35, 44, 93] relativisticky precesnı́ho modelu uvedeného na astrofyzikálnı́ scénu L. Stellou a M. Vietrim [74]. 2.2.1. Relativistický precesnı́ model Relativistický precesnı́ model (dále jen RP model) ve své původnı́ verzi ztotožňuje pozorované frekvence kHz QPOs s geodetickými orbitálnı́mi frekvencemi zářı́cı́ skvrny (blobu) v tenkém disku relacemi [74] νL = νK (r) − νr (r), νU = νK (r). (2.10) Frekvence dolnı́ho kHz pı́ku je interpretována jako frekvence precese periastra zářı́cı́ skvrny a frekvence hornı́ho kHz pı́ku jako odpovı́dajı́cı́ orbitálnı́ frekvence. Navı́c jsou ztotožňovány frekvence nı́zkofrekvenčnı́ch QPO νlf s frekvencı́ nodálnı́ precese [73] relacı́ νlf = νnodal = νK − νθ . (2.11) I přes překvapujı́cı́ kvalitativnı́ i kvantitativnı́ shodu observačnı́ch dat s výše uvedenými frekvenčnı́mi relacemi, ilustrovanou obrázkem 2.7 2.2. Orbitálnı́ modely vzniku QPOs 37 Obrázek 2.7. Rozdı́l ve frekvencı́ch hornı́ch a dolnı́ch kHz QPO ∆ν jako funkce νK (zde značena νphi ) pro deset LMXB zdrojů. Křivky jsou vykresleny pro nerotujı́cı́ neutronové hvězdy o hmotnostech 2.2, 2.0, 1.8M⊙ . Převzato z [74]. převzatým z původnı́ studie [74], RP model založený na orbitálnı́m pohybu horkých skvrn ve své původnı́ verzi nedisponuje dostatečně přesvědčivým vysvětlenı́m mechanismu modulace pozorovaných rentgenových toků [70, 71]. Také kvalita fitů twin-peak QPO dat konkrétnı́ch zdrojů a přı́slušné odhady hmotnostı́ zůstávajı́ mı́rně diskutabilnı́ [18]. Frekvence orbitálnı́ho pohybu a jejich kombinace nicméně formálně odpovı́dajı́ frekvencı́m oscilačnı́ch módů toroidálnı́ch diskových struktur orbitujı́cı́ch kolem centrálnı́ch kompaktnı́ch objektů a stabilizovaných tlakovými gradienty. Nabı́zı́ se tak odlišná interpretace alespoň vysokofrekvenčnı́ch relacı́ RP modelu, kdy frekvence hornı́ho a dolnı́ho pı́ku odpovı́dajı́ vlastnı́m frekvencı́ch oscilačnı́ch módů nebo jejich kombinaci. Frekvence oscilačnı́ch módů jsou však již negeodeticky ovlivňovány tlakovými gradienty a tedy závislé na parametrech diskových struktur. Proto takový druh interpretace může alespoň principiálně korigovat fity twin-peak QPO observačnı́ch dat žádoucı́m způsobem [20, 68, 77]. 38 Kapitola 2. QPOs: Pohled z nekonečna 2.2.2. Preferované kruhové orbity Přı́loha 4 rozšiřuje simulace distribucı́, které jsou předmětem publikacı́ v přı́lohách 2 a 3, o aplikace vysokofrekvenčnı́ch relacı́ RP modelu. Relace umožňujı́ přiřadit pozorované hornı́ či dolnı́ QPO frekvenci odpovı́dajı́cı́ orbitálnı́ radius a tı́m i předpokládanou frekvenci partnerského pı́ku. Takovým způsobem konstruovaná závislost νu (νl ) fitujı́cı́ twin-peak kHz QPO data je parametrizována radiálnı́ souřadnicı́ přı́slušných kvazikruhových orbit. Otázka, zda pozorované preferované poměry frekvencı́ hornı́ho a dolnı́ho pı́ku neodpovı́dajı́ v této interpretaci preferovaným orbitám, je vı́ce než přirozená. Pozitivnı́ odpověd’ je podporována výsledky počı́tačových simulacı́. Simulace distribuce twin-peak kHz QPOs založená na frekvenčnı́ch relacı́ch RP modelu konstruovaných v Hartleově–Thornově prostoročase a pouhém náhodném výběru orbit z intervalu odpovı́dajı́cı́ho frekvenčnı́mu rozsahu zdroje 4U 1636-53 je vysoce nekompatibilnı́ s observačnı́mi daty. Naproti tomu obdobná simulace, avšak s implementacı́ předpokladu preference orbit odpovı́dajı́cı́ch poměrům frekvencı́ pı́ků 3:2 a 5:4 reprodukuje přesvědčivě vlastnosti distribucı́ skutečně pozorovaných twin-peak kHz QPOs. Existence preferovaných hodnot radiálnı́ch souřadnice kruhových orbit spojených s význačnými poměry frekvencı́ naznačuje možnou přı́tomnost rezonančnı́ch fenoménů. Závěry o preferovaných hodnotách radiálnı́ souřadnice mohou být však také interpretovány v kontextu diskových oscilačnı́ch módů. 2.2.3. Odhady hmotnosti a spinu s použitı́m relativistického precesnı́ho modelu: Circinus X-1 Vysokofrekvenčnı́mi relacemi RP modelu definovaná závislost νu (νl (r)) je konkretizovaná vztahy pro frekvence orbitálnı́ho pohybu a tedy v geodetickém přı́padě přı́mo volnými parametry metriky. Pokud aproximujeme prostoročas v okolı́ neutronových hvězd Hartleovou–Thornovou metrikou, relevantnı́mi parametry jsou hmotnost hvězdy M, vnitřnı́ moment hybnosti j a kvadrupólový moment q. RP model tak principálně umožňuje zı́skánı́ informacı́ o parametrech časoprostoru i neutronové hvězdy fitovánı́m twin-peak kHz QPO dat. Je však ukázáno, že ačkoli frekvenčnı́ relace RP modelu kvalitativně velmi dobře postihujı́ trendy obsažené v observačnı́ch datech, charakteristická hmotnosti neutronových hvězd M ∼ 2M⊙ je přı́liš vysoká v porovnánı́ s kanonickou hodnotou M ∼ 1.4M⊙ [18]. Nicméně je třeba poznamenat, že na rozdı́l od raných studiı́ [55, 75] většina publiko- 39 2.2. Orbitálnı́ modely vzniku QPOs vaných výsledků pro konkrétnı́ zdroje zanedbává vliv rotace neutronové hvězdy. Článek, který je obsahem přı́lohy 6 je věnován právě vlivu rotace na odhad hmotnosti pekuliárnı́ho zdroje Circinus X-1. Současná odhadovaná hmotnost zdroje právě s použitı́m frekvenčnı́ch relacı́ RP modelu je M0 = 2.2 ± 0.3M⊙ [22, 23]. Na rozdı́l od většiny LMXB zdrojů, kHz QPOs zdroje Circinus X-1 vykazujı́ klastrovánı́ v okolı́ poměrů frekvencı́ νu : νl = 3 : 1, tedy v rámci interpretace RP modelem odpovı́dajı́cı́ kruhovým orbitám již poměrně vzdáleným od meznı́ stabilnı́ orbity, na kterých již rozdı́ly mezi Hartleovým–Thornovým a Kerrovým řešenı́m nejsou přı́liš významné. Dodejme dále, že Hartleovo–Thornovo řešenı́ v přı́padě nastavenı́ q = j 2 splývá s řešenı́m Kerrovým disponujı́cı́m pouze dvěma volnými parametry, hmotnostı́ centrálnı́ho objektu M a jeho spinem a. Relace mezi kvadrupólovým momentem q a vnitřnı́m momentem hybnosti hvězdy j je určena stavovou rovnicı́ hvězdného materiálu a právě stavové rovnice dovolujı́cı́ vysoké hmotnosti M0 = 2M⊙ nastavujı́ q do hodnot blı́zkých Kerrově geometrii. Z těchto důvodů byla pro fitovánı́ twin-peak QPO dat použita frekvenčnı́ relace odpovı́dajı́cı́ Kerrově prostoročasu, která s použitı́m formulı́ pro epicyklické frekvence (vyjádřené v Hz) 2.7 a 2.9 nabývá tvaru νL = νU " 1− 1+ 8jνU −6 F − jνU νU F − jνU 2/3 − 3j 2 νU F − jνU 4/3 #1/2 , (2.12) kde relativistický faktor F je dán vztahem F ≡ c3 /(2πGM). Pro přı́pad Schwarzschildovy geometrie (j = 0) se vztah (2.12) zjednodušuje na tvar νL = νU ( 1− 1−6 ν 2/3 1/2 U F ) , (2.13) vedoucı́ k formuli pro rozdı́l frekvencı́ hornı́ho a dolnı́ho pı́ku ∆ν = νU q 1 − 6 (2πGMνU )2/3 /c2 , (2.14) která byla použita k výše zmiňovanému odhadu hmotnosti [22, 23]. V principu tak každé dvojici parametrů M a j odpovı́dá unikátnı́ tvar relace νu (νl (r)). 40 Kapitola 2. QPOs: Pohled z nekonečna Frekvence hornı́ch a dolnı́ch pı́ků klesajı́ s rostoucı́m M a se zvyšujı́cı́m se j. Dı́ky tomu lze pro nı́zké hodnoty j do hodnoty ∼ 0.3 nalézt třı́dy téměř identických křivek, pro které M, j and M0 jsou přibližně svázány relacı́ M = [1 + k(j + j 2 )]M0 , (2.15) kde konstanta k v přı́padě požadavku na aproximativnı́ shodu celého průběhu frekvenčnı́ch relacı́ nabývá hodnoty k = 0.7. Kvalita fitů observačnı́ch dat je tedy prakticky shodná v přı́padě čistě Schwarzschildova řešenı́ a hmotnostı́ M0 i při použitı́ Kerrovy metriky s relacı́ 2.15 svázanými parametry M a j. Pokud je požadována shoda relacı́ pouze v hornı́ části křivek odpovı́dajı́cı́ kruhovým orbitám v blı́zkosti meznı́ stabilnı́ orbity, konstanta nabývá hodnoty k = 0.7. Pro dolnı́ části křivek relevantnı́ pro nı́zkofrekvenčnı́ zdroje, včetně diskutovaného Circinus X-1, je nejlepšı́ho výsledku dosaženo pro hodnotu k = 0.65 (0.55, 0.5) odpovı́dajı́cı́ okolı́ frekvenčnı́ho poměru νU /νL ∼ 2 (3, 4) . Průběh frekvenčnı́ch relacı́ a existence třı́d obdobných křivek na pozadı́ observačnı́ch dat lze nalézt na obrázku 2.8. Výše zmı́něné vlastnosti frekvenčnı́ch relacı́ RP modelu ovšem znamenajı́ nemožnost nezávislého odhadu hmotnosti a spinu fitovánı́m observačnı́ch twin-peak QPOs dat a frekvenčnı́ relace RP modelu tak mohou poskytnout pouze informaci o třı́dě téměř identických fitů a jim odpovı́dajı́cı́ch párů hodnot M a j. Přı́má analýza dostupných observačnı́ch twin-peak kHz QPO dat zdroje Circinus X-1 v kontextu výše diskutovaných vlastnostı́ frekvenčnı́ch relacı́ RP modelu vede tak stanovenı́ relace pro M a j zdroje Circinus X-1 ve tvaru M = 2.2M⊙ [1 + k(j + j 2 )], k = 0.55. (2.16) Konstanta M0 odpovı́dajı́cı́ čistě schwarzschildovskému fitu nabývá hodnoty 2.2[+0.3; −0.1]M⊙ s chybou danou jednotkovou variacı́ χ2 a je tedy v dobré shodě s odhadem hmotnosti v [22, 23]. Výsledky analýzy však vykazujı́ poměrně překvapujı́cı́ trend, pozvolné zvyšovánı́ kvality fitů spolu s rostoucı́m j a naznačujı́ určitou nekonzistenci použitých geodetických frekvenčnı́ch relacı́ s reálnými observačnı́mi daty. Na datech vysokofrekvenčnı́ho zdroje 4U 1636-53 již bylo ukázáno, že modifikace frekvenčnı́ch relacı́ RP modelu zavedenı́m efektivnı́ radiálnı́ epicyklické frekvence vztahem ν̃t = νt (1 − β) , β ∈ (0 ∼ 0.2) (2.17) 2.3. Shrnutı́ 41 Obrázek 2.8. Průběh frekvenčnı́ch relacı́ RP modelu spolu s twin-peak kHz QPOs observačnı́mi daty pro Circinus X-1 (žlutě), 4U 1636-53 (purpurově) a jiné LMXB zdroje (černě). Skupiny téměř splývajı́cı́ch křivek ilustrujı́ podobnost průběhu relacı́ pro M a j svázané relacı́ 2.15. který poněkud spekulativně aproximuje negeodetické korekce frekvencı́ odpovı́dajı́cı́ napřı́klad interakci zářı́cı́ skvrny s diskem nebo magnetickým polem neutronové hvězdy, může výrazně zlepšit kvalitu fitů twin-peak kHz QPOs dat [84]. Geodetické i negeodetické fity dat zdroje 4U 1636-53 i průběh korigovaných frekvencı́ ilustruje obrázek 2.9. Použitı́ takto korigovaných frekvenčnı́ch relacı́ na rozdı́l od čistě geodetického přı́padu generuje minima χ2 v blı́zkosti j = 0 a tak naznačuje pravděpodobnou přı́tomnost negeodetických korekcı́ frekvencı́ orbitálnı́ho pohybu. Výsledky analýzy dat zdrojů Circinus X-1 a 4U 1636-53 přehledně shrnuje obrázek 2.10. 2.3. Shrnutı́ Přes všechny observačnı́ potı́že je dnes známa a popsána poměrně rozsáhlá fenomenologie QPOs, nicméně komplexnı́ model vysvětlujı́cı́ všechny aspekty tohoto fenoménu v současné době nenı́ znám. Relativistický pre- 42 Kapitola 2. QPOs: Pohled z nekonečna Obrázek 2.9. Fitovánı́ twin-peak kHz QPOs dat zdroje 4U 1636-53 frekvenčnı́mi relacemi RP modelu. Vlevo: Čistě geodetický fit. Vpravo: Fit se zahrnutı́m negeodetické korekce spolu s průběhy geodetických i korigovaných frekvencı́. Obrázek 2.10. Kvalita fitů twin-peak kHz QPOs dat relacemi RP modelu (charakterizovaná hodnotou χ2 ) jako funkce odhadu hmotnosti M . Pro každou hodnotu M byla vyhledáno odpovı́dajı́cı́ hodnota j dosahujı́cı́ nejmenšı́ho χ2 . Vlevo: Výsledky fitovánı́ simulovaných twin-peak kHz QPO dat s přı́tomnostı́ negeodetické korekce a fitovaných relacemi s (přerušovaná křivka) i bez korekčnı́ho faktoru (plná křivka). Výsledky fitovánı́ geodetickými relacemi vykazujı́ nápadnou podobnost s výsledky zpracovánı́ skutečných observačnı́ch dat. Uprostřed: Výsledky fitovánı́ data zdroje Circinus X-1 pro různé hodnoty korekčnı́ konstanty β. Vpravo: Totéž pro vysokofrekvenčnı́ zdroj 4U 1636-53. cesnı́ model kvalitativně dobře vysvětluje trendy přı́tomné v observačnı́ch datech, avšak detaily fyzikálnı́ch mechanismů ležı́cı́ za pozorovanými distribuce observačnı́ch dat jsou stále nejasné. Binárnı́ systémy s relativisticky kompaktnı́m objektem jsou pokládány za přı́rodnı́ relativistické laboratoře a proto se zdá být přirozené vkládat naděje do možnosti testovat predikce obecné relativity právě pomocı́ observačnı́ch fenoménů spojených s chovánı́m zářenı́ a hmoty v extrémnı́ch podmı́nkách v blı́zkosti těchto ob- 2.3. Shrnutı́ 43 jektů či naopak určovat parametry kompaktnı́ch hvězdných objektů pomocı́ nástrojů relativistické astrofyziky. I přes nesporné úspěchy dosažené na na tomto poli nám však přı́roda prozatı́m nastavuje poněkud rozporuplnou tvář. Kapitola 3 Magnetická pole 3.1. Observačnı́ motivace Jak bylo v předešlé kapitole ukázáno, ad hoc zavedená modifikace frekvenčnı́ch relacı́ relativistického precesnı́ho modelu spočı́vajı́cı́ v poměrně malém snı́ženı́ radiálnı́ epicyklické frekvence při současném zanedbatelném ovlivněnı́ ostatnı́ch frekvencı́ orbitálnı́ho pohybu může významně zlepšit kvalitu fitovánı́ twin-peak QPOs v observačnı́ch datech. Otázkou samozřejmě zůstává původ a fyzikálnı́ mechanismus této modifikace. Zachováme-li představu orbitujı́cı́ch horkých skvrn v disku a uvažujeme-li tedy skutečně přı́mé frekvence orbitálnı́ho pohybu testovacı́ch částic, jak jsou použity původnı́ verzı́ relativistického precesnı́ho modelu, zdá se být intuitivně zřejmé, že radiálně působı́cı́ negeodetická sı́la by mohla právě tı́mto způsobem původně geodetickou frekvenčnı́ relaci ovlivnit. Přijmeme-li dále dodatečný předpoklad, že orbitujı́cı́ hmota v tenkém disku je velmi slabě elektricky nabita, pak Lorentzova sı́la vznikajı́cı́ interakcı́ náboje nabitých orbitujı́cı́ch částic a magnetického pole neutronové hvězdy aproximativně popsaného magnetickým dipólem kolmým na ekvatoriálnı́ orbitálnı́ rovinu může mı́t požadované vlastnosti.1 V tomto přı́padě se však otevřenou otázkou nutně stává původ elektrického náboje orbitujı́cı́ hmoty v akrečnı́m disku. 1 Je nutno podotknout, že se nejedná o jediný možný mechanismus ovlivněnı́ geodetických frekvenčnı́ch relacı́. V přı́padě ztotožněnı́ pozorovaných frekvencı́ s frekvencemi oscilačnı́ch módů tlustých disků formálně odpovı́dajı́cı́ch epicyklickým frekvencı́m mohou mı́t tlakové gradienty závislé na tloušt’ce disku analogický vliv [19, 20, 68, 76, 77]. Dále je možno uvažovat o přı́padném vlivu viskozity materiálu tenkého disku. Existujı́ také některé odlišné, avšak velmi sofistikované přı́stupy k vysvětlenı́ vzniku vysokofrekvenčnı́ch QPOs pomocı́ modelů oscilujı́cı́ch toroidálnı́ch disků [47, 48, 57, 65, 66, 72, 91, 92], pomocı́ tzv. diskoseizmologie [88, 89] a konečně modely warped“ disků [36]. ” 45 46 Kapitola 3. Magnetická pole 3.2. Perturbovaný kruhový orbitálnı́ pohyb nabitých testovacı́ch částic v dipólovém magnetickém poli na schwarzschildovském pozadı́ Článek On magnetic-field-induced non-geodesic corrections to relativistic orbital and epicyclic frequencies, který je obsahem přı́lohy 8 spolu s recenzovaným sbornı́kovým přı́spěvkem On magnetic-field induced non-geodesic corrections to the relativistic precession QPO model obsaženém v přı́loze 7 je věnován plně relativistické analýze kruhového orbitálnı́ho pohybu nabitých testovacı́ch částic ovlivněného Lorentzovou silou v silném gravitačnı́m a magnetickém poli neutronových hvězd. V použité aproximaci jsou zanedbávány efekty strhávánı́ souřadných systémů způsobené rotacı́ (spinem) centrálnı́ho hvězdného objektu i vliv tenzoru energie-hybnosti magnetického pole hvězdy na geometrii prostoročasu. Zatı́mco vliv spinu hvězdy je bezesporu klı́čovým pro modelovánı́ realistických astrofyzikálnı́ situacı́ a jeho zahrnutı́ by mělo být a je předmětem dalšı́ho výzkumu, použitı́ vakuového řešenı́ Einsteinových rovnic lze považovat za velmi dobrou aproximaci dı́ky zanedbatelné hustotě energie magnetického pole i u silně zmagnetizovaných neutronových hvězd oproti hustotě energie jejich pole gravitačnı́ho [63]. Jako aproximace kompozice gravitačnı́ho a magnetického pole v okolı́ neutronové či kvarkové hvězdy je tedy uvažován relativistický magnetický dipól, jehož osa symetrie je kolmá na ekvatoriálnı́ rovinu statického prostoročasového pozadı́ reprezentovaného Schwarzschildovou vakuovou metrikou. 3.2.1. Dipólové magnetické pole na pozadı́ Schwarzschildovy prostoročasové geometrie Čtyřpotenciál dipólového magnetického pole na uvažovaném schwarzschildovském pozadı́ lze zapsat ve tvaru [62] Aα = − δαφ f (r) µ sin2 θ , r (3.1) tedy ve formě magnetického dipólového řešenı́ Maxwellových rovnic v plochém prostoročase, avšak násobenému funkcı́ f (r, M) danou formulı́ 2M M 2M 3r 3 + 1+ . ln 1 − f (r) = 8M 3 r r r (3.2) 3.2. Dipólové magnetické pole na schwarzschildovském pozadı́ 47 Odpovı́dajı́cı́ Maxwellův tenzor elektromagnetického pole Fµν , který lze zı́skat ze čtyřpotenciálu Aµ definičnı́ relacı́ Fµν = ∂Aµ ∂Aν − , µ ∂x ∂xν (3.3) má pouze dvě nezávislé nenulové komponenty, Frφ µ sin2 θ =B = r2 θ ∂f (r) f (r) − r ∂r , (3.4) a Fθφ = −B r = − µ sin 2θ f (r), r (3.5) přı́mo svázané s přı́slušnými komponentami vektoru magnetické indukce B. Obecně relativistickou pohybovou rovnici pro nabitou testovacı́ částici se specifickým nábojem q̃ ≡ q/m lze zapsat ve tvaru dU µ + Γµαβ U α U β = q̃ Fνµ U ν dτ (3.6) a výše uvedené vztahy tedy ukazujı́, že pohyb nabitých částic bude determinován dvěma volnými parametry neutronové hvězdy, vnitřnı́m magnetickým dipólovým momentem µ a hmotnostı́ M. Nepřı́mé metody založené na analýze observačnı́ch dat ovšem umožňujı́ určit pouze velikost vektoru magnetické indukce na povrchu hvězdy, která se pro LMXB zdroje předpokládá v intervalu B ∈ 106 ÷ 109 Gaussů [38, 39]. Lineárnı́ relaci mezi vnitřnı́m dipólovým magnetickým momentem hvězdy µ a magnetickou indukcı́ Blocal měřenou pozorovatelem umı́stěným na rovnı́ku hvězdy poloměru R a hmotnosti M však zı́skáme snadno projekcı́ Maxwellova tensoru F µν do lokálnı́ho referenčnı́ho systému takového pozorovatele. Tato relace pro Schwarzschildův prostoročas a dipólové magnetické pole diskutované výše nabývá tvaru √ 4M 3 R3/2 R − 2M µ= 6M(R − M) + 3R(R − 2M) ln 1 − 2M R Blocal . (3.7) Relativně slabé magnetické indukci na povrchu, Blocal = 107 Gauss ≃ 2.875 × 10−16 m−1 tak pro hvězdu s hmotnostı́ M = 1.5M⊙ a poloměrem R = 4M odpovı́dá hodnota dipólového momentu µ = 1.06 × 10−4 m2 . Hvězdný objekt s výše uvedenými parametry je v dalšı́ analýze použit jako testovacı́. 48 Kapitola 3. Magnetická pole 3.2.2. Frekvence perturbovaného kruhového orbitálnı́ho pohybu Standardnı́m nástrojem pro analýzu orbitálnı́ho pohybu je studium chovánı́ efektivnı́ho potenciálu testovacı́ch částic. V přı́padě perturbovaného kruhového orbitálnı́ho pohybu lze jako alternativu s výhodou použı́t analýzu vlastnostı́ epicyklických frekvencı́ velmi úzce svázaných právě s chovánı́m efektivnı́ho potenciálu Veff . V okolı́ kruhové orbity dané podmı́nkou dVeff /dr = 0 je radiálně či vertikálně perturbovaný kruhový orbitálnı́ pohyb testovacı́ částice determinován přı́slušnými druhými derivacemi efektivnı́ho potenciálu. V přı́padě stabilnı́ kruhové orbity pak chovánı́ perturbacı́ polohy testovacı́ částice odpovı́dá chovánı́ lineárnı́ho harmonického oscilátoru a druhé mocniny epicyklických frekvencı́ jsou přı́mo úměrné druhým derivacı́m efektivnı́ho potenciálu, ωr2 ∂ 2 Veff , ∼ ∂r 2 ωθ2 ∂ 2 Veff ∼ . ∂θ2 (3.8) Existence reálné hodnoty radiálnı́ či vertikálnı́ epicyklické frekvence tedy znamená i existence minima efektivnı́ho potenciálu Veff a současně stabilitu kruhové orbity vůči radiálnı́m či vertikálnı́m perturbacı́m. Oblast ekvatoriálnı́ch stabilnı́ch kruhových orbit je pak přirozeně omezena hodnotou radiálnı́ souřadnice, kde jedna z epicyklických frekvencı́ch (ve většině situacı́ radiálnı́) nabývá nulové hodnoty při současné existenci reálné hodnoty druhé epicyklické frekvence. Nulové hodnoty epicyklických frekvencı́ tak definujı́ polohy astrofyzikálně zajı́mavých meznı́ch stabilnı́ch orbit. Epicyklické frekvence perturbovaného kruhového orbitálnı́ho pohybu lze přı́mým výpočtem zı́skat ze známých komponent čtyřrychlosti testovacı́ částice na kruhové orbitě [7,8]. Obě nenulové komponenty čtyřrychlosti nabité testovacı́ částice na ekvatoriálnı́ kruhové orbitě (U µ = (U t , 0 , 0 , U φ ) ) snadno obdržı́me řešenı́m soustavy dvou rovnic, radiálnı́ složky relativistické pohybové rovnice 3.6 spolu s normalizačnı́ podmı́nkou pro čtyřrychlost hmotné částice, U µ Uµ = −1. V diskutovaném přı́padě statické Schwarzschildovy prostoročasové geometrie a potenciálu magnetického pole ve tvaru 3.1 existujı́ dvě odlišná řešenı́ daná páry odpovı́dajı́cı́ch si nenulových komponent čtyřrychlosti testovacı́ch částic. Nicméně tato řešenı́ jsou při fixované orientaci magnetického dipólu navzájem symetrická vůči simultánnı́ záměně znaménka specifického náboje q̃ a orientace orbitálnı́ho pohybu a proto je možno dalšı́ analýzu věnovat bez újmy na obecnosti pouze prvnı́mu z nich. Relativně komplikovaný explicitnı́ tvar U t , U φ a orbitálnı́ úhlové frekvence Ω = U φ /U t je uveden v přı́lohách 6 a 7. Mı́ra elektromagnetické interakce 3.2. Dipólové magnetické pole na schwarzschildovském pozadı́ 49 Obrázek 3.1. Orbitálnı́ frekvence ν = Ω/2π jako funkce specifického náboje q̃ a radiálnı́ souřadnice pro neutronovou hvězdu s M = 1.5M⊙ a µ = 1.06 × 10−4 m2 . je dána součinem q̃ µ a proto lze v analýze opět bez újmy na obecnosti zafixovat také velikost momentu µ a variovat pouze velikost a znaménko specifického náboje orbitujı́cı́ hmoty q̃. Formule pro epicyklické frekvence zı́skáme perturbovánı́m pozice testovacı́ částice na dané ekvatoriálnı́ kruhové orbitě (r, θ) = (r0 , π/2), vyjádřené jako xµ (τ ) = z µ (τ ) + ξ µ (τ ), kde ξ µ (τ ) je malá perturbace souřadnic. Po substituci takto vyjádřené polohy částice do rovnice 3.6 a při současném omezenı́ se na členy prvnı́ho řádu v ξ µ je výsledkem relace pro perturbaci souřadnic ξ µ ve formě rovnice lineárnı́ho harmonického oscilátoru d2 ξ a + ωa2 ξ a = 0, dt2 a ∈ (r, θ) (3.9) s epicyklickými úhlovými frekvencemi danými jako [8] ωr ωθ ∂V r = − γAr γrA ∂r θ 1/2 ∂V . = ∂θ 1/2 , A ∈ (t, φ) (3.10) (3.11) 50 Kapitola 3. Magnetická pole Výrazy γαµ a V µ zde nabývajı́ formy q̃ γαµ = 2Γµαβ U β (U t )−1 − t Fαµ , U q̃ µ α t −1 1 µ α t −1 µ γ U (U ) − t Fα U (U ) . V = 2 α U (3.12) (3.13) Závěrem zdůrazněme, že derivace v rovnicı́ch (3.10) a (3.11) musı́ být provedeny při fixovaných hodnotách U t and U φ , jinými slovy výše diskutovaná perturbačnı́ procedura předpokládá zachovávajı́cı́ se energii i moment hybnosti testovacı́ částice na dané orbitě . Přesné výrazy pro orbitálnı́ i epicyklické frekvence zı́skané výše uvedeným způsobem lze najı́t v přı́loze 7. Omezı́me-li se na korekce prvnı́ho řádu v q̃ µ vůči geodetickému pohybu v Schwarzschildově řešenı́, lze frekvence zapsat vztahy Ω± = ±Ωs − √ r − 3M f (r) − r ∂f∂r(r) r 7/2 q̃ µ + O(q̃µ2 ) , (3.14) √ 3 r − 3M q̃ µ + O(q̃µ2 ) , (3.15) ωθ± = Ωs ∓ 5/2 2r (r − 2M) p √ M(r − 6M) 3 r − 3M ± 2 q̃ µ + O(q̃µ2 ) . (3.16) ωr± = r2 2r (r − 2M) p kde zde a dále Ωs = M/r 3 značı́ scharzschildovskou keplerovskou orbitálnı́ frekvenci. 3.2.3. Chovánı́ negeodeticky korigovaných frekvencı́, existence a stabilita kruhových orbit Lorentzova sı́la vznikajı́cı́ dı́ky elektromagnetické interakci elektrického náboje orbitujı́cı́ hmoty a dipólového magnetického pole hvězdy může v závislosti na znaménku elektrického náboje a orientace orbitálnı́ úhlové rychlosti při fixovaném vektoru magnetického dipólového momentu mı́t repulzivnı́ či atraktivnı́ charakter. Obrázek 3.1 ukazuje, že v regionu repulzivnı́ho i atraktivnı́ho působenı́ Lorentzovy sı́ly přı́tomnost elektromagnetické interakce umožňuje existenci kruhových orbit nabitých částic i v těsné blı́zkosti Schwarzschildova poloměru. Pouze v oblasti malých hodnot specifického náboje (symetrické vůči záměně jeho znaménka) podmı́nka existence reálných hodnot U t a U φ podrobně diskutovaná v přı́loze 7 přirozeně 3.2. Dipólové magnetické pole na schwarzschildovském pozadı́ 51 existenci ekvatoriálnı́ch kruhových orbit vylučuje. Tato oblast v rovině q̃ µ-r začı́ná pro q̃ µ = 0 na r = 3M, dosahuje své maximálnı́ šı́řky pro q̃ µ = ± 1.971 M 2 na r = 2.441M a pro r → 2M je ohraničena hodnotami q̃ µ = ± 1.333 M 2 . Přı́tomnost elektromagnetické interakce dále výrazně ovlivňuje polohu meznı́ stabilnı́ orbity, odpovı́dajı́cı́ vnitřnı́mu okraji tenkých akrečnı́ch disků v okolı́ kompaktnı́ch hvězdných objektů. Pro takové meznı́ stabilnı́ orbity je nově zavedena zkratka MISCO (Magnetic Innermost Stable Circular Orbit), zatı́mco geodetické meznı́ stabilnı́ orbity jsou dále označovány jako GISCO (Geodesic Innermost Stable Circular Orbit). Ve Schwarzschildově prostoročasové geometrie pak samozřejmě rGISCO nabývá dobře známé hodnoty 6M. Dalšı́ důsledky působenı́ Lorentzovy sı́ly jsou pro atraktivnı́ a repulzivnı́ region kvalitativně odlišné. V atraktivnı́m regionu působenı́ Lorentzovy sı́ly vzniká nová třı́da nestabilnı́ch kruhových orbit nabitých částic umı́stěných pod kruhovou fotonovou orbitou (r < rph = 3M) s opačnou orientacı́ orbitálnı́ úhlové rychlosti oproti orbitám s radiálnı́ souřadnicı́ r > rph . Oblast globálně stabilnı́ch kruhových orbit je však v atraktivnı́m regionu zdola omezena MISCO orbitami s nulovou hodnotou radiálnı́ epicyklické frekvence, které se spolu s rostoucı́ velikostı́ specifického náboje q̃ orbitujı́cı́ hmoty vzdalujı́ od geodetické meznı́ stabilnı́ orbity na (rms = 6M). Radiálnı́ epicyklická frekvence zde klesá spolu se vzrůstajı́cı́ velikostı́ specifického náboje, orbitálnı́ a vertikálnı́ epicyklická frekvence naopak (rozdı́lným tempem) rostou. V repulzivnı́m regionu vykazuje vliv Lorentzovy sı́ly poněkud komplexnějšı́ charakter. Odpovı́dajı́cı́m způsobem nastavené parametry elektromagnetické interakce (specifický náboj orbitujı́cı́ hmoty q̃ spolu s velikostı́ dipólového magnetického momentu hvězdy µ) mohou překvapivě stabilizovat kruhové orbity nabitých částic i v oblasti pod kruhovou fotonoMISCO vou orbitou až do hodnoty radiálnı́ souřadnice rmin = 2.73M spojené max s nejvyššı́ možnou orbitálnı́ frekvencı́ ν = 3284 Hz (1.5M⊙ /M) a tzv. kritickým nábojem q̃crit při fixovaném magnetickém dipólovém momentu µ. Kritický náboj orbitujı́cı́ hmoty je svázán s magnetickým dipólovým momentem hvězdy relacı́ µ q̃crit = 1.869M 2 . (3.17) Astrofyzikálnı́ relevance takto extrémnı́ch orbit je však diskutabilnı́ v souvislosti se stále otevřenou otázkou možnosti existence relativisticky superkompaktnı́ch neutronových či kvarkových hvězd, t.j. kompaktnı́ch hvězdných objektů s R < 3M, nebo obecněji kompaktnı́ch hvězdných ob- 52 Kapitola 3. Magnetická pole jektů s poloměrem menšı́m než je radiálnı́ souřadnice kruhových fotonových orbit v odpovı́dajı́cı́ch časoprostorových geometriı́ch. V repulzivnı́m regionu je region stabilnı́ch orbit pro q̃ < q̃crit omezen zdola nulovou hodnotou radiálnı́ epicyklické frekvence a radiálnı́ souřadnice MISCO orbity klesá spolu s rostoucı́ velikostı́ specifického náboje q̃ orbitujı́cı́ hmoty až MISCO na rmin = 2.73M. Pro q̃ > q̃crit meznı́ stabilnı́ orbitu definuje již nulová hodnota vertikálnı́ epicyklické frekvence a radiálnı́ souřadnice takových MISCO orbit začı́ná spolu s velikostı́ specifického náboje opět růst. Hodnoty kritického náboje q̃crit a radiálnı́ souřadnice nejnižšı́ meznı́ stabilnı́ orbity MISCO rmin tak přirozeně odpovı́dajı́ simultánnı́mu splněnı́ podmı́nek ωr = 0 a ωθ =0. Zkoumané frekvence vykazujı́ v repulzivnı́m regionu opačné chovánı́ než v regionu atraktivnı́m, radiálnı́ epicyklická frekvence zde roste spolu se vzrůstajı́cı́ velikostı́ specifického náboje a obě zbývajı́cı́ frekvence naopak (rozdı́lným tempem) klesajı́. Nicméně v obou regionech přı́tomnost elektromagnetické interakce umožňuje vznik exotických ostrůvků existence částečně stabilnı́ch či nestabilnı́ch kruhových orbit v těsné blı́zkosti černoděrového horizontu oddělených od oblasti globálnı́ stability kruhového orbitálnı́ho pohybu. Podrobný rozbor lze nalézt opět v přı́loze 7. Přı́tomnost Lorentzovy sı́ly dále zjevně porušuje sférickou symetrii geometrie časoprostorového pozadı́ manifestujı́cı́ se shodou vertikálnı́ epicyklické a orbitálnı́ frekvence a umožňuje vznik nového efektu, nodálnı́ precese roviny orbitálnı́ho pohybu s frekvencı́ νn (r) = ν(r) − νθ (r), (3.18) kvalitativně podobné Lenseově-Thirringově precesi přı́tomné v rotujı́cı́ch axiálně symetrických prostoročasech. Fáze této nodálnı́ precese je však opačná v atraktivnı́ a repulzivnı́ oblasti působenı́ Lorentzovy sı́ly. 3.2.4. Aplikace na relativistický precesnı́ model V obou kvalitativně odlišných regionech je na astrofyzikálně relevantnı́ch hodnotách radiálnı́ souřadnice citlivost radiálnı́ epicyklické frekvence vůči působenı́ Lorenzovy sı́ly významně většı́ než citlivost orbitálnı́ a vertikálnı́ epicyklické frekvence. Existence Lorentzovy sı́ly a jejı́ chovánı́ v atraktivnı́m regionu tedy skutečně modifikuje frekvenčnı́ relace RP modelu požadovaným způsobem. Pro detailnı́ analýzu observačnı́ch dat konkrétnı́ch zdrojů v použité aproximaci chybı́ vliv spinu neutronové hvězdy, avšak 3.2. Dipólové magnetické pole na schwarzschildovském pozadı́ 53 Obrázek 3.2. Vlevo: Oblast stabilnı́ch kruhových orbit vyplněná vrstevnicovým grafem orbitálnı́ frekvence ν = Ω/2π. Vpravo: Totožná oblast, avšak vyplněná vrstevnicovým grafem nodálnı́ precesnı́ frekvence νn . Konstruováno pro for M = 1.5M⊙ a µ = 1.06 × 10−4 m2 . již hromadný fit observačnı́ch dat rozsáhlé skupiny LMXB zdrojů ukazuje dalšı́ efekt aplikace negeodetických frekvenčnı́ch relacı́ modifikovaných přı́tomnostı́ Lorentzovy sı́ly, možnost výrazného snı́ženı́ odhadu hmotnosti neutronových hvězd až ke kanonické hodnotě M = 1.4M⊙ (viz obrázek 3.2.4).2 I alternativnı́ metoda odhadu hmotnosti, založená na předpokladu, že nejvyššı́ pozorovaná QPO frekvence daného zdroje odpovı́dá orbitálnı́ frekvenci ISCO (zde MISCO) orbity dává obdobný výsledek. Vlastnosti repulzivnı́ho regionu umožňujı́ stabilizovat kruhové orbity i pod GISCO orbitou s orbitálnı́mi frekvencemi vyššı́mi než možné frekvence geodetického pohybu. V této souvislosti nenı́ nezajı́mavé, že analýza observačnı́ch dat známého LMXB zdroje 4U 1636-53 ukazuje ojedinělou existenci QPO frekvence 1860 Hz, ačkoli běžný rozsah pozorovaných frekvencı́ zdroje je 200–1200 Hz. Geodetické orbitálnı́ modely i s aplikacı́ vlivu spinu neutronové hvězdy velmi obtı́žně nalézajı́ relaci mezi takto vysokou pozorovanou frekvencı́ a astrofyzikálně realistickými parametry (hmotnostı́ a spinem) hvězdného objektu [16]. Předpoklad slabě nabité orbitujı́cı́ hmoty v repulzivnı́m režimu však může přı́tomnost vysokých frekvencı́ snadno vysvětlit a navı́c na základě nezávislými metodami určené velikosti vek2 Data převzata z [18, 22, 49, 90]. 54 Kapitola 3. Magnetická pole Obrázek 3.3. Hromadné fity observačnı́ch twin-peak kHz QPO“ dat pro širokou ” skupinu LMXB zdrojů pomocı́ frekvenčnı́ch relacı́ RP modelu. Silná plná křivka odpovı́dá negeodetické frekvenčnı́ relaci pro M = 1.4M⊙ a Lorentzovu sı́lu indukovanou dipólovým momentem hvězdy µ = 1.06×10−4 m2 a specifickým nábojem orbitujı́cı́ hmoty q̃ = 5.0 × 1010 . Jako ilustrace jsou také zobrazeny dva čistě schwarzschildovské geodetické fity (tenké přerušované křivky), fit pro M = 2M⊙ diskutovaný v [18] a pro porovnánı́ s negeodetickou frekvenčnı́ relacı́ geodetický fit pro shodnou hmotnost neutronové hvězdy M = 1.4M⊙ . toru indukce magnetického pole hvězdy také umožňuje odhad specifického náboje akreujı́cı́ho materiálu. 3.3. Perspektiva dalšı́ho výzkumu: magnetické pole pomalu rotujı́cı́ neutronové hvězdy Pro rozšı́řenı́ v předešlé kapitole diskutovaných výsledků i o popis vlivu rotace (spinu) neutronové či podivné hvězdy je nutno reprezentovat časoprostorové pozadı́ axiálně symetrickou geometriı́ popisujı́cı́ i efekty strhávánı́ inerciálnı́ch systému (frame dragging) způsobené právě rotacı́ 3.3. Perspektiva dalšı́ho výzkumu 55 centrálnı́ho hvězdného objektu. Dalšı́m nezbytným krokem pak je aplikace odpovı́dajı́cı́ho řešenı́ Maxwellových rovnic s charakterem magnetického dipólu pevně spojeného s rotujı́cı́ neutronovou či podivnou hvězdou. 3.3.1. Lenseova–Thirringova metrika Velmi často použı́vanou aproximacı́ gravitačnı́ho pole v okolı́ pomalu rotujı́cı́ch neutronových či podivných hvězd je Lenseova–Thirringova metrika3 [31, 32, 82], jejı́ž časoprostorový element v přı́padě vakuového řešenı́ vně centrálnı́ho rotujı́cı́ho objektu lze zapsat ve tvaru ds2 = −η(r)2 dt2 + dr 2 + r 2 dθ2 + sin2 θ dφ2 − 2ω (r) dtdφ , (3.19) 2 η(r) kde funkce η(r) je dána vztahem 1/2 2M η(r) ≡ 1 − . r (3.20) Funkce ω(r) může být interpretována jako úhlová rychlost volně padajı́cı́ch inerciálnı́ch pozorovatelů a je také známa jako Lenseova–Thirringova úhlová rychlost. V přı́padě vakuového řešenı́ vně hvězdy je dána jednoduchou formulı́ ω(r) = 2J , r3 (3.21) kde J je celkový moment hybnosti neutronové hvězdy o hmotnosti M a poloměru R, který je také možno vyjádřit pomoci momentu setrvačnosti I(M, R) a úhlové rychlosti rotace hvězdy Ωstar jako J = I(M, R)Ωstar . Všechny uvedené veličiny jsou uvažovány jako měřené statickým pozorovatelem v nekonečnu a metrika 3.19 je zapsána v systému geometrických jednotek, kde c = G = 1. V následujı́cı́ch výpočtech se dále jevı́ výhodné použı́t rotačnı́ parametr (spin) neutronové hvězdy definovaný jako a = J/M. Lenseova–Thirringova metrika aproximuje s přesnosti do prvnı́ho řádu v J jak Kerrovu metriku popisujı́cı́ prostoročas rotujı́cı́ch černých děr, tak i vnějšı́ (vakuovou) Hartleovu–Thornovu metriku popisujı́cı́ prostoročas v okolı́ neutronových hvězd včetně vlivu zploštěnı́ neutronové hvězdy 3 Často je namı́sto pojmenovánı́ Lenseova–Thirringova metrika“ použı́ván termı́n ” aproximace pomalé rotace“ (viz např. [40]). ” 56 Kapitola 3. Magnetická pole (kvadrupólového momentu distribuce hmotnosti) [33]. Je tedy zřejmé, že astrofyzikálně relevantnı́ použitı́ Lenseovy–Thirringovy metriky je omezeno na modely neutronových hvězd s malým rotačnı́m parametrem a, avšak oproti realističtějšı́mu Hartleovu–Thornovu řešenı́ je jejı́ nezanedbatelnou výhodou analytická jednoduchost při zachovánı́ všech nezbytných vlastnostı́ pro řešenı́ relativistických Maxwellových rovnic elektromagnetického pole vně i uvnitř rotujı́cı́ hvězdy [63, 64]. 3.3.2. Geodetický kvazikruhový orbitálnı́ pohyb Řešenı́m radiálnı́ složky rovnice geodetiky DU µ /dτ = 0 spolu s normalizačnı́ podmı́nkou pro hmotné částice, U µ Uµ = −1, a s použitı́m metriky (3.19) zı́skáváme dva páry nenulových komponent U µ pro korotujı́cı́ (+) a protirotujı́cı́ (−) ekvatoriálnı́ kruhové orbity ve tvaru φ U0± " r2 (r − 3M) + 2a a ± =± M t U0± = a± r r3 a2 + M ! φ U0± . r r3 a2 + M !#−1/2 (3.22) (3.23) Odpovı́dajı́cı́ úhlové rychlosti kruhového orbitálnı́ho pohybu Ω0± φ t U0± /U0± pak lze zapsat ve tvaru Ω0± = a± r r3 a2 + M !−1 . = (3.24) V přı́padě omezenı́ se na přesnost prvého řádu ve spinu lze úhlovou rychlost kruhového orbitálnı́ho pohybu zapsat vztahem Ω0± = ±Ωs − Ω2s a + O(a2 ) . (3.25) Dolnı́ index 0 zde a dále značı́ veličiny vztahujı́cı́ se ke geodetickému orbitálnı́mi pohybu neovlivněnému Lorentzovou silou. Epicyklické frekvence vztažené ke geodetickému orbitálnı́mu pohybu lze snadno zı́skat metodou popsanou v předešlé kapitole. Navı́c nepřı́tomnost 57 3.3. Perspektiva dalšı́ho výzkumu elektromagnetické interakce přı́slušné výrazy výrazně zjednodušı́. Při omezenı́ se na členy prvého řádu v a lze geodetické epicyklické frekvence zapsat vztahy ωθ0± = Ωs ∓ ωr0± 3 2 Ωs a + O(a2 ) , 2 p M(r − 6M) 3M(2M + r) p a + O(a2) . ± = 7 r2 2 r (r − 6M) (3.26) (3.27) Formule pro frekvence orbitálnı́ho pohybu s přesnostı́ prvého řádu ve spinu a je samozřejmě možno alternativně zı́skat i linearizacı́ přı́slušných vztahů pro Kerrovo nebo Hartleovo–Thornovo řešenı́. 3.3.3. Dipólové magnetické pole na Lenseově–Thirringově pozadı́ V [63] je odvozováno a analyzováno řešenı́ Maxwellových rovnic pro obecně orientované dipólové magnetické pole na pozadı́ Lenseovy–Thirringovy metriky 3.19 do prvnı́ho řádu přesnosti v J, včetně podmı́nek napojenı́ na vnitřnı́ řešenı́ jak pro nekonečně vodivý vnitřek hvězdy tak i pro hvězdu s konečnou vodivostı́. Dále však předpokládejme, že osa symetrie magnetického dipólu je totožná s osou rotace hvězdy (dipól má nulovou deklinaci), vnitřek hvězdy je nekonečně vodivý, magnetické siločáry jsou tedy do hvězdy zamrzlé a jsou unášeny jejı́ rotacı́. V takovém přı́padě relativně komplikované obecné dipólové řešenı́ přecházı́ do jednoduššı́ho tvaru, kdy komponenta čtyřpotenciálu Aφ odpovı́dá schwarzschildovskému přı́padu 3.1 a časovou komponentu pak lze zapsat ve tvaru At (r, θ) = at0 (r) + at2 (r)P2 (cos θ) , (3.28) kde P2 je Legendrův polynom 2. stupně [40]. Toto řešenı́ oproti v předešlé subkapitole diskutovanému dipólovému řešenı́ na sféricky symetrickém časoprostorovém pozadı́ obsahuje navı́c elektrickou složku čtyřpotenciálu. 58 Kapitola 3. Magnetická pole Členy at0 a at2 lze zı́skat z Maxwellových rovnic analyticky ve tvaru at0 = at2 = + − + c0 Jµ Jµ + (3r − M) + (3r − 4M) ln η 2 (r) , (3.29) r 2M 3 r 2 4M 4 r c1 (r − M)(r − 2M) M2 3 2 2 2 2 2 2 3r − 6Mr + M + 2 r − 3Mr + 2M ln η (r) c2 Mr M Jµ 4 9r − 3Mr 3 − 30M 2 r 2 + 8M 3 r + 2M 4 6 2 2M r 12r 4 − 36Mr 3 + 24M 2 r 2 + M 3 r ln η 2 (r) , (3.30) kde c0 , c1 a c2 jsou integračnı́ konstanty [40]. Protože konstantu c0 lze snadno interpretovat jako elektrický náboj hvězdy, je astrofyzikálně přirozené nastavit ji nulovou (c0 = 0). Z podmı́nky regularity v nekonečnu dále zı́skáme snadno hodnotu konstanty c1 ve tvaru [40] c1 = 9Jµ . 2M 4 (3.31) Konečně zbývajı́cı́ konstanta c2 může být fixována napojovacı́mi podmı́nkami na povrchu hvězdy. Za předpokladu dokonale vodivého vnitřku hvězdy rotujı́cı́ho úhlovou rychlostı́ Ωstar a tedy do materiálu hvězdy zamrzlého magnetického pole (uµ Fµν = 0, uµ = (ut , 0, 0, Ωstar ut )) zı́skáme vztah [40] c2 = µJ 12R3 − 24MR2 + 4M 2 R + M 3 5 2 M R µJ + 12R3 − 36MR2 + 24M 2 R + M 3 ln η 2 (r) 6 2M R µΩstar 2 2 2 − 2MR + 2M + R ln η (r) 4M 3 . 2 3R2 − 6MR + M 2 MR 3 2 2 2 + 2 R − 3MR + 2M ln η (r) . (3.32) M Elektrická složka čtyřpotenciálu je tedy v astrofyzikálně relevantnı́m přı́padě elektricky nenabité hvězdy indukována pouze rotacı́ hvězdy a efektem strhávánı́ lokálnı́ch inerciálnı́ch systémů, jak je zřejmé z jejı́ závislosti 3.3. Perspektiva dalšı́ho výzkumu 59 na úhlové rychlosti rotace Ωstar a momentu hybnosti J. Je také zřejmé, že vztah mezi těmito dvěma veličinami lze zı́skat pouze z vlastnostı́ distribuce hustoty hmoty ve hvězdě, které je určena stavovou rovnicı́ hvězdného materiálu. Rozbor chovánı́ vnitřnı́ho Hartleova–Thornova řešenı́ však ukazuje, že moment setrvačnosti neutronových hvězd I je možné vyjádřit pouze jako funkci hmotnosti a poloměru neutronové hvězdy bez ohledu na stavovou rovnici. Tvar závislosti je podobný jako v Newtonovské mechanice a je dán vztahem M MR2 , (3.33) I=k R kde konstanta úměrnosti k(M/R) je funkcı́ pouze kompaktnosti neutronové hvězdy M/R [85]. Vnitřnı́ moment hybnosti J poté zı́skáme standardnı́m způsobem jako J = IΩstar .4 Vlastnosti extrémnı́ch forem hmoty vyskytujı́cı́ se v nitru neutronových či podivných hvězd se tak stávajı́ dalšı́ nezbytnou ingrediencı́ astrofyzikálně realističtějšı́ho modelovánı́ magnetického pole neutronových či podivných hvězd i odpovı́dajı́cı́ch orbit nabitých testovacı́ch částici a mohou tak přispět k zpřesněnı́ interpretace QPO modulačnı́ch frekvencı́ rentgenového zářenı́ LMXB zdrojů pomocı́ modelů založených na frekvencı́ch orbitálnı́ho pohybu ovlivněných elektromagnetickou interakcı́. 4 Obdobně i kvadrupólový moment Q je možné vyjádřit vztahem Q = l(M/R)J 2 /M , ve kterém konstanta úměrnosti l(M/R) je opět funkcı́ pouze kompaktnosti hvězdy. Všechny relevantnı́ parametry vnějšı́ho Hartleova–Thornova řešenı́ je tak možno zı́skat ze znalosti hmotnosti neutronové hvězdy M , jejı́ho poloměru R a rotačnı́ frekvence Ωstar [85]. Literatura [1] Abramowicz M A and Kluźniak W Astronomy and Astrophysics 374L 19A astro-ph/0105077 [2] Abramowicz M A, Almergren G J E, Kluźniak W and Thampan A V 2003 astro-ph/0312070 [3] Abramowicz M A, Bulik T, Bursa and Kluźniak W 2003a Astronomy and Astrophysics 404 L21 [4] Abramowicz M A, Karas V, Kluźniak W, Lee H and Rebusco P 2003b PASJ 55 466 [5] Abramowicz M A and Kluźniak W 2005 Astrophysics and Space Science 300 127 [6] Abramowicz M A, Barret D, Bursa M, Horák J, Kluźniak W, Rebusco P and Török G 2005 Proceedings of RAGtime 8/9:Workshop on black holes and neutron stars (Opava) 6/7 ed. Stuchlı́k Z and Hledı́k S (Opava: Silesian University in Opava) 1 [7] Aliev A N and Galtsov D V 1981 Gen. Rel. Grav. 13 899 [8] Aliev A N 2008 Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity (Berlin) ed. Kleinert H, Jantzen R T and Ruffini R (Singapore: World Scientific) 1057 [9] Alpar M A and Shaham J 1985 Nature 316 239 [10] Bakala P, Čermák P, Hledik S, Stuchlı́k Z and Truparová Plšková K 2005 Proceedings of RAGtime 6/7: Workshop on black holes and neutron stars (Opava) 6/7 ed. Stuchlı́k Z and Hledı́k S (Opava: Silesian University in Opava) 11 [11] Bao G and Stuchlı́k Z 1992 Astrophysical Journal 400 163 [12] Barret D, Kluzniak W, Olive J F,Paltani S and Skinner G K 2005a Mon. Not. R. Astron. Soc. 357/4 1288 [13] Barret D, Olive J F and Miller M C 2005b Mon. Not. R. Astron. Soc. 361/3 855 [14] 2005c Barret D, Olive J F and Miller M C 2005 Astronomische Nachrichten 326/9 808 61 62 Literatura [15] Barret D, Olive J F and Miller M C 2006 Mon. Not. R. Astron. Soc. 370/3 1140 [16] Bhattacharyya S 2009 Research in Astron. Astrophys. accepted arXiv: 0911.5574v1 [17] Belloni T, Méndez M and Homan J 2005, Astronomy and Astrophysics 437 209 [18] Belloni T, Méndez M and Homan J 2007 Mon. Not. R. Astron. Soc. 376/3 1133 [19] Blaes O M, Arras P and Fragile P C 2006 Mon. Not. R. Astron. Soc. 369 1235 [20] Blaes O M, Šrámková E, Abramowicz M A, Kluźniak W and Torkelsson U 2007 Astrophysical Journal 665 642 [21] Boroson T and Keel W 1995 National Optical Astronomy Obsevatory, Tucson, USA [22] Boutloukos S, van der Klis M, Altamirano D, Klein-Wolt D, Wijnands R, Jonker P G and Fender R P 2006 Astrophysical Journal 653/2 1435 [23] Boutloukos S, van der Klis M, Altamirano D, Klein-Wolt D, Wijnands R, Jonker P G and Fender R P 2006b Astrophysical Journal 664/2 596 [24] Bursa M 2007 Proceedings of RAGtime 8/9: Workshop on black holes and neutron stars (Opava) 8/9 ed. Stuchlı́k Z and Hledı́k S (Opava: Silesian University in Opava) 11 [25] Cunningham C T 1975 Phys. Rev. D 12 323 [26] Dadhich N Maartens R Papadopoulos P and Rezania V 2000 Physics Letters B 487 1 [27] Dai D, Lue A, Starkman G and Stojkovic D 2009 arXiv:0912.0520 [28] Daniel R G LightSpeed! lightspeed.sourceforge.net. [29] Einstein A 1936 Science 84 506 [30] Germani and C Maartens R 2001 Phys. Rev. D 64/12 124010 [31] Hartle J B 1967 Astrophysical Journal 150 1005 [32] Hartle J B and Sharp D V 1967 Astrophysical Journal 147 317 [33] Hartle J B and Thorne K S 1967 Astrophysical Journal 153 807 [34] Chirenti C B M H, Rezzolla L 2007 Classical and Quantum Gravity24(16) 4191 [35] Karas V 1999 Astrophysical Journal 526 953 [36] Kato S 2004 Publications of the Astronomical Society of Japan 56 905 [37] van der Klis M 1989 NATO Advanced Study Institute on Timing Neutron Stars 27 Literatura 63 [38] van der Klis M 2006 Compact stellar X-ray sources ed. W Lewin and M van der Klis. (Cambridge: Cambridge University Press) p 39 [39] Kluźniak W, Michelson P and Wagoner R V 1990 Astrophysical Journal 358 538 [40] Konno K and Kojima Y 2000 Progress of Theoretical Physics 104/6 1117 [41] Kozlowski M, Jaroszynski M and Abramowicz M A 1978 Astronomy and Astrophysics 63 209 [42] Krauss L M and Turner M S 1995 Gen. Relat. Gravit. 27 1137 [43] Lamb F K, Shibazaki N, Alpar M A and Shaham J 1985 Nature 317 681 [44] Lamb F K and Boutlokous S 2007 Short-period Binary Stars: Observation, Analyses, and Results ed. E F Milone, D A Leahy and D Hobill (Dordrecht: Springer) [45] Landau L D and Lifshitz E M 1976 Mechanics, 3rd edition (Oxford:Pergamon Press) [46] Lanoue J John Lanoue’s Astrophotography http://www.geocities.com/ bedfordnights/ [47] Lee W H, Abramowicz M A, Kluźniak W 2004 Astrophysical Journal Letters 603 L93 [48] Li L X and Narayan R 2004 Astrophysical Journal 601 414 [49] Linares M, van der Klis M, Altamirano D and Markwardt C B 2005 Astrophysical Journal 634 1250 [50] McClintock J E and Remillard R A 2003 arXiv:astro-ph/0306213 [51] Mazur P O and Mottola E 2004 Proc.Nat.Acad.Sci 101 9545 [52] Méndez M, van der Klis M, Wijnands R, Ford E C, van Paradijs J and Vaughan B A 1998 Astrophysical Journal 505 L23 [53] Méndez M, van der Klis M, Wijnands R, Ford E C and van Paradijs J 1999 Astrophysical Journal 511 L49 [54] Méndez M 2006 Mon. Not. R. Astron. Soc. 371 1925 [55] Morsink S M, Stella L 1999 Astrophysical Journal 513/2 827 [56] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (Freeman, San Francisco) [57] Montero P J, Rezzolla L, Yoshida S 2004 Mon. Not. R. Astron. Soc. 354 1040 [58] Nemiroff R J 1993 American Journal of Physics 61/7 619 arXiv: astro-ph/9312003 [59] Nowak M and Lehr D 1999 Theory of Black Hole Accretion Disks ed. Abramowicz M A, Björnsson G and Pringle J E (Cambridge: Cambridge 64 Literatura University Press) [60] Ohanian H C 1987 American Journal of Physics 55/5 428 [61] Ostriker J P and Steinhardt P J 1995Nature 377 600 [62] Petterson J A 1974 Phys. Rev. D 10 3166 [63] Rezzolla L, Ahmedov B J and Miller J C 2001 Mon. Not. R. Astron. Soc. 322 723 [64] Rezzolla L, Ahmedov B J and Miller J C 2001 Found.Phys. 31 1051 [65] Rezzolla L, Yoshida S and Maccarone T J 2003 Mon. Not. R. Astron. Soc. 344 L37 [66] Rezzolla L, Yoshida S and Zanotti O 2003 Mon. Not. R. Astron. Soc. 344 978 [67] Semerák O, Karas V and de Felice F 1999 Publ. of the Astronomical Society of Japan 51 571 [68] Semerák O and Žáček M 2000 Publ. of the Astronomical Society of Japan 52 1067 [69] Schneider P Ehlers J a Falco E. E. 1999 Gravitational Lenses (Berlin: Springer) [70] Schnittman J D and Bertschinger E 2004 Astrophysical Journal 606/2 1098 [71] Schnittman J D 2005 Astrophysical Journal 621/2 940 [72] Schnittman J D and Rezzolla L 2006 Astrophysical Journal Letters 637 L113 [73] Stella L and Vietri M 1998 Astrophysical Journal Letters 492 L59 [74] Stella L and Vietri M 1999 Phys. Rev. Letters 82 17 [75] Stella L, Vietri M and Morsink S M 1999 Astrophysical Journal 524/1 L63 [76] Šrámková E, Torkelsson U and Abramowicz M A 2005 Astronomy and Astrophysics 467/2 641 [77] Straub O and Šrámková E 2009 Classical and Quantum Gravity2 055011 [78] Strohmayer T E 1992 Astrophysical Journal 388 138 [79] Stuchlı́k Z and Hledı́k S 1999 Phys. Rev. D 60/4 0044006 [80] Stuchlı́k Z and Hledı́k S 2002 Acta Physica Slovaca 52 363 [81] Stuchlı́k Z and Plšková K 2004 Proceedings of RAGtime 4/5: Workshop on black holes and neutron stars (Opava) 4/5 ed. Stuchlı́k Z and Hledı́k S (Opava: Silesian University in Opava) 167 [82] Thirring H and Lense J 1918 Phys. Z. 19 156 [83] Török G and Stuchlı́k Z 2005 Astronomy and Astrophysics 437 775 [84] Török G, Bakala P, Stuchlı́k Z and Šrámková E 2007 Proceedings of RAG- Literatura 65 time 8/9: Workshop on black holes and neutron stars (Opava) 8/9 ed. Stuchlı́k Z and Hledı́k S (Opava: Silesian University in Opava) 489 [85] Urbanec M 2010 privátnı́ komunikace [86] Viergutz S U 1993 Astronomy and Astrophysics 272 355 [87] Vindyš M 2009 Diplomová práce: Počı́tačová simulace vzhledu vzdáleného vesmı́ru pro pozorovatele v blı́zkosti nabité sféricky symetrické černé dı́ry (Opava: Slezská Univerzita v Opavě) [88] Wagoner R V 1999 Phys. Rep. 311 259 [89] Wagoner R V, Silbergleit A S and Ortega-Rodrı́guez M 2001 Astrophysical Journal Letters 559 L25 [90] Wijnands R, van der Klis M, Homan J, Chakrabarty D, Markwardt C B and Morgan E H 2003 Nature 424 44 [91] Zanotti O, Font J A, Rezzolla L and Montero P J 2005 Mon. Not. R. Astron. Soc. 356 1371 [92] Zhang C M 2004 Astronomy and Astrophysics 423 401 [93] Zhang C M, Yin H X, Zhao Y H, Song L M and Zhang F 2006 Mon. Not. R. Astron. Soc. 366 1373 Přı́loha 1 DOI: 10.2478/s11534-007-0033-6 Research article Extreme gravitational lensing in vicinity of Schwarzschild–de Sitter black holes Pavel Bakala1∗ , Petr Čermák2, Stanislav Hledı́k1 Zdeněk Stuchlı́k1, Kamila Truparová1 1 Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic 2 Institute of Computer Science, Faculty of Philosophy and Science, Silesian University in Opava Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic Received 03 February 2007; accepted 19 May 2007 Abstract: We have developed a realistic, fully general relativistic computer code to simulate optical projection in a strong, spherically symmetric gravitational field. The standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild– de Sitterspacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from the static radius. Simulations include effects of the gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the intensity amplification. The code generates images of the sky for the static observer and a movie simulations of the changing sky for the radially free-falling observer. Techniques of parallel programming are applied to get a high performance and a fast run of the BHC simulation code. c Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved. Keywords: black holes, cosmological constant, gravitational lensing, visualization, numerical relativity PACS (2006): 04.70.-s, 04.25.Dm, 95.36.+x, 07.05.Tp 1 Introduction General relativistic deflection of light and lensing effects in gravitational field of stars were firstly investigated by Einstein [1]. In the vicinity of relativistic compact objects (black holes or neutron stars) these effects have strong influence on properties of the ∗ E-mail: [email protected] P. Bakala et al. / Central European Journal of Physics optical projection which become different than those of the optics in the flat spacetime as we experience it in our everyday life [2]. Several authors have developed ray-tracing or simulation computer codes for modeling general relativistic optical projection in the vicinity of rotating or non-rotating black holes and neutron stars without presence of a cosmological constant, see, e.g., [3–9]. Recent observations indicate the cosmic expansion accelerated by a dark energy that can be described by a repulsive cosmological constant, Λ > 0 [10, 11]. We investigate the influence of Λ > 0 on the appearance of distant universe for observers in close vicinity of nonrotating Schwarzschild–de Sitter(SdS) black holes. In order to obtain a good qualitative picture of the Λ influence, our simulations have been performed with unrealistically high values of Λ. 2 Schwarzschild–de Sitter geometry The line element of the SdS spacetime has in the standard Schwarzschild coordinates and geometric units (c = G = 1) the form −1 2M Λ 2 2M Λ 2 2 2 ds = − 1 − − r dt + 1 − − r dr 2 + r 2 (dθ 2 + sin2 θ dφ2 ), (1) r 3 r 3 where M is mass of the central black hole, and Λ ∼ 10−56 cm−2 is the repulsive cosmological constant. It is advantageous to introduce a dimensionless cosmological parameter y by the relation y = 31 ΛM 2 . The location of horizons is given by the condition gtt = 0. Two event horizons exist for y ∈ (0, ycrit ), where ycrit = 1/27. The black hole and the cosmological horizons are located at 2 π+ξ rh = √ cos , 3 3y 2 π−ξ rc = √ cos , 3 3y (2) respectively, where p ξ = cos−1 3 3y. (3) The spacetime is dynamic at r < rh and r > rc . The static radius, (a hypersurface where the gravitational attraction of the black hole is balanced by the cosmic repulsion) is located at 1 rs = y − 3 . (4) With increasing value of y, the horizons aproach to each other. In the critical case of y = ycrit = 1/27, the horizons and the static radius coincide at rh = 3. For of y > 1/27, the spacetime is dynamic at r > 0, and describes a naked singularity [12]. We consider only spacetimes admitting existence of static observers that have y < 1/27. 3 Optical projection in Schwarzschild–de Sitterspacetimes Construction of relativistic optical projection consists of finding all null geodesics connecting the source and the observer, i.e., solving the so-called emitter-observer problem. P. Bakala et al. / Central European Journal of Physics An observer will see the image generated by the concrete geodesic in direction tangent to the photon trajectory in observer’s local frame, therefore given by space part of locally (µ) measured 4-momentum of photons pobs . Directional angle α related to the outward radial direction and the frequency shift g of the photon (the ratio of observed and emitted energy) are given by the general relations (r) cos α = − pobs (t) pobs (t) , g= pobs (t) psource . (5) The indeces “obs” (observer) and “source” denote the components locally measured by an observer or a source. In the SdS spacetimes null geodesics are characterised by the impact parameter b defined as the ratio of constants of motion, b ≡ Φ/E [12, 13]. For an observer located at robs , α and g are functions of b only, as shown in Appendix. Due to spherical symmetry of the SdS geometry (1), it is sufficient to consider only sources and observers located in the equatorial plane. Considering observers located at φ = 0, ∆φ along geodesics connecting the source and the observer reads ∆φ = −φsource − 2kπ, (6) where φsource is an angular coordinate of the source. The image order k takes values of 0, 1, 2, . . . , +∞ for geodesics orbiting the central black hole clockwise, and −1, −2, . . . , −∞ for geodesics orbiting the central black hole counter-clockwise. The first direct and indirect images correspond to k = 0 and k = −1, respectively. Photon motion in the SdS spacetimes is governed by the Binet formula [13, 14] dφ 1 = ±p , du b−2 − u2 + 2u3 + y (7) p where u = r −1 . The critical impact parameter, bc = 27/ (1 − 27y), corresponds to the circular photon geodesic, which is located at rph = 3M for arbitrary value of Λ [12, 13]. Photons coming from distant universe with b < bc end up in the central singularity, while photons with b > bc return back towards the cosmological horizont [13, 14]. Using the term under the square root in (7) as a motion reality condition, a straightforward calculation yields relation for a turning point rt of geodesics with b > bc : p 2 1 rt = p cos arccos −3 3 (y + b−2 ) , (8) 3 3(y + b−2 ) and a relation for the maximum impact parameter bmax for an observer located at given robs , 1 bmax = p 2 . (9) uobs − 2u3obs − y Therefore, ∆φ can be expressed as ∆φ(usource , uobs , b) = ∓ Z uobs usource du p , −2 b − u2 + 2u3 + y (10) P. Bakala et al. / Central European Journal of Physics for geodesics with b < bc , or for geodesics passing the observer position ahead of the turning point. For geodesics passing observer position beyond the turning point ∆φ can be expressed as Z uobs Z uturn du du p p ∆φ(uobs ) = ± ∓ . (11) b−2 − u2 + 2u3 + y b−2 − u2 + 2u3 + y uturn usource In (10) and (11), the upper (lower) sign corresponds to geodesics orbiting clockwise (counter-clockwise). These integrals express ∆φ along the photon path as a function F (b, uobs , usource , y). Equation (6) can then be rewriten in the following way: F (b, uobs , usource , y) + φsource + k2π = 0. (12) This equation, that can be understood as an integral equation with an eigenvalue b determines b as an implicit function of the source and observer coordinates, the image order and Λ. Unfortunately, F (b, uobs , usource , y) can be expressed in terms of elliptic integrals only, and do not allow to obtain an explicit formula for b (φsource , k, uobs , usource , y). Consequently, the simulation code uses standard numerical integration and root finding methods. 4 Numerical solution and code outputs Final equation (12) was numerically solved using the BHC code for optical projection of observers located in the static region between the horizons, as well as for observers located in the dynamic region under the black hole horizon. In the static region, static observers and observers radially free-falling from the static radius have been considered. In the dymamic region under the black hole horizon, where static observers cannot exist, the optical projection was constructed for observers radially free-falling only. We consider Λ = 5 × 10−3 , Λ = 10−2 and pure Schwarzschild case with Λ = 0. Left (top) panels of Figs. 1, 2, and 3 show b as a function of |∆φ| along the appropriate geodesic connecting distant source and observer located at robs . The right (bottom) panel of these figures show α for static and radially free-falling observers. If we consider spherical symmetry of the problem, equation (6) implies, that |∆φ| ≤ π corresponds to the first direct images of distant sources, whereas larger |∆φ| > π corresponds to images with higher order. As shown in Fig. 1, for observers located above the circular photon orbit b increases up to a maximum value bmax given by equation (9), then decreases, and asymptoticaly aproaches bc from above. Values |∆φ| ≤ |∆φ(bmax )| correspond to ingoing geodesics with b < bc , or to geodesics passing the observer position ahead the turning point. Values |∆φ| > |∆φ(bmax )| correspond to geodesics passing the observer position beyond the turning point. Situation is different for observers located under the circular photon orbit where only geodesics with b < bc can exist. In this case b increases monotonously and asymptoticaly aproaches to bc from below. P. Bakala et al. / Central European Journal of Physics In all the cases, α monotonously increases up to a maximum value, which determines the black region on the observer’s sky. We determine the size of the black region as a function of robs and Λ in the next section. Fig. 4 shows samples of visualisation outputs of the BHC code, simulated optical projection of a well-known galaxy M104 “Sombrero”, virtually located behind the black hole on the optical axis. Images show typical lensing effects as the first and second Einstein rings, first direct image, first indirect inverted image and mergence of higher order images with the second Einstein ring around the black region. Another static images, as well as dynamic simulations, may be downloaded from our web site [15]. 9 8 Impact parameter 7 6 5 4 3 2 Pure Schwarzschild Λ=5.10−3 Λ =10−2 1 0 0.00 1.57 3.14 4.71 6.28 7.85 ∆φ 3.14 9.42 11.00 12.57 3.14 Free-falling observer Static observer 2.36 Directional angle Directional angle 2.36 1.57 0.79 1.57 0.79 Pure Schwarzschild Λ=5.10−3 −2 Λ =10 0.00 0.00 1.57 3.14 4.71 6.28 ∆φ 7.85 9.42 11.00 Pure Schwarzschild Λ=5.10−3 −2 Λ =10 12.57 0.00 0.00 1.57 3.14 4.71 6.28 ∆φ 7.85 9.42 11.00 12.57 Fig. 1 Optical projection for observers located at the static region above the circular photon orbit at robs = 6M . Top panel: Impact parameter b as a function of ∆φ. Bottom panels: Directional angles for static and radially free-falling observers. P. Bakala et al. / Central European Journal of Physics 6 Impact parameter 5 4 3 2 Pure Schwarzschild −3 Λ=5.10 Λ =10−2 1 0 0.00 1.57 3.14 4.71 6.28 ∆φ 7.85 9.42 11.00 12.57 3.14 Free-falling observer Directional angle 2.36 1.57 Static observer 0.79 Pure Schwarzschild Λ=5.10−3 Λ =10−2 0.00 0.00 1.57 3.14 4.71 6.28 ∆φ 7.85 9.42 11.00 12.57 Fig. 2 Optical projection for observers located in the static region under the circular photon orbit at robs = 2.4M . Top panel: Impact parameter b as a function of ∆φ. Bottom panel: Directional angles for static and radially free-falling observers. 5 Apparent angular size of the black hole The apparent angular size S of the black hole can be naturally defined as the observed angular size of the circular black region on the observer sky, in which no images of distant objects can exist, and only radiation originated under the circular photon orbit can be observed [2, 13, 14]. For observers located above the circular photon orbit the boundary of the black region corresponds to outgoing geodesics with b approaching bc from above, while for observers located under the circular photon orbit the boundary corresponds to ingoing geodesics with b approaching bc from below. In the case of static observers we have [14] s b2 2 2 S = 2 arccos A(robs , y; b), A(r, y; b) ≡ ± 1 − 2 1 − − yr . (13) r r P. Bakala et al. / Central European Journal of Physics 6 Impact parameter 5 4 3 2 Pure Schwarzschild −3 Λ=5.10 Λ =10−2 1 0 0.00 1.57 3.14 4.71 6.28 ∆φ 7.85 9.42 11.00 12.57 3.14 Directional angle 2.36 Free-falling observer 1.57 0.79 Pure Schwarzschild Λ=5.10−3 Λ =10−2 0.00 0.00 1.57 3.14 4.71 6.28 ∆φ 7.85 9.42 11.00 12.57 Fig. 3 Optical projection for observers located under the black hole horizon at robs = 0.7M . Top panel: Impact parameter b as a function of ∆φ. Bottom panels: Directional angle for a radially free-falling observer. Here + (−) sign corresponds to observers located above (under) the circular photon orbit. Above the circular photon orbit increasing Λ causes downsizing of the black region, whereas under the circular photon orbit the black region grows with increasing Λ. In the limit case of observers located just on the circular photon orbit, S is independent of Λ. It is invariably π, i.e., the black region always occupies just one half of the observer sky. In the case of observers radially free-falling from the static radius [12–14], the apparent angular size of the black hole reads [14] where p Z(robs , y) + 1 − 3y 1/3 A(robs , y; b) S = 2 arccos p , 1 − 3y 1/3 + Z(robs , y)A(robs , y; b) Z(r, y) ≡ r 2 + yr 2 − 3y 1/3 . r (14) (15) P. Bakala et al. / Central European Journal of Physics Fig. 4 Simulated appearance of M104 “Sombrero” located behind the black hole. Left panel: for a radially free-falling observer at robs = 20M in a pure Schwarzschild case (with nondistorted image in the right-bottom corner). Right panel: for a static observer at robs = 5M with Λ = 10−3 . Fig. 5 Apparent angular size of the black hole as function of observer’s radial coordinate. Left panel: static observers. Right panel: radially free-falling observers. The Λ dependency is qualitatively different. For radially free-falling observers S grows P. Bakala et al. / Central European Journal of Physics with increasing cosmological constant at all values of the radial coordinate except the central singularity, where S is invariably π, similarly to the case of static observers located on the circular photon orbit. Consequently, the radially free-falling observer will always observe smaller S then the static observer at the same radial coordinate. 6 Conclusions In this paper we discussed the influence of Λ > 0 on the optical projection in strong, spherically symmetric gravitational field. The influence depends on the value of the dimensionless cosmological parameter y. In the present universe with Λ ∼ 10−56 cm−2 values of y are y ∼ 10−40 for stellar black holes and y ∼ 10−25 for supermassive black holes in galactic nuclei. Observable effects can be expected for y ≥ 10−15 which corresponds to supergiant black holes with masses M ≥ 1015 M [16]. In the case of primordial black holes in the very early universe, with assumed high values of repulsive cosmological constant, one can expect even stronger effects. Considering the electroweak phase transition at Tew ∼ 100 GeV, we obtain an estimate of the primordial effective cosmological constant Λew ∼ 0.028 cm−2 , while considering the quark confinement at Tqc ∼ 1 GeV we obtain Λqc ∼ 2.8 × 10−10 cm−2 and consequently higher values of y [16]. BHC code generates numerical solutions of the governing equation of the projection and static as well dynamic visualization outputs. Results show peculiar influence of Λ on the apparent angular size of the black hole for observers in different local frames. This influence vanishes for static observers located at the circular photon orbit. For future studies we plan to extend our method and the BHC code in order to study axially symmetric spacetimes with repulsive cosmological constant. Acknowledgement The present work was supported by the Czech grants MSM 4781305903 and LC06014 (P. B.). One author (P. B.) would like to thank Eva Šrámková for useful discussions. A Appendix: Tetrads and directly measured quantities It follows from the central symmetry of the geometry (1) that the geodetical motion of test particles and photons is allowed in the central planes only. The existence of Killing vector fields ξ(t) and ξ(φ) of the SdS spacetime implies the existence of two constants of motion pt = gtµ pµ = −E, pφ = gφµ pµ = Φ, (A.1) and the photon motion is determined by the impact parameter b≡ Φ . E (A.2) P. Bakala et al. / Central European Journal of Physics The 4-momentum of the photon reads [13] pt = −E, pr = A(robs , y, b) E, B 2 (robs , y) pφ = bE = Φ, (A.3) where we introduce new variables 2 B 2 (r, y) ≡ 1 − − yr 2 , r A(r, y, b) = ± r 1 − B 2 (r, y) b2 . r2 (A.4) The + sign corresponds to photons receding from the black hole, while − sign corresponds to photons infalling into the black hole. In order to calculate directly measured quantities, one has to transform the 4-momentum of the photon into the local frame of the observer. The local components of 4momentum for the observer at given robs can be obtained using the appropriate tetrad of (α) (α) base 4-vectors eµ , 1-forms ωµ and transformation formulas µ ω (α) = e(α) µ dx , µ p(α) = e(α) µ p . (A.5) A.1 Static observers The static observers located at rest at r = const, θ = const, φ = const are endowed by a local frame with an orthonormal tetrad of 1-forms [13] ω (t) = B(r, y) dt, ω (r) = 1 dr, B(r, y) ω (θ) = r dθ, ω (φ) = r sin θ dφ. (A.6) The local components of 4-momentum of the photon moving in the equatorial plane are given by the relations [13] (t) pobs = E B(robs , y) , (r) pobs = A(robs , y; b) E, B(robs , y) (φ) pobs = lE Φ = . r robs (A.7) Using general formulas (5), the directional angle and the frequency shift are given as [13] cos αstat = −A(robs , y, b), gstat = B(rsource , y) . B(robs , y) (A.8) A.2 Observers radially free-falling from the static radius Local components and tetrads for free-falling observers can be obtained using Lorentz boost between the local frames of the static observer and a moving one at given r obs . The orthonormal tetrad of 1-forms of appropriate local frame has the form [13] p ω (t̃) = 1 − 3y 1/3 dt + Z(r, y)B −2 (r, y) dr, (A.9) p ω (r̃) = Z(r, y) dt + 1 − 3y 1/3 B −2 (r, y) dr, (A.10) ω (θ̃) = r dθ, (A.11) ω (φ̃) = r sin θ dφ, (A.12) P. Bakala et al. / Central European Journal of Physics where we introduced a new variable Z(r, y) ≡ r 2 + yr 2 − 3y 1/3 . r (A.13) The components of 4-momentum of the photon measured by a observer radially freefalling from the static radius at a given robs are given by the relations [13] p E (t̃) 1 − 3y 1/3 + Z(robs , y)A(robs , y; b) , (A.14) pobs = 2 B (robs , y) p E (r̃) 1/3 pobs = 2 (A.15) Z(r, y) + 1 − 3y A(robs , y; b) , B (robs , y) Φ Eb (φ̃) pobs = = . (A.16) robs robs The directional angle and the frequency shift are given by the formulas [13] p 1/3 Z(robs , y) + 1 − 3y A(robs , y; b) , cos α̃fall = − p 1/3 1 − 3y + Z(robs , y)A(robs , y; b) (t̃) g̃fall ≡ References pobs (t) psource = B(rsource , y) p . Z(robs , y) cos α̃ + 1 − 3y 1/3 (A.17) (A.18) [1] A. Einstein: “Lens-like action of a star by the deviation of light in the gravitational field”, Science, Vol. 84, (1936), pp. 506–507. [2] C.T. Cunningham: “Optical Appearance of Distant Observers near and inside a Schwarzschild Black Hole”, Phys. Rev. D, Vol. 12, (1975), pp. 323–328. [3] W. Benger: “Simulation of a Black Hole by Raytracing”, In: Relativity and Scientific Computing: Computer Algebra, Numerics, Visualization, Springer-Verlag Telos, 1996. [4] A. J. S. Hamilton: “Black Hole Flight Simulator”, Bulletin of the American Astronomical Society, Vol. 36, (2004), pp. 810. [5] D. Kobras, D. Weiskopf and H. Ruder: “Image-based rendering and general relativity”, In: WSCG 2001 Conference Proceedings, University of West Bohemia, Pilsen, 2001, pp. 130–137. [6] R.J. Nemiroff: “Visual distortion near a neutron star a and black hole”, Am. J. Phys., Vol. 61, (1993), pp. 619–631. [7] H.P. Nollert, H. Ruder, H. Herold and U. Kraus: “The relativistic looks of a neutron star”, Astron. Astrophys., Vol. 208, (1989), pp. 153—156. [8] H.C. Ohanian: “The black hole as a gravitational lens”, Am. J. Phys., Vol. 55, (1987), pp. 428–432. [9] S.U. Viergutz: “Image generation in Kerr geometry. I. Analytical investigations on the stationary emitter-observer problem”, Astron. Astrophys., Vol. 272, (1993), pp. 355–377. P. Bakala et al. / Central European Journal of Physics [10] L.M. Krauss and M.S. Turner: “The Cosmological constant is back”, Gen. Relat. Gravit., Vol. 27, (1995), pp. 1137–1144. [11] J.P. Ostriker and P.J. Steinhardt: “The Observational case for a low density universe with a nonzero cosmological constant”, Nature, Vol. 377, (1995), pp. 600–602. [12] Z. Stuchlı́k and. S. Hledı́k: “Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti–de Sitter spacetimes”, Phys. Rev. D, Vol. 60, (1999), art. 044006. [13] Z. Stuchlı́k and K. Plšková: “Optical apperance of isotropically radiating sphere in the Schwarzschild–de Sitter spacetime”, In: Proceedings of RAGtime 4/5, eds. S. Hledı́k and Z. Stuchlı́k, Silesian University in Opava, Opava, 2004, pp. 167–185. [14] P. Bakala, P. Čermák, S. Hledı́k, Z. Stuchlı́k and K. Truparová Plšková: “A virtual trip to the Schwarzschild–de Sitter black hole”, In: Proceedings of RAGtime 6/7, eds. S. Hledı́k and Z. Stuchlı́k, Silesian University in Opava, Opava, 2005, pp. 11–28. [15] “Relativistic and particle physics and its astrophysical aplications, Czech research project MSM 4781305903”, http://www.physics.cz/research/. [16] Z. Stuchlı́k, P. Slaný and S. Hledı́k: “Equilibrium configurations of perfect fluid orbiting Schwarzschild—de Sitter black holes”, Astron. Astrophys., Vol. 363, (2000), pp. 425–439. Přı́loha 2 ACTA ASTRONOMICA Vol. 58 (2008) pp. 15–21 Distribution of Kilohertz QPO Frequencies and Their Ratios in the Atoll Source 4U 1636–53 G. T ö r ö k 1 , M. A. A b r a m o w i c z 1,2,3 , P. B a k a l a 1 , M. B u r s a 4 , J. H o r á k 4 , W. K l u ź n i a k 3,5 , P. R e b u s c o 6,7 and Z. S t u c h l í k 1 1 Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, 746-01 Opava, Czech Republic e-mail: [email protected], (pavel.bakala,zdenek.stuchlik)@fpf.slu.cz 2 Department of Physics, Göteborg University, S-412 96 Göteborg, Sweden e-mail: [email protected] 3 Copernicus Astronomical Centre PAN, Bartycka 18, 00-716 Warsaw, Poland e-mail: [email protected] 4 Astronomical Institute of the Academy of Sciences, Boční II 1401/1a, 141-31 Praha 4, Czech Republic e-mail: (bursa,horak)@astro.cas.cz 5 Johannes Kepler Institute of Astronomy, Zielona Gora University, ul. Lubuska 2, 65-265 Zielona Góra, Poland 6 MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37, Cambridge, MA 02139, USA e-mail: [email protected] 7 Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany Received February 28, 2008 ABSTRACT A recently published study on long term evolution of the frequencies of the kilohertz quasiperiodic oscillations (QPOs) in the atoll source 4U 1636–53 concluded that there is no preferred frequency ratio in a distribution of twin QPOs that was inferred from the distribution of a single frequency alone. However, we find that the distribution of the ratio of actually observed pairs of kHz QPO frequencies is peaked close to the 3/2 value, and possibly also close to the 5/4 ratio. To resolve the apparent contradiction between the two studies, we examine in detail the frequency distributions of the lower kHz QPO and the upper kHz QPO detected in our data set. We demonstrate that for each of the two kHz QPOs (the lower or the upper), the frequency distribution fina all detections o QPO differs from the distribution of frequency of the same QPO in the subset of observations where both the kHz QPOs are detected. We conclude that detections of individual QPOs alone should not be used for calculation of the distribution of the frequency ratios. Key words: X-rays: binaries – Stars: neutron – Accretion, accretion disks 16 A. A. 1. Introduction Kluźniak and Abramowicz (2001) suggested that the kHz twin peak QPOs, observed in the Fourier power spectra (PDS) from accreting neutron stars, originate in a non-linear resonance that is possible only in strong gravity. It was reported later (Abramowicz et al. 2003) that the ratio νL /νU of the upper and lower QPO frequency in neutron stars usually clusters close to the rational ratio 2/3, with some frequency pairs possibly clustering close to other ratios, such as 0.78. Belloni et al. (2005) re-examined the study of Abramowicz et al. (2003) for a larger set of detections of a single kHz QPO and, on the assumption of a correlation between the observed QPO and the unobserved second QPO, confirmed that their (inverse) frequency ratio νU /νL would cluster most often close to the 3/2 value and less often close to other rational numbers (e.g., 5/4 and 4/3). Because a distribution of the ratios of two correlated quantities is largely determined by the distribution of either one of them, Belloni et al. (2005) argued that the peaks in the distribution of kHz frequency ratios reported by Abramowicz et al. (2003) reflect peaks of unknown origin in the distribution of a single (upper or lower) kHz QPO. Further, they argued that such clustering does not provide any useful information about a possible underlying physical mechanism. A more recent study of Belloni et al. (2007) is based on a long term evolution of the QPO frequencies in the atoll source 4U 1636–53 over an eighteen month period and on the results of their previous research. The authors now conclude that in fact there are no peaks in the frequency distribution of the lower kHz QPO in this source. In keeping with their previous argument, they conclude that there are no peaks in the frequency ratio distribution either. While Abramowicz et al. (2003) examine the frequency ratios in pairs of observed frequencies, both of the cited papers of Belloni et al. (2005, 2007) study primarily distributions of the frequencies and focus mainly on the lower QPO. Note that in most observations of Belloni et al. (2007) only single QPO frequencies have been detected. 2. Ratio vs. Frequency Distribution in the Atoll Source 4U 1636–53 Using 4U 1636–53 data from the analysis of Barret et al. (2005b), we prepare a histogram of detections of the lower QPO over nine years (from 1996 until 2005) of monitoring by RXTE (Fig. 1, left), as well as of the upper QPO (Fig. 1, right). We restrict our study to frequencies > 400 Hz for the lower QPO, and > 800 Hz for the upper QPO. The inaccuracies caused by the long-term frequency drift inside of continuous data segments are not important for the purposes of our paper. The data of Barret et al. (2005b) have been obtained through a shift-add procedure carried out on individual continuous segments of observation. In this approach each continuous data segment (corresponding to a few tens minutes of an effective Vol. 58 17 subset from 1.5 hour RXTE orbital period) is divided into N intervals, and searched for a QPO. The shortest usable integration time is estimated such that the QPO is detected above a certain significance in at least 80% of the N intervals; a linear interpolation is used to estimate the QPO frequency in the remaining intervals. The N PDS are frequency-shifted to the mean QPO frequency over the segment and averaged (Méndez et al. 1998). The resulting averaged PDS representing the complete continuous segment is then fitted with one or two Lorentzians plus a constant corresponding to the counting-statistics noise level (Barret et al. 2005b). Fig. 1. Left: Frequency histogram for the lower QPO. The subset of lower QPOs detected simultaneously with the upper QPO is denoted by darker bars, which are labeled “lower in twin”. Right: Analogous histograms for the upper QPO. When only one significant peak is detected, the QPO is identified as upper or lower from the parameters of the Lorentzian and we refer to such peaks as single QPOs. We stress that the value of the QPO frequency itself is not used to distinguish between the upper and lower QPOs – in principle, a QPO of a given frequency could be either the upper or the lower QPO. For instance, the quality factor for the lower kHz QPO is a well determined function of the frequency, and a different function of frequency for the upper QPO, and we can use this and other relationships to identify a QPO of given frequency (see Barret et al. 2005a,b,c, 2006, for details). This way of QPO identification differs from the method based on hardness diagram applied in Belloni et al. (2005, 2007). The two methods have a different range of applicability but give comparable results (see e.g., Barret et al. 2005b,c). Of course, when two significant kHz QPOs are detected, the upper QPO is the one with the larger frequency, by definition. Consequently, the frequency values are averaged through intervals of predetermined length ≈ 2000 s. Belloni et al. (2005, 2007) analyzed segments of different lengths, resulting in a larger number of detections. Hence the histograms we use here are not comparable in details to those of Belloni et al. (2005), even for the same RXTE data. We take into account only the detections of oscillations with quality factor (defined as the QPO centroid frequency over the full-width of the peak at its halfmaximum) Q ≥ 2 and significance (defined as the integral of the Lorentzian fitting the peak in PDS divided by its error) S ≥ 3. 18 A. A. 2.1. Different Distributions Each of the histograms in the Fig. 1 clearly reveals an accumulation of frequencies in the ν ≈ 900 Hz vicinity of the power spectrum. However, for the lower kHz QPO this range (νL ≈ 900 Hz) is in the high-frequency part of the frequency distribution of this QPO, while most detections of νU are accumulated in the lowfrequency part of its own range of variation. If one is interested (for whatever reason) in the distribution of the frequency ratio νU /νL , then those observations in which both QPO peaks are simultaneously detected should be considered. Accordingly, we apply our selection criteria to simultaneous significant detections of both QPO frequencies as well. The histograms of the upper QPO frequency in this sample (darker bars in Fig. 1, right panel) are strikingly different from the previous histogram of significant detections of the upper QPO (bars of lighter shade in Fig. 1). A new cluster of frequencies appears, in the range ≈ 1100 Hz to ≈ 1200 Hz, at the expense of frequencies below 900 Hz, whose occurrence is greatly diminished. While there is a positive correlation between the QPO frequencies (e.g., Abramowicz et al. 2005, see also Belloni et al. 2005, Zhang et al. 2006), νU ≈ 0.7νL + 520 Hz (1) very clearly the examined data do not support the assumption of Belloni et al. (2005, 2007) that the distribution of the ratio of two linearly correlated frequencies is determined by the distribution of one of the frequencies even when the second frequency remains undetected. There is apparently no direct link between the histogram of all the lower QPO detections (Fig. 1, left, lighter) and the histogram of the same QPO taken from the subset of twin peak QPO detections (Fig. 1, left, darker). This result should have an impact on the theory of QPOs. Although a full discussion is beyond the scope of this paper, we note that the change in the frequency distribution when a second QPO is detected may be suggestive of a physical mechanism, such as mode-coupling. To quantify this effect we plot the cumulative distributions of the lower and of the upper QPO, which are shown in Fig. 2. Using the Kolmogorov-Smirnov (KS) test we compare the frequency distributions of each (the upper and the lower) QPO measured in all detections, with those measured for the same QPO when both the upper and the lower QPO are detected. We obtained the K-S probabilities pL,K−S = 2.35 × 10−5 and pU,K−S = 2.24 × 10−3 in the case of the lower and upper QPO respectively. Indeed, the two distributions are different in both cases. We directly conclude that detections of individual QPOs alone cannot be used for calculation of the distribution of the frequency ratios. It is interesting to note that the single upper QPOs are mostly detected at relatively low frequencies, while the single lower QPOs are detected at relatively high frequencies. Taking into account the linear correlation among QPO frequencies, the distributions of single lower and upper QPOs appear to be complementary, in Vol. 58 19 Fig. 2. The cumulative distributions for the kHz QPOs corresponding to Fig. 1. Left: Solid curves correspond to the detected lower QPOs (see left panel of Fig. 1), the dotted line labeled “inferred lower” indicates the lower QPO frequency calculated from Eq. (1) using all detections of the upper QPO. The dashed vertical line shows the greatest difference Dmax = 0.515 between the distributions of “all lower” and “lower in twin”. Right: Analogous lines for the upper QPO. The dashed vertical line on right panel corresponds to the maximal difference Dmax = 0.4364 between the “all upper” and “upper in twin” distributions. the following sense. The lowest-frequency detection of the single lower QPO is at νL = 651 Hz, which in the linear correlation corresponds to νU = 976 Hz while the highest-frequency detection of the single upper QPO is at νU = 961 Hz, which corresponds to νL = 628 Hz. In other words, if one assumed that each of the single upper QPOs is accompanied by a lower QPO of frequency determined from Eq. (1), the resulting points would all fall to the left of the 3:2 line in Fig. 4 (left panel), and if the same procedure were applied to the single lower QPOs, the resulting points would fall to the right of the 3:2 line in Fig. 4. This is illustrated in Fig. 3. Given this fact, it is not surprising that the distribution of actually detected upper (or lower) kHz QPOs is completely different from the distribution that would be predicted on Eq. (1) from the distribution of the other kHz QPO, when detections of single QPOs dominate the data set (Fig. 2). Fig. 3. Distribution of single QPOs. Frequency axes are aligned according to the correlation of Eq. (1). The shadow denotes a 50 Hz scatter about the lower QPO frequency of 650 Hz, corresponding to a 3:2 ratio. 20 A. A. Fig. 4. Left: The frequencies of detected twin QPOs. The inset shows a corresponding histogram of the frequency ratio. Right: Cumulative distribution of the frequency ratios, the thick solid line denotes the best fit by a sum of two Lorentzians. Fit by a single Lorenzian is marked by dotted line. 2.2. Possible Peaks in the Ratio Distribution The left panel of Fig. 4 depicts the mutual dependence of frequencies of the lower and upper QPO when both were significantly detected. It also displays a corresponding histogram of the frequency ratio. As for Sco X-1 (Abramowicz et al. 2003), this histogram is peaked close to the 3/2 value, and is suggestive of the existence of a second peak. We have fitted the distribution of the frequency ratios by the sum of two suitably normalized Lorentzians, p2 (r) = f λ2 /π λ1 /π + (1 − f ) (r − r1 )2 + λ21 (r − r2 )2 + λ22 (2) where r = νU /νL is the frequency ratio and r1 , r2 , λ1 , λ2 and f are free parameters. Their values obtained by the maximum likelihood method are r1 = 1.52, r2 = 1.28, λ1 = 0.0327, λ2 = 0.0913 and f = 0.722, reaching K-S probability p2,K−S = 0.918. The best fit by a single Lorentzian, with r0 = 1.50 and λ0 = 0.0597 (dotted line in Fig. 4) gives the K-S probability p1,K−S = 0.340. Both fits are acceptable. In the right panel of Fig. 4 we compare cumulative distributions of the observed frequencies with both double and single Lorentzians. 3. Conclusions We have demonstrated for a set of uniform data (Barret et al. 2005b) that the frequency distribution of a single kHz QPO is not equivalent to the distribution of the corresponding frequency when a pair of kHz QPOs have been detected. We stress that if there is a one-to-one correspondence between the frequencies and their ratio, as is the case for linear functions with a non-vanishing intercept, the question whether to consider the QPO frequency distribution or the ratio distribution as fundamental is one of theoretical assumptions, as the two distributions Vol. 58 21 are mathematically equivalent. However, the distribution of a single kHz QPO frequency is not predictive of the distribution of two frequencies detected simultaneously, nor of the distribution of their ratio, even if these frequencies are correlated when both are actually detected. Thus, the study of Belloni et al. (2007), who conclude that “there is no preferred frequency or frequency ratio in 4U 1636–53” is based on an invalid assumption, and cannot be accepted as applying to the distribution of ratios, as long as it is based on the detection of a single frequency. The finding that the frequency distribution of a QPO depends on whether or not a second QPO can be detected as well should restrict models of the physical origin of the QPO and of X-ray flux modulation, regardless of whether or not the value of the frequency ratio is clustered about the specific value of 3/2. Acknowledgements. We thank Didier Barret for providing the data and software on which this paper builds and for several discussions. We have also benefited from helpful comments by Tomek Bulik. We thank the referee for very useful suggestions. The authors are supported by the Czech grants MSM 4781305903 and LC06014, by the Polish grants KBN N203 009 31/1466 and 1P03D 005 30. REFERENCES Abramowicz, M.A., Bulik, T., Bursa, M., and Kluźniak, W. 2003, A&A, 404, L21. Abramowicz, M.A., Barret, D., Bursa, M., Horák, J., Kluźniak, W., Rebusco, P., and Török, G. 2005, in: Proceedings of RAGtime 6/7, Eds. S. Hledík, Z. Stuchlík, Opava. Barret, D., Kluzniak, W., Olive, J.F., Paltani, S., and Skinner, G.K. 2005a, MNRAS, 357, 1288. Barret, D., Olive, J.F., and Miller, M.C. 2005b, MNRAS, 361, 855. Barret, D., Olive, J.F., and Miller, M.C. 2005c, Astron. Nachr., 326, 808. Barret, D., Olive, J.F., and Miller, M.C. 2006, MNRAS, 370, 1140. Belloni, T., Méndez, M., and Homan, J. 2005, A&A, 437, 209. Belloni, T., Méndez, M., and Homan, J. 2007, MNRAS, 379, 247. Kluźniak, W., and Abramowicz, M.A. 2000, preprint; astro-ph/0105057. Kluźniak, W., and Abramowicz, M.A. 2001, Acta Physica Polonica B, 32, 3605. Méndez, M., van der Klis, M., Wijnands, R., Ford, E.C., van Paradijs, J., and Vaughan, B.A. 1998, ApJ, 505, L23. Zhang, C.M., Yin H.X., Zhao, Y.H., Song, L.M., and Zhang, F. 2006, MNRAS, 366, 1373. Přı́loha 3 ACTA ASTRONOMICA Vol. 58 (2008) pp. 113–119 On the Origin of Clustering of Frequency Ratios in the Atoll Source 4U 1636–53 G. T ö r ö k 1 , M. A. A b r a m o w i c z 1,2,3 , P. B a k a l a 1 , M. B u r s a 4 , J. H o r á k 4 , P. R e b u s c o 5 and Z. S t u c h l í k 1 1 Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, 746-01 Opava, Czech Republic e-mail:[email protected] (pavel.bakala, zdenek.stuchlik)@fpf.slu.cz 2 Department of Physics, Göteborg University, S-412 96 Göteborg, Sweden e-mail: [email protected] 3 Copernicus Astronomical Centre PAN, Bartycka 18, 00-716 Warsaw, Poland 4 Astronomical Institute of the Academy of Sciences, Boční II 1401/1a, 141-31 Praha 4, Czech Republic e-mail: (bursa, horak)@astro.cas.cz 5 MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37, Cambridge, MA 02139, USA e-mail: [email protected] Received February 28, 2008 ABSTRACT A long discussion has been devoted to the issue of clustering of the kHz quasi periodic oscillation (QPO) frequency ratios in neutron star sources. While the distribution of ratios inferred from an occurrence of a single QPO seems to be consistent with a random walk, the distribution based on simultaneous detections of both peaks indicates a preference of ratios of small integers. Based on the public RXTE data we further investigate this issue for the source 4U 1636–53. Quality factors and rms amplitudes of both the QPOs nearly equal at the points where the frequencies are commensurable, and where the twin QPO detections cluster. We discuss a connection of the clustering with the varying properties of the two QPO modes. Assuming approximate relations for the observed correlations of the QPO properties, we attempt to reproduce the frequency and ratio distributions using a simple model of a random-walk evolution along the observed frequency-frequency correlation. We obtain results which are in qualitative agreement with the observed distributions. Key words: X-rays: binaries – Stars: neutron – Accretion, accretion disks 1. Introduction Since the paper of Abramowicz et al. (2003), the issue of distribution of kHz quasi periodic oscillations (QPOs) in neutron-star low mass X-ray binaries has been 114 A. A. discussed extensively. In their work, Abramowicz et al. (2003) examined simultaneous detections of the upper and lower QPOs in the Z-source Sco X-1. The authors show that the ratios of the lower and upper QPO frequencies cluster are most often close to the value νL /νU = 2/3. They also find an evidence for the second peak in a distribution of frequency ratios at νL /νU ≈ 0.78. This value is remarkably close to another ratio of small integers, 4/5 = 0.8. In the most recent paper, Török et al. (2008) examined occurrences of the twin QPOs in the atoll source 4U 1636–53 applying the same methodology as Abramowicz et al. (2003). They find that the distribution of the (inverse) frequency ratios νU /νL of two simultaneously detected QPOs peaks near 3/2 and 5/4. A preference of the commensurable frequency ratios in kHz QPO data of various sources has been systematically checked by a group of Belloni and his collaborators. Belloni et al. (2005) have re-examined the ratio distribution in Sco X-1 and later also in a larger sample comprising four atoll sources including 4U 1636– 53 (Belloni et al. 2005). They argue that such clustering does not provide any useful information because frequencies of the two QPOs are correlated and the distribution of the ratio of two correlated quantities is completely determined by the distribution of one of them. Keeping this argument, a recent study of Belloni et al. (2007) based on a systematic long term observation of 4U 1636–53 concludes that there is no preferred frequency ratio. The apparent disagreement in conclusions of the two groups comes from a confusion between the observed frequency distribution (the one which can be recovered from observed data) and the intrinsic distribution (the “invisible” one really produced by the source). While Abramowicz et al. (2003) and Török et al. (2008) examined frequency ratios of the actually observed QPO pairs (twin peaks) only, the analysis of Belloni et al. (2005, 2007) studies primarily distributions of frequencies of a single QPO and makes implications for the distribution of the other, often invisible, QPO from the empirical correlation between frequencies. In this paper we argue (and illustrate) that the observed distributions are affected by the way the signal from a source is being detected and analyzed. We show that in 4U 1636–53 the observed clustering can be understood in terms of rms amplitude and quality factor correlations with QPO frequency. Taking these correlations into account, we simulate the ratio distribution using a random walk model of QPO frequency evolution and we find that results of the simulation agree with empirical data. 2. Properties of Oscillation Modes on Large Frequency Range In the process of data reduction and searching for QPOs, an important quantity is the significance S of the peak in PDS, which measures the peak prominence. Shape of a peak in the PDS is most often fitted by a Lorentzian. Usually, S ≥ 2 − 4 is being used as the low threshold limit for detections and only peaks that have Vol. 58 115 their significances greater than this limit are considered as QPOs. Thus, this imposes a certain selection criterion which could consequently affect the distribution of detections. The significance S is given by the relation between the integral area of a Lorentzian in PDS and its error. For a particular detection, it depends on observational conditions, on the quality factor Q of the peak (defined as the QPO centroid frequency over the peak full-width at its half-maximum) and on the fractional root-meansquared amplitude r (a measure for the signal amplitude given as a fraction of the total source flux that is proportional to the root mean p square of the peak power contribution to the√total power spectrum), S = kr2 Q/ν, where the time-varying factor k(t) = I(t) T depends on the total length of observation T and the instantaneous source intensity I , which at a given time is the same for both upper and lower peak. The standard process of the QPO determination is in detail described in van der Klis (1989). Barret et al. (2005a,b,c, 2006) have shown that both quality factors and rms amplitudes are determined by frequency and moreover that their profiles greatly differ between lower and upper QPO modes. The quality factor of the upper QPO is usually small and tends to stay at an almost constant level around QU ≈ 10. In contrast, the lower QPO quality factor improves with frequency and can reach up to QL ≈ 200 before a sharp drop of coherence at high frequencies. Amplitudes of upper QPOs generally decrease with frequency, while the lower QPO amplitudes show first an increase and then they start to decay too. Fig. 1. The quality factor (left), rms amplitude (middle) and inferred significance (right) behavior in atoll source 4U 1636–53. Grey points represent lower QPO data, black points are for upper QPO data. Data in first two panels come from the study of Barret et al. (2005b) and cover large range of frequencies available via shift-add method through all segments of RXTE observations. Continuous curves are obtained from interpolation by several exponentials (see e.g., Török 2007). The prospected course of the QPO significance in the right panel is determined by the rms amplitude p and quality factor profiles ( S ∝ r2 Q/ν ). Frequency axes are related using frequency correlation ( νU = 0.701νL + 520 Hz, Abramowicz et al. 2005). Fig. 1 shows the behavior of amplitudes and quality factors of individual QPO modes in 4U 1636–53 and how they change with frequencies. In Fig. 1 we use a correlation νU = 0.701νL + 520 Hz from Abramowicz et al. 2005 (see also Belloni et al. 2005, Zhang et al. 2006). The displayed data of Barret et al. (2005b) cover 116 A. A. large frequency range available through the shift-add technique over all RXTE observations (see Méndez et al. 1998, 1999, Barret et al. 2005a,b,c for details). Note that both of the two properties are becoming similar as the frequency approaches points corresponding to 3/2 or 5/4 ratio (the equality of amplitudes have been reported by Török 2007). In the right panel of Fig. 1 we then plot the significances of the two oscillation modes, inferred from the combination of the two plots, while we keep the intensity I and observing time t constant (for simplicity). It is clearly visible that there is a similar equality of QPO significances close to points, where the frequencies are close to the 3/2 or 5/4 ratio (as a result of comparable Q and r at those points), while they are much different elsewhere. We will hereafter call the points of equal significances as the “3/2” and “5/4” points. We may also observe that the upper QPO mode is usually strong (much more significant) left from the 3/2 point (at lower frequencies), while right from 3/2 the lower QPO mode dominates. 3. Clustering of Frequency Ratios It is likely that if QPOs are produced in a source, they are always produced in pairs. Because the strength of oscillations is usually around the sensitivity threshold of measurements, often only one (the stronger) QPO is detected. Around the special points 3/2 and 5/4, where significances are comparable, there is a good chance that if one mode can be detected the other could be detected as well, because both peaks have nearly the same properties. Indeed, this agrees with what is observed and has been labored or challenged many times (Abramowicz et al. 2005, Belloni et al. 2005, Bulik 2005, Yin and Zhao 2007, Belloni et al. 2007) that pairs of QPOs cluster close to the 3/2 and some other small rational number ratios. From time to time, the conditions at the source become such that both QPOs can be detected simultaneously regardless of their frequency, only because of their actual high brightness (as the observational sensitivity is relatively low). These events allows us not only to see QPO pairs close to the critical points, but sporadically also all the way along the frequency-frequency correlation line, even far from 3/2. The clustering of frequency ratios close to 3/2 is in this view significantly affected by the behavior of rms amplitudes and quality factors and namely by the fact that these quantities become equal close to that frequency ratio. This is demonstrated in Fig. 2 (left), where we show a fraction of number of observations, in which both QPOs have been detected simultaneously, to a number of those, in which at least one QPO has been detected. Fig. 2 is based on data used in Török et al. (2008). Clearly, the positions of maxima remarkably well correlate with points, where the two significances equal. Moreover, these positions coincide with peaks in the distribution of frequency ratios found in Török et al. (2008) which justify a hypothesis that there is a link between QPO properties and the ratio clustering. Vol. 58 117 Fig. 2. The distribution of observed frequency ratios. Left: The fraction of the number of observations with simultaneous detections nUL to the number of observations in which at least one QPO has been detected nUL + nU + nL (where nU and nL are respectively the numbers of observations with detections of the upper or lower QPO only). Middle: Simulated ratio distribution assuming a randomwalk in frequency and variable count rate (see text). The gray underlying histogram in the first two panels shows the actual observed ratio distribution of twin QPO peaks (the data in both panels are those discussed in Török et al. 2008). Right: The individual distributions of lower and upper QPO frequencies from the random walk simulation. Black-shaded portions of bars represent simultaneous occurrences of both modes (twin QPOs) as shown in the middle panel. 4. Random Walk Distribution Model As previously noticed in several works and further suggested by Belloni et al. (2005), the observed time evolution of QPO frequency appears consistent with a series of random walks. This has been later critised by Bulik (2005) who pointed out that contrary to the distributions of QPOs that appear qualitatively similar at different times, distributions arising from random walk differ significantly among different realizations (with different seeds). Nevertheless, using a simple model of random walk we attempt to at least roughly reproduce the frequency ratio distribution. Starting with νL = 700 Hz, we model a long-term evolution of QPO frequencies over 10 000 consequent segments. Each segment consists of 50 steps, where one step is assumed to represent 32 seconds of a real observation. An independent random variation of ±2 Hz in νL is assigned to each step. This setup roughly corresponds to the documented frequency drifting through 32 sec integration intervals (Barret et al. 2004, Paltani et al. 2004) and each segment then mimics 1.6 kiloseconds of QPO evolution. The QPO frequencies are averaged over each segment, and a linear correlation (νU = 0.701νL + 520 Hz, Abramowicz et al. 2005) between νL and νU is considered, so that finally we obtain 10 000 frequency pairs. To start with, we assume constant observational conditions (i.e., count rate and observing time), adjusting k = 1. For each point we calculate its significance based on observed profiles of Q and rms, which are based merely on datapoints corresponding to twin peak QPO observations. Only such points are considered in the simulation, where both upper and lower QPOs have significance above 3σ level. The resulting histogram of frequency ratios shows strong clustering around 3/2 ratio, however, it does not reproduce the second peak around 5/4, which indicates that the assumption of constant count rate may not be sufficient. 118 A. A. As a second step, we adopt an additional (still very simplifying) assumption to the simulation that count rate is varying with frequency. The motivation here comes from a known fact that for a given source there is not a global correlation between source luminosity and QPO frequency, but the two quantities stay correlated during individual (temporary) observational events (so-called parallel-track phenomenon, e.g., Méndez et al. 1999). In the case of 4U 1636–53, the maximal count rates related to the highest observed lower QPO frequencies (up to 950 Hz) are 2–3 times higher than the highest count rates at νL ≈ 500−700 Hz (see Fig. 2 in Barret et al. 2005b). Thus, we keep count rate constant up to νL ≈ 700 Hz and then it is linearly increased with frequency, being about 2.5 times higher at νL ≈ 950 Hz than at ≈ 500−700 Hz. In the middle panel of Fig. 2, we show first the histogram of simultaneous occurrences of both QPO modes from our simulation on the background of the observed distribution, and in the right panel of Fig. 2 we also plot individual simulated distributions of lower and upper QPOs. Focusing on twin QPO occurrences, we have a broad peak around 3/2 and also we obtain a more narrow peak near 5/4. While the presence of the 3/2 clustering seems to be very solid and can be reproduced with any setup, the second 5/4 peak is more subtle feature and depends much on assumed behavior of count rate. Apparently, in a real observation, its presence would rely on actual source conditions (and how they would change during the observation) as well as on how the consequent analysis is done. For instance the data examined in Belloni et al. (2007) do not exhibit QPO detections above νU ≈ 1000 Hz while the data used in Török et al. (2008) do. Similarly, if we put e.g., more stiff limit on significance or consider lower count rates, we would loose the 5/4 peak. 5. Conclusions Focused on the atoll source 4U 1636–53 we demonstrate that at frequencies, where the both QPO modes have comparable properties, there is a high probability of detecting both peaks of a twin pair simultaneously. We have found a precise match comparing the observed twin QPO distribution with our simulation based on the observed correlations between QPO frequencies and their properties. The simulation not only reproduces the observed clustering, but it also shows the “complementarity” between upper and lower QPO distributions that has been noticed by Török et al. (2008). This suggests that the ratio clustering may have origin in the exchange of dominance between the two modes when one mode fades in while the other one fades out. Even if the intrinsic distributions of both the mode frequencies were uniform, there would be a non-trivial profile of the observed distributions and clustering of the twin peak detections around certain points (narrow regions) prominent due to behavior of the QPO amplitudes and coherence times determined by the QPO mechanism. It will require a further detailed analysis to investigate whether the Vol. 58 119 above influence of the QPO properties can fully explain the ratio clustering observed in 4U 1636–53. For a further understanding of the ratio clustering mechanism (and importance) it is also highly needed to perform a similar analysis for the other sources. For instance, a very recent study of the atoll source 4U 1820–30 (Barret and Boutelier 2008) found that a point close to the 4/3 value, where the ratio distribution clusters in that source, and where the amplitudes and quality factors are comparable, is most likely prominent in the intrinsic distribution. (Note also that in contrary to the case of 4U 1636–53 they reported a lack of the twin QPO detections close to the 3/2 value, while the amplitudes and quality factors are comparable there as well.) Acknowledgements. We thank M. Méndez for several discussions on the subject and, especially, we are thankful to D. Barret for ideas, comments and for providing the data and software on which this paper builds. We are grateful to W. Kluźniak for several comments and suggestions. We also thank the Yukawa Institute for Theoretical Physics at Kyoto University, where this work was initiated during the YITP-W-07-14 on "Quasi-Periodic Oscillations and Time Variabilities of Accretion Flows". The authors are supported by the Czech grants MSM 478130590384 and LC06014, and by Polish KBN grants N203 009 31/1466 and 1P03D 005 30. REFERENCES Abramowicz, M.A., et al. 2005, Astron. Nachr., 326, 864. Abramowicz, M.A., Bulik, T., Bursa, T.M., and Kluźniak, W. 2003, A&A, 404, L21. Abramowicz, M.A., and Kluźniak, W. 2001, A&A, 374, L19. Barret, D., Kluźniak, W., Olive, J.F., Paltani, S., and Skinner, G.K. 2004, in: Proc. of the Annual meeting of the French Astronomical Society (SF2A). Barret, D., Kluzniak, W., Olive, J.F., Paltani, S., and Skinner, G.K. 2005a, MNRAS, 357, 1288. Barret D., Olive, J.F., and Miller, M.C. 2005b, MNRAS, 361, 855. Barret D., Olive, J.F., and Miller, M.C. 2005c, Astron. Nachr., 326, 808. Barret D., Olive, J.F., and Miller, M.C. 2006, MNRAS, 370, 1140. Barret, D., and Boutelier, M. 2008, in: The Proceedings of Jean Piere Lasota Conference. Belloni, T., Méndez, M., and Homan, J. 2005, A&A, 437, 209. Belloni, T., Méndez, M., and Homan, J. 2007, MNRAS, 379, 247. Bulik, T. 2005, Astron. Nachr., 325, 861. Kluźniak, W., and Abramowicz, M.A. 2000, astro-ph/0105057. Paltani, S., Barret, D., Olive, J.F., and Skinner, G.K. 2004, in: Proceedings of the Annual meeting of the French Astronomical Society (SF2A). Méndez, M., van der Klis, M., Wijnands, R., Ford, E.C., van Paradijs, J., and Vaughan, B.A. 1998, ApJ, 505, L23. Méndez, M., van der Klis, M., Wijnands, R., Ford, E.C., and van Paradijs, J. 1999, ApJ, 511, L49. Török, G. 2007, A&A.submitted Török, G., Abramowicz, M.A., Bakala, P., Bursa, M., Horák, J., Kluźniak, W., Rebusco, P., and Stuchlík, Z. 2008, Acta Astron., 58, 15. van der Klis, M. 1989, “NATO Advanced Study Institute on Timing Neutron Stars”, p. 27. Yin, H.X., and Zhao, Y.H. 2007, Advances in Space Research, 40, 1522. Zhang, C.M., Yin, H.X., Zhao, Y.H., Song, L.M., and Zhang, F. 2006, MNRAS, 366, 1373. Přı́loha 4 ACTA ASTRONOMICA Vol. 58 (2008) pp. 1–14 Modeling the Twin Peak QPO Distribution in the Atoll Source 4U 1636–53 G. T ö r ö k, P. B a k a l a, Z. S t u c h l í k and P. Č e c h Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic e-mail: [email protected], (pavel.bakala,zdenek.stuchlik,petr.cech)@fpf.slu.cz Received October 5, 2007 ABSTRACT Relation between the lower and upper frequency mode of the twin peak quasi-periodic oscillations observed in the neutron star X-ray binaries is qualitatively well fitted by the frequency relation following from the relativistic precession model. Assuming this model with no preferred radius and the probability of an observable twin QPO excitation being uniform across the inner edge of an accretion disk we compare the expected and observed twin peak QPO distribution in the case of atoll source 4U 1636–53. We find these two distributions highly incompatible. We argue that the observed distribution roughly corresponds to the expected one if an additional consideration of preferred resonant orbits is included. We notice that our findings are relevant for some disk-oscillation QPO models as well. Key words: X-rays: binaries – Accretion, accretion disks – Stars: neutron 1. Introduction Several models have been outlined to explain observations of the kHz quasiperiodic oscillations (QPOs) in the X-ray fluxes from neutron-star binary systems, and it is mostly preferred that their origin is related to orbital motion near the inner edge of an accretion disk (see van der Klis 2006, Lamb 2003, Lamb and Boutlokous 2007, for a recent review). It is often argued that relation between the lower and upper QPO frequency mode ( νL , νU ) is qualitatively well fitted by the frequency relation implied by the particular relativistic precession model (Stella and Vietri 1999). Sources roughly follow the relation given by the model for a central compact object mass M ≈ 2M⊙ (Belloni, Méndez and Homan 2007a, see Zhang et al. 2006 for a discussion of other possibilities). In this paper we examine the twin QPO distribution given by the relativistic precession model (hereafter the RP model) and compare it with the one observed in the case of atoll source 4U 1636–53. We also discuss a model including preferred orbits. 2 A. A. 2. Observational Data and their Parametrization The data we examine are taken from the studies of Barret, Olive and Miller (2005), Abramowicz et al. (2005) and follow from the shift-add procedure through continuous segments of observation, see Méndez et al. (1998), Barret et al. (2005) for details. We seek over data corresponding to nine years of 4U 1636–53 monitoring by RXTE for all detected twin peak QPOs, i.e., for simultaneous detections of the lower and upper kHz QPO oscillations. Note that we choose the twin peak QPO occurrences as there is no apparent link between distributions of the individual QPO modes – see Bulik (2005), Török, Stuchlík and Bakala (2007). We take into account only detections of oscillations with quality factor (defined as the QPO centroid frequency over the full-width of the peak at its half-maximum) Q ≥ 2 and significance (defined as the integral of the Lorentzian fitting the peak in PDS divided by its error) S ≥ 3. In this context we stress that any examined set of QPO detection carries exclusively an information on the distribution of QPOs strong enough to be detected. The entire information on the QPO excitation is therefore potentially hidden and it remains as open question whether not-detected oscillations exist or not. Independently of the (yet not known) answer to this question, “unseen” oscillations are at least suppressed in comparison to those detected. For the purposes of our study we parametrize the twin peak QPO occurrences by their frequency ratio R ≡ νU /νL . (1) As discussed in Section 3 this choice makes our discussion less dependent on the concrete properties of the central compact object in 4U 1636–53. It also avoids possible confusion with a parametrization of an individual QPO mode distribution. Further advantage of this choice in the relation to resonant QPO models is discussed in Section 4. 3. Distribution Model I In the RP model (Stella and Vietri 1999) the kHz QPOs represent a manifestation of the modes of a relativistic epicyclic motion of blobs in the inner parts of accretion disk. The motion of a hot spot (radiating blob) is assumed to be nearly geodesic. Observed lower QPO oscillation frequency is then related to the relativistic precession of the orbiting hot spot, while the upper QPO oscillation is associated directly to its Keplerian frequency νl (r) = νP = νK (r) − νr (r), νU (r) = νK (r) (2) where νK , νr , νθ are Keplerian and radial or vertical epicyclic frequencies of the geodesic motion and νP is the periastron precession frequency. Vol. 58 3 In a given axially symmetric spacetime, the relevant angular velocities of the azimuthal, radial and vertical “quasi-elliptic” orbital motion reads in the spherical coordinates r, θ, φ (e.g., Abramowicz et al. 2003a). Henceforth, we use the geometrical units: c = 1 = G, M = GM ∗ /c2 , r = r∗ , t = ct ∗ , where the asterisk denotes the standard units. Thus ΩK = uφ /ut , (gtt + ΩK + gtφ )2 2 2 ∂ Ui ℓ ω2i = 2gii (3) U(r, θ, ℓ) := gtt − 2ℓgtφ + ℓ2 gφφ (5) (4) with gµν being components of the metric tensor, and U being the effective potential for the equatorial geodetic motion given by the standard relation where ℓ denotes the specific angular momentum of the orbiting test particle ℓ = −uφ /ut (6) for a Keplerian motion ℓ = ℓK (r, θ). In the following we suppose the external neutron star spacetime described by the Hartle–Thorne metric (Hartle and Thorne 1968) which represents the solution of vacuum Einstein field equations for the exterior of rigidly and relatively slowly rotating, stationary and axially symmetric body represented by mass M and two dimensionless parameters – spin j and quadrupole moment q. The components gµν , µ, ν ∈ {t, r, θ, φ} of the relevant metric tensor together with explicit Eqs. (3) and (4) derived in Abramowicz et al. (2003a) are given in Appendix I. In Appendix II we derive the relation between the ratio R of the observed frequencies and radius r of the QPO excitation in RP model for a Schwarzschild case j = 0, q = 0, 6MR2 (7) r= 2R − 1 and a few related formulae. Later we calculate all the relevant corrections numerically for Hartle–Thorne spacetimes with non-zero j and Q. 3.1. Modeling the Distribution Let us assume that there is no preferred radius in the RP model and the probability of a QPO excitation is uniform across the inner part of the accretion disk. Then, after a sufficient integration time, the number of QPO excitations (and detections) dn(r) should be equal for any given radius r when related to the unit length in the radial direction dn = const, dr̃ dr̃ = √ grr dr (8) 4 A. A. where r̃ denotes a proper distance in the radial direction in the equatorial plane of the disk. Considering mass M , angular momentum j and quadrupole moment q of the central compact object, one may find from Eqs. (1), (2) and (8) a QPO distribution dn/dR as illustrated in Fig. 1. (Strictly speaking, the density dn/dR is a function of j and q, independent of M as frequencies (Eq. 2) scale with 1/M . Nevertheless, the mass still plays a role for finite distributions if observational restrictions are connected to the QPO frequency.) In Appendix II we derive analytic formulae for both differential and cumulative distribution function for the Schwarzschild limit of the Hartle–Thorne spacetime ( q = 0, j = 0). Generally, for nonzero j and q, they have to be calculated numerically. Fig. 1. a) The distribution function dn/dR for two representative values of the angular momentum j and Kerr limit of quadrupole moment q = j 2 . Shadow in the inserted figure roughly indicates the relevant part of the accretion disk. While the frequency ratio R = 1 always corresponds to the Innermost–Stable–Circular–Orbit, R = 2 corresponds to the position of maximum of radial epicyclic frequency depending on value of j and q with inaccuracy of a few percent. b) Corresponding cumulative distribution functions ñ (normalized to R = 3 ). Note that it is rather difficult to distinguish on this scale between the two functions j = 0 and j = 0.3 (q = j 2 ) . Two more curves corresponding to angular momentum (and q = j 2 ) too high for a neutron star are shown for comparison. 3.2. Properties of Central Compact Object and Differences in Implied Distribution Because the parameters M , j and q of the central compact object in 4U 163653 are not known, similarly to the other QPO sources, we produce distribution dn/dR for a large family of sources having the properties consistent with present standard equations of state, (see e.g., Rikovska et al. 2003). The family we consider is characterized by an uniform distribution of parameters M ∈ (1.2M⊙ , 2.2M⊙ ), j ∈ (0, 0.14) and q ∈ ( j 2 , 10 j 2 ) with 100 × 100 × 100 representants (sources). We produce ≈ 200 datapoints per each source corresponding to a constant density dn/dr̃ in the region located between the radius corresponding to the maximum of the radial epicyclic frequency and a marginally stable orbit. The considered radial interval agrees with rough observational constraints to the model, see e.g., Belloni et al. (2007a). For the highest neutron star mass we consider here, the lowest peri- Vol. 58 5 astron precession frequency corresponding to the considered radial interval is close to 350 Hz. The observational data we use here are restricted above νL = 500 Hz. However, we have searched through several works, namely Barret et al. (2005), Barret, Olive and Miller (2006), and there are most likely no twin peak QPO detections for νL ∈ (300, 500) Hz above thresholds corresponding to our dataset. The 500 Hz limit is therefore not really involved here. See also Török et al. (2007). To mimic an observational error we blur the implied frequencies with the 3% Gaussian error on a 2σ level of confidence. In this way we produced 106 distributions and also a distribution averaged per all sources (hereafter mean distribution). We find that the variations of the individual distributions to the mean are rather small which follows from the partial 1/M scaling of the orbital frequencies (Eq. 2) and from a small influence of the low neutron star angular momentum to the frequency ratio R which we discuss in Appendix I.II (see also Fig. 1, especially its right panel). Within the considered radial range the ratio R is a monotonic and decreasing function of the radial coordinate, changing from R = 1 to R ≈ 2. The value R = 1 represents rather asymptotic number corresponding to the marginally stable circular orbit. Notice also that for the Schwarzschild spacetime the value at the maximum of the radial epicyclic frequency reads exactly R = 2 and slowly decreases with the increasing angular momentum j (see, Török and Stuchlík 2005). Maximal variations ∆R( j, q) = R(rmax , 0, 0) − R(rmax , j, q) at the maximum of radial epicyclic frequency within the examined interval of the angular momentum do not exceed ∆R ≈ 0.02. It follows from the above that considered combinations of j and q imply distributions rather similar to those for j = 0 and q = 0. The mean distribution is shown in Fig. 2a together with the “Schwarzschild” distribution ( j = 0, and q = 0). Fig. 2b provides a comparison to the observation which is further discussed in Section 4. Fig. 2. a) The twin peak QPO distribution implied by RP model with no preferred orbits (model I). Lines correspond to: dotted – averaged distribution, solid (black) – “Schwarzschild” distribution ( j = 0 , q = 0 ), grey – ( j = 0.3 , q = 0.09 ). Vertical axes scale is arbitrary for a given distribution. b) The observed twin peak QPO distribution. c) Histogram of K-S test results relevant to the comparison between observation and each of individual combinations of the considered spacetime parameters. 6 A. A. 4. Discussion and Distribution Model II One can easily recognize from Fig. 2a,b that the constructed distribution (hereafter the model I) significantly differs from the empirical one. We apply the Kolmogorov-Smirnov (K-S) test (Press et al. 2007) to quantify this statement. Using the test we compare each of individual distributions to the observation. Fig. 2c shows a histogram of the results. In terms of the test, the probability that the constructed and the observed distributions come from the same parent distribution is pK−S ≈ 10−5 for any parameters from the considered intervals. The unsatisfactory result presented above is connected to the conclusions of the studies of kHz QPO ratio distribution in the neutron star sources (Abramowicz et al. 2003b, Belloni, Méndez and Homan 2005, Belloni et al. 2007b, Török et al. 2008) – the ratio distribution tends to cluster close to ratio of small natural numbers. It was proposed that the clustering can be connected to different instances of one orbital resonance (Török, Stuchlík and Bakala 2007) involving modes formally identical or similar to the modes of Eq. (2). In such a case it is impossible to model the underlying distribution without a precise knowledge of the physical mechanism. Nevertheless, in Fig. 2c we show a modified version (model II) of the simulated distributional model I, satisfying the following restrictions: • The datapoints are created only close to the “resonant” radii with the ratio R = k/l , where k, l ∈ {1, 2, 3, 4, 5, 6}. • The distribution of datapoints around the resonant radii is implied by the Cauchy–Lorentz distribution in the ratio R p(R) = wk/l λk/l /π . (R − k/l)2 + λ2k/l (9) • The weights wk/l of individual Lorentzians are normalized as ∑ wk/l = 1, wk/l ≈ 1/ j2 (10) where j is the higher number from the two k, l . The width of the Lorentzians is arbitrarily given as λ = 0.013R so there is ≈ 97% of datapoints relevant to the Lorentzians in the interval R ∈ (1, 2). • All the other properties are the same as in the case of model I. The distribution guess (model II) given above includes preference of orbits with the Keplerian and periastron frequency being in resonant ratios, and its detailed properties are rather arbitrary. Its comparison with observation gives the K-S probability pK−S ≈ 40% within the considered range of the central compact object parameters. In Fig. 3 we show a comparison of cumulative distributions of models I and II to observation. Fig. 3 suggests that K-S probability would be much improved for both of them. Vol. 58 7 Fig. 3. Comparison of cumulative distributions given by observation (thick curve), model I and model II. The grey curve corresponds to the best fit (Török et al. 2008) by superposition of two Lorentzians. It is visible that considerations of number of preferred orbits being located (Eq. 7) between r ≈ 6.2M (R ≈ 1.2) and r ≈ 7.5M (R ≈ 1.8) can improve the unsatisfactory result of model I. 5. Conclusions The observational data from studies of Barret and collaborators (Barret et al. 2005, Abramowicz et al. 2005) which we use correspond to all the RXTE observations of 4U 1636+53 till 2005 proceeded by the shift-add technique through continuous segments of observation. The part of data displaying significant twin peak QPOs is restricted to about 20 hours of observation represented in our study by 23 datapoints corresponding to the individual continuous observations. It is needed for a further study to proceed these data by other methods in order to obtain a more detailed view of the distribution. However, in terms of the RP model the 23 significant datapoints we use represent (under the assumption of the hot spot lifetime being equal to a few orbits) the statistics of ≈ 107 individual hot spots averaged in a well defined way which allows us to conclude that: • The twin peak QPO distribution obtained from the relativistic precession (RP) model under the consideration of the (observable) QPO excitation probability being uniform across the inner part of the accretion disk is highly incompatible with that given by observational data. This result is independent of the choice of reasonable sample of intervals of parameters M , j , q. For completeness, we also check for “extreme values” like j ≈ 0.3. Because of the shape of resulting histograms (Fig. 1 and Fig. 2a) the result is also independent of the exact delimitation of the radial disk region (which we consider between a maximum of the radial epicyclic frequency and the marginally stable circular orbit). • On the other hand the arbitrary consideration of preferred “resonant” radii implies a twin peak QPO distribution showing similarities to the observational one. (It has been recently noticed (Török et al. 2008) that the distribution can be well described (K-S probability ≈ 98%) by a sum of two Lorentzians having the centroids at R = 1.51 and 1.28. Notice that from 8 A. A. . Eq. (7) this would correspond to radii r = 6.8M and 6.3M . Nevertheless the eventual relevance of (exactly) these frequency ratios to a QPO model is not clear at present.) In principle one can not exclude that non-observed oscillations are produced. Our findings are, however, relevant even in such a case as the model should explain why only pairs of oscillations coming from the vicinity of preferred orbits are well observable. Finally we notice that several QPO models (hot spot- or disk oscillations-like) introduce frequency relations which are qualitatively and also quantitatively similar to those implied by the relativistic precession model. Moreover, in the limit of the Schwarzschild spacetime these relations coincide (Horák et al. 2008 in preparation, Török et al. 2007, Stuchlík, Török and Bakala 2007). Our discussion of the quantitative distribution of observations is, thus, roughly relevant also for those models, including the model considering the radial m = 1 and vertical m = 2 diskoscillation modes. Acknowledgements. We thank to Didier Barret for an important notice that for usual count-rates the non-observed QPOs can be still involved in the X-ray modulation being in such a case too weak for simultaneous significant detections with present instruments. We also thank to John Miller and Martin Urbanec for discussion of quadrupole momentum range and to Jiří Horák and Michal Bursa for useful debates on subject of connection between the RP model and the QPO observability. The last but not least are our thanks to anonymous referee for several comments and suggestions which helped to improve the paper. The authors are supported by the Czech grants MSM 4781305903, LC06014, and GAČR 202/06/0041. REFERENCES Abramowicz, M.A., Almergreen, G.J.E., Kluźniak, W., and Thampan, A.V. 2003a, preprint; grqc/0312070. Abramowicz, M.A., Bulik, T., Bursa, M., and Kluźniak, W. 2003b, A&A, 404, L21. Abramowicz, M.A., et al. 2005, Astron. Nachr., 326, 864. Barret, D., Olive, J.F., and Miller, M.C. 2005, Astron. Nachr., 326, 808. Barret, D., Olive, J.F., and Miller, M.C. 2006, MNRAS, 370, 1140. Belloni, T., Méndez, M., and Homan, J. 2005, A&A, 437, 209. Belloni, T., Méndez, M., and Homan, J. 2007a, MNRAS, 376, 1133. Belloni, T., Homan, J., Motta, S., Ratti, E., and Méndez, M., 2007b, MNRAS, 379, 247. Bulik, T. 2005, Astron. Nachr., 326, 861. Hartle, J.B., and Thorne, K.S. 1968, ApJ, 153, 807. Kato, S., Fukue, J., and Mineshige, S. 1998, “Black hole accretion disks”, Kyoto University Press. Lamb, F.K. 2003, ASP Conference Series, 308, 221. Lamb, F.K., and Boutlokous, S. 2007, in: “Short-period Binary Stars: Observation, Analyses, and Results”, Eds. E.F. Milone, D.A. Leahy, and D. Hobill, Dordrecht: Springer. Méndez, M., van der Klis, M., Wijnands, R., Ford, E.C., van Paradijs, J., and Vaughan, B.A. 1998, ApJ, 505, L23. Vol. 58 9 Méndez, M. 2006, MNRAS, 371, 1925. Nowak, M.A., and Wagoner, R.V. 1992, ApJ, 378, 656. Rikovska Stone, J., Miller, J.C., Koncewicz, R., Stevenson, P.D., and Strayer, M.R. 2003, Phys. Rev.C, 68, id. 034324. Stella, L., and Vietri, M. 1999, Phys. Rev. Lett., 82, 17. Stuchlík, Z., Török, G., Bakala, P. 2007, A&A, submitted; astro-ph/0704.2318. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 2007, “Numerical Recipes: The Art of Scientific Computing”, Cambridge University Press, Third Edition. Török, G., and Stuchlík, Z. 2005, A&A, 437, 775. Török, G., Stuchlík, Z., and Bakala, P. 2007, CEJPh, 5, 457. Török, G., Bursa, M., Horák, J., Bakala, P., and Stuchlík, Z. 2007, in: Proceedings of RAGtime 8/9: Workshops on black holes and neutron stars 15–19/19–21 September ’06/’07 Opava, Czech Repubic, 2007. Török, G., Abramowicz, M.A., Bakala, P., Bursa, M., Horák, J., Kluźniak, W., Rebusco, P., and Stuchlík, Z. 2008, Acta Astron., 58, 15. van der Klis, M. 2006, in: “Compact stellar X-ray sources”, Eds. W. Lewin and M. van der Klis, Cambridge University Press, p. 39. Zhang, C.M., Yin H.X., Zhao, Y.H., Song, L.M., and Zhang, F. 2006, MNRAS, 366, 1373. 10 A. A. Appendix I I.I Formulae for Orbital Geodesic Frequencies in the Hartle–Thorne Metric (after Abramowicz et al. 2003a) Components of the metric tensor, ds2 = gtt dt 2 + grr dr2 + gθθ dθ2 + gφφ dφ2 + gφt dφdt + gtφ dtdφ (11) are given as gtt = + (1 − 2M/r) 1 + j 2 F1 t + qF2 t , −1 grr = − (1 − 2M/r) 1 + j 2 F1 r − qF2 gθθ = −r2 1 + j 2 F1 θ + qF2 θ , φ φ gφφ = −r2 sin2 θ 1 + j 2 F1 + qF2 , (12) r , gtφ = −2(M 2 /r) j sin2 θ, (13) (14) (15) (16) where F1 t = [8Mr4 (r − 2M)]−1 [u2 (48M 6 − 8M 5 r − 24M 4 r2 − 30M 3 r3 − 60M 2 r4 + 135Mr5 − 45r6 ) + (r − M)(16M 5 + 8M 4 r − 10M 2 r3 − 30Mr4 + 15r5 )] + A1 (r), F2 t = [8Mr (r − 2M)]−1 [5(3u2 − 1)(r − M)(2M 2 + 6Mr − 3r2 )] − G1 (r), F1 r = [8Mr4 (r − 2M)]−1 [(G2 − 72M 5 r) − 3u2 (G2 − 56M 5 r)] − G1 (r), F2 r = F2 t , F1 θ = (8Mr4 )−1 (1 − 3u2 )(16M 5 + 8M 4 r − 10M 2 r3 + 15Mr4 + 15r5 ) + G3 (r), F2 θ = (8Mr)−1 [5(1 − 3u2 )(2M 2 − 3Mr − 3r2 )] − G3 (r), φ φ φ φ F1 = F1 , F2 = F2 , and 15r(r − 2M)(1 − 3u2 ) r ln , 2 16M r − 2M 15(r2 − 2M 2 )(3u2 − 1) r G2 = ln , 16M 2 r − 2M G3 = 80M 6 + 8M 4 r2 + 10M 3 r3 + 20M 2 r4 − 45Mr5 + 15r6 , G1 = u = cos θ. The angular velocity for corotating circular particle orbits reads # " uφ M 1/2 M 3/2 2 Ω Ω ΩK = t = 3/2 1 − j 3/2 + j F1 (r) + qF2 (r) u r r (17) Vol. 58 11 where F1 Ω (r) = (48M 7 − 80M 6 r + 4M 5 r2 − 18M 4 r3 + 40M 3 r4 + 10M 2 r5 + 15Mr6 − 15r7 )[16M 2 (r − 2M)r4 ]−1 + H(r), 5(6M 4 − 8M 3 r − 2M 2 r2 − 3Mr3 + 3r4 ) − H(r), F2 Ω (r) = 16M 2 (r − 2M)r 15(r3 − 2M 3 ) r H(r) = ln . 3 32M r − 2M The epicyclic frequencies of circular geodesic motion are given by formulae M(r − 6M) ω2r = 1 + jH1 (r) − j 2 H2 (r) − qH3 (r) , (18) 4 r M ω2θ = 3 1 − jI1 (r) + j 2 I2 (r) + qI3 (r) , (19) r where H1 (r) = 6M 3/2 (r + 2M) , r3/2 (r − 6M) H2 (r) = [8M 2 r4 (r − 2M)(r − 6M)]−1 (384M 8 − 720M 7 r − 112M 6 r2 − 76M 5 r3 − 138M 4 r4 − 130M 3 r5 + 635M 2 r6 − 375Mr7 + 60r8 ) + J(r), H3 (r) = 5(48M 5 + 30M 4 r + 26M 3 r2 − 127M 2 r3 + 75Mr4 − 12r5 ) − J(r), 8M 2 r(r − 2M)(r − 6M) 6M 3/2 , r3/2 I2 (r) = [8M 2 r4 (r − 2M)]−1 (48M 7 − 224M 6 r + 28M 5 r2 I1 (r) = + 6M 4 r3 − 170M 3 r4 + 295M 2 r5 − 165Mr6 + 30r7 ) − K(r), I3 (r) = with 5(6M 4 + 34M 3 r − 59M 2 r2 + 33Mr3 − 6r4 ) + K(r), 8M 2 r(r − 2M) 15r(r − 2M)(2M 2 + 13Mr − 4r2 ) r ln , 3 16M (r − 6M) r − 2M 15(2r − M)(r − 2M)2 r K(r) = ln . 3 16M r − 2M For completeness, the relation determining the marginally stable circular geodesic reads " r 3 2 2 2 251647 (20) +j − 240 ln rms = 6M 1 − j 3 3 2592 2 9325 3 +q − . + 240 ln 96 2 J(r) = 12 A. A. I.II Relation between Keplerian and Precession Frequency Inside the Inner Part of Accretion Disk From its definition, function R = νU /νL = νK /(νK − νr ) equals 1 at the marginally stable circular orbit for any angular momentum j . It is then increasing with increasing radial coordinate. In Fig. 4a,b we show change of the position of maximum of the radial epicyclic frequency rmax [νr ] as well as the related change of the function R(rmax ) within the range of j and q discussed in this paper. One should notice that while coordinate position of rmax [νr ] is rather sensitive to j and q, changing of nearly 10% from rmax = 8 to rmax = 7.4, the corresponding change of frequency reads only about 1%. This suggests that there should not be a substantial difference between individual distributions related to different j, q within the discussed range. This is then confirmed by the calculation further discussed in the paper. Fig. 4. Maximum of the radial epicyclic frequency as depends on parameters j and q . a) Its position as a function of parameters j and q within intervals discussed in the paper. The three labelled dashed curves correspond to q/ j 2 = 1, 5 and 10. b) Corresponding frequency ratio. c) Direct comparison of relative change of radial coordinate and relative change of frequency ratio νU /νL for the extended range of j . Vol. 58 13 I.III Relation between Frequency Ratio and Radial Position of QPO Excitation In Fig. 4c we show the comparison between relative change of rmax [νr ] and related relative change of R(rmax [νr ]) for the extended range of j and outlines of q = j 2 and q = 10 j 2 . It is visible from Fig. 4c that up to j = 0.25 (representing already rapidly rotating neutron star) the relative change of R(rmax [νr ]) is smaller than 2%. The above fact has potentially interesting consequences for observational astrophysics. As noticed in several works, (e.g., Nowak and Wagoner 1992, Kato, Fukue and Mineshige 1998), the physics of accretion disk oscillations is governed by the behavior of the epicyclic frequencies. In this relation the physically important characteristics for (quantitatively) different spacetimes are locations of ISCO (where R = 1) and location of rmax . For comparing of radial positions belonging to different compact objects one can relate “physical” position inside of the accretion disk to these two points. As shown above, within the range of j and q expected even for rapidly rotating neutron star the ratio R(rmax ) is nearly constant. One may therefore use the ratio of observed QPO frequencies when comparing the radial positions of QPO excitations from compact object having different M , j , and q using as a reference Eq. (23) which we derive in Appendix II. 14 A. A. Appendix II Distribution Function for the RP Model in the Schwarzschild Spacetime For j = 0 and q = 0 orbital and epicyclic frequencies given by Eqs. (17–19) can be expressed in familiar form q 1 p 1 M(r − 6M). (21) M/r3 , νr = νK = νθ = 2π 2πr2 In the RP model, the observable frequencies are identified as νU νK R= = . (22) νL νK − νr The above equations imply relation between the observed frequency ratio and radius of QPO excitation which reads 6MR2 . (23) 2R − 1 Proper distance r̃ in the radial direction in the equatorial plane of the disk measured between radii r0 and r is given as Zr r Zr h ir p p r √ grr dr = dr = ln(r − 1 + r2 − 2r) + r2 − 2r . (24) r−2 r0 r= r0 r0 Using Eq. (23), a proper radial distance from radius corresponding to the frequency ratio R0 to radius corresponding to the frequency ratio R can be written as s " ! 12R2 6R2 36R4 r̃ = ln − + − 1) (2R − 1)2 2R − 1 2R − 1 s #R 12R2 36R4 . (25) − + (2R − 1)2 2R − 1 R0 Let us assume the probability of a QPO excitation being uniform across the inner part of the accretion disk. Then after a sufficient integration time the number of QPO excitations dn(r) should be equal for any given radius r when related to the unit length in the radial direction dn = const. (26) dr̃ Eq. (25) therefore directly determines (cumulative) distribution of QPO excitations with respect to the frequency ratio R. Relevant differential distribution then reads (both the cumulative and differential distributions for j = 0 are illustrated in Fig. 1.) 36(R − 1)R2 dn √ . = dR (1 − 2R)2 3 − 6R + 9R2 (27) Přı́loha 5 DOI: 10.2478/s11534-007-0039-0 Rapid Communication A remark about possible unity of the neutron star and black hole high frequency QPOs Gabriel Török∗, Zdeněk Stuchlı́k, Pavel Bakala Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic Received 09 May 2007; accepted 15 June 2007 Abstract: In a series of papers it was discussed, on the basis of phenomenological arguments, whether the high frequency quasiperiodic oscillations (kHz QPOs) observed in the neutron-star and black-hole X-ray sources originate in the same physical mechanism. Recently it was suggested that a general trend seen in neutron star kHz QPOs instead excludes such a uniform origin. Using the example of the atoll source 4U 1636-53 we illustrate that this is not neccesarily true. c Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved. Keywords: X-rays, binaries, accretion, accretion discs, stars, neutron PACS (2006): 97.60.Lf, 97.10.Gz, 97.10.Sj, 97.60.Jd, 97.80.Jp 1 Introduction A series of papers discuss, among other things, the possibility of the resonant origin of the high frequency QPOs observed in bright neutron-star low-mass X-ray binaries and in Galactic microquasars with a similar/the same mechanism operating in both classes of sources. Kluźniak and Abramowicz [1] suggested that the kHz QPOs come from a strong nonlinear gravity resonance and later Abramowicz et al. [2] noticed that the observed ratio between the lower and upper frequencies νL and νU of a kHz QPO mode usually clusters close to ratios of small natural numbers, most often close to the value νU /νL = 3/2 which is also clearly observed in the Galactic microquasars [3, 4] supporting rather strongly the resonant origin hypothesis. ∗ E-mail: [email protected] G. Török et al. / Central European Journal of Physics Belloni et al. [5] re-examined this study and concluded that the frequency ratio clusters most often close to the 3/2 ratio and less often close to the other rational numbers (e.g., 5/4 and 4/3) and argued that such clustering does not provide any useful information about a possible underlying resonance mechanism in the sources since the distribution of the ratio of two correlated quantities is completely determined by the distribution of one of them.† Abramowicz et al. [6, 7] realized that the slope and shift of lines well approximating the data of individual neutron star frequency-frequency relations are anticorrelated. Belloni et al. [8] related this anticorrelation with the previously examined frequency clustering and the general trend seen in the neutron star data — the sources roughly follow frequency-frequency relation relevant to the relativistic precession model [9] constructed under consideration of the Schwarzschild metric and central compact object mass M ∼ 2M . Belloni et al. [8] also argued that this general trend rather excludes the possibility of the same origin of both black-hole and neutron-star kHz QPOs. 2 A unified QPO model — could it exist or not? 2.1 Microquasars In the case of Galactic microquasars showing fixed twin peak QPO frequencies, the implied mass and spin relation was discussed for several resonance models based on a resonance between orbital frequencies of geodesic motion [3, 10]. Bursa [11] proposed a so-called vertical precession resonance model in order to match the spin estimated from fits of the X-ray spectral continua for the microquasar GRO J1655-40. Note that to date the observational data do not exclude this model for any of four microquasars displaying clear twin peak QPOs. In the vertical precession resonance model, the observed QPO frequencies νL and νU are for a given black hole spin identified with frequencies νl (r) = νK (r) − νr , νu (r) = νθ (r) (1) for a particular choice of r defined by the condition νu = 3/2νl . The frequencies νK , νr and νθ denote Keplerian, radial and vertical frequencies of orbital motion in the Kerr spacetime [12, 13]. We note that for the Schwarzschild metric the frequencies νl (r) and νu (r) merge with the relation predicted by the relativistic precession model mentioned above. G. Török et al. / Central European Journal of Physics Fig. 1 The frequency correlation in the atoll source 4U 1636-53. The νK curve determines the upper QPO frequency following from the relativistic precession model [9] under consideration of the gravitational field described by the Schwarzschild metric with a central mass M = 1.84M , the grey curve denotes the same relation but for M = 2M , i.e., the trend reported by [8]. Intersections of this curve with the 3:2 and 5:4 line correspond to the relevant vertical precession resonance. Note that the actual (observed) frequencies of the resonance are allowed to differ from the given resonant eigenfrequencies [6]. The secondary vertical axes indicate the dimensionless radius related to M = 1.84M . Note that the assumed 5:4 resonance occurs very close (0.25M) to the innermost stable circular geodesic orbit, i.e., near the expected inner edge of the accretion disc. 2.2 The atoll source 4U 1636-53 Abramowicz et al. [6], profiting from the studies [14–16], examined frequency correlations in several neutron star sources. In Figure 1 we show the correlation corresponding to the occurences of twin peaks for the atoll source 4U 1636-53 taken from [6], method A in the paper. This correlation was obtained by the shift-add [17] fitting of continuous segments of observations from all of the RXTE data available at the time.‡ We stress that in contrast to the studies considering separated single QPO distributions, e.g., the recent paper of Belloni et al. [18], the twin peak QPO distributions examined in this way consider only simultaneous significant detections of both QPO frequencies (i.e., here the detection of both the peaks above 2.5σ significance having quality factor higher than 3). The two distinct clusters of datapoints are easy to recognize on the figure. In the framework of resonance QPO models, the fact that these two clusters correspond to the 3/2 and the 5/4 frequency ratio may suggest their connection to different instances of a particular orbital resonance. † The goal of our short paper is not in continuing the discussion of this questionable argument which is given in the different paper [19]. Nevertheless, we at least note that the frequency vs. ratio dilemma represents rather the question of the choice of the quantity which depends on the assumed model. ‡ See [6, 14–16] for details. G. Török et al. / Central European Journal of Physics 2.3 Comparison The 3:2 vertical precession resonance model [11] has been introduced for microquasars whereas the implied black hole spins seem to be in agreement with the independent estimates [11, 20]. According to the study of Belloni et al. [8], the datapoint clusters in 4U 1636-53 are very close to the relation predicted by the model of Stella and Vietri and therefore to the frequencies (1) following from the same vertical precession resonance model as in microquasars, but for a particular choice of r defined by conditions νu = 3/2 νl and νu = 5/4 νl corresponding to the 3/2 and 5/4 resonance, respectively.§ 2.4 Conclusions The above clear argument that one can not exlude in 4U 1636-53 a QPO mechanism similar to that for Galactic microquasars is obviously also applicable to the other neutron star sources. Because the neutron star kHz twin peak QPOs typically cluster close to the ratios of small natural numbers [2, 5] and because the oscillation modes of the vertical precession resonance and possibly of other similar resonances are close or coincide with some modes predicted by the relativistic precession model, this type of resonance can be considered to explain neutron star QPOs as well as the relativistic precession model. Therefore, an overall agreement of the kHz QPO data in neutron stars with the trend predicted by the precession model [9] does not rule out resonances in the accretion disk [1] as the direct cause for the observed oscillations, and, contrary to the statement of Belloni et al. [5], the same origin for neutron-star and black-hole high frequency QPOs is not excluded. Acknowledgments We would like to thank to the anonymous referees for several suggestions which helped to improve the paper. The authors have been supported by the Czech grants MSM 4781305903 (GT, ZS), LC06014 (PB) and GAČR 202/06/0041 (ZS). References [1] W. Kluźniak and M.A. Abramowicz: “Strong-Field Gravity and Orbital Resonance in Black Holes and Neutron Stars — kHz Quasi-Periodic Oscillations (QPO)”, Phys. Rev. Lett. (submitted), 2000; see also Acta Phys. Pol. B, Vol. 32 (2001), pp. 3605–3612. [2] M.A. Abramowicz, T. Bulik, M. Bursa and W. Kluźniak: “Evidence for a 2:3 resonance in Sco X-1 kHz QPOs”, Astron. Astrophys., Vol. 404, (2003), p. L21. § The correct treatment of the neutron star data in scope of resonance models must include influence of the neutron star spin and relevant realistic metric description. We present such an analysis in [21]. G. Török et al. / Central European Journal of Physics [3] M.A. Abramowicz and W. Kluźniak: “A precise determination of black hole spin in GRO J1655-40”, Astron. Astrophys., Vol. 374, (2001), pp. L19–L20. [4] J.E. McClintock and R.A. Remillard: “Black Hole Binaries”, In: Compact Stellar X-ray Sources, eds. W.H.G. Lewin and M. van der Klis, Cambridge University Press, Cambridge, 2005, Preprint arXiv:astro-ph/0306213 [5] T. Belloni, M. Méndez and J. Homan: “The distribution of kHz QPO frequencies in bright low mass X-ray binaries”, Astron. Astrophys., Vol. 437, (2005), pp. 209–216. [6] M.A. Abramowicz, D. Barret, M. Bursa, J. Horák, W. Kluźniak, P. Rebusco and G. Török: “A note on the slope-shift anticorrelation in the neutron star kHz QPOs data”, In: Proceedings of RAGtime 6/7, eds. S. Hledı́k and Z. Stuchlı́k, Silesian University in Opava, Opava, 2005, pp. 1–9. [7] M.A. Abramowicz, D. Barret, M. Bursa, J. Horák, W. Kluźniak, P. Rebusco and G. Török: “The correlations and anticorrelations in QPO data”, Astron. Nachr., Vol. 326, (2005), pp. 864–866. [8] T. Belloni, M. Méndez and J. Homan: “On the kHz QPO frequency correlations in bright neutron star X-ray binaries”, Mon. Not. R. Astron. Soc., Vol. 376, (2007), pp. 1133–1138. [9] L. Stella and M. Vietri: “kHz Quasiperiodic Oscillations in Low-Mass X-Ray Binaries as Probes of General Relativity in the Strong-Field Regime”, Phys. Rev. Lett., Vol. 82, (1999), pp. 17–20. [10] G. Török, M.A. Abramowicz, W. Kluźniak and Z. Stuchlı́k: “The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars”, Astron. Astrophys., Vol. 436, (2005), pp. 1–8. [11] M. Bursa: “High-frequency QPOs in GRO J1655-40: Constraints on resonance models by spectral fits”, In: Proceedings of RAGtime 6/7, eds. S. Hledı́k, Z. Stuchlı́k, Silesian University in Opava, Opava, 2005, pp. 39–45. [12] A.N. Aliev and D.V. Galtsov: “Radiation from Relativistic Particles in Nongeodesic Motion in a Strong Gravitational Field”, Gen. Relat. Gravit., Vol. 13, (1981), pp. 899– 912. [13] M. Nowak and D. Lehr: “Theory of Black Hole Accretion Disks”, Cambridge University Press, Cambridge, 1999. [14] D. Barret, J.–F. Olive and M.C. Miller: “Drop of coherence of the lower kilo-Hz QPO in neutron stars. Is there a link with the innermost stable circular orbit?”, Astron. Nachr., Vol. 326, (2005), pp. 808–811. [15] D. Barret, J.–F. Olive and M.C. Miller: “An abrupt drop in the coherence of the lower kHz quasi-periodic oscillations in 4U 1636-536”, Mon. Not. R. Astron. Soc., Vol. 361, (2005), pp. 855–860. [16] D. Barret, J.–F. Olive and M.C. Miller: “The coherence of kilohertz quasi-periodic oscillations in the X-rays from accreting neutron stars”, Mon. Not. R. Astron. Soc., Vol. 370, (2006), pp. 1140–1146. G. Török et al. / Central European Journal of Physics [17] M. Méndez, M. van der Klis, R. Wijnands, E.C. Ford, J. van Paradijs and B.A. Vaughan: “Kilohertz Quasi-periodic Oscillation Peak Separation Is Not Constant in the Atoll Source 4U 1608-52”, Astrophys. J., Vol. 505, (1998), p. L23. [18] T. Belloni, J. Homan, S. Motta, E. Ratti and M. Mendez: “RossiXTE monitoring of 4U 1636-53: I. Long-term evolution and kHz Quasi-Periodic Oscillations”, Mon. Not. R. Astron. Soc., accepted, 2007, Preprint arXiv:astro-ph/0705.0793. [19] M.A. Abramowicz, P. Bakala, M. Bursa, J. Horák, W. Kluźniak, P. Rebusco, Z. Stuchlı́k and G. Török: in preparation, 2007 [20] M. Middleton, C. Done, M. Gierlinski and S.W. Davis: “Black hole spin in GRS 1915+105”, Mon. Not. R. Astron. Soc., Vol. 373, (2006), pp. 1004, Preprint arXiv:astroph/0601540. [21] Z. Stuchlı́k, P. Bakala and G. Török: “On a multi-resonant origin of high frequency quasiperiodic oscillations in the neutron-star X-ray binary 4U 1636-53”, in preparation, 2007. Přı́loha 6 The Astrophysical Journal, 714:748–757, 2010 May 1 C 2010. doi:10.1088/0004-637X/714/1/748 The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON MASS CONSTRAINTS IMPLIED BY THE RELATIVISTIC PRECESSION MODEL OF TWIN-PEAK QUASI-PERIODIC OSCILLATIONS IN CIRCINUS X-1 Gabriel Török, Pavel Bakala, Eva Šrámková, Zdeněk Stuchlı́k, and Martin Urbanec Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic; [email protected], [email protected], [email protected], [email protected], [email protected] Received 2009 October 8; accepted 2010 March 15; published 2010 April 14 ABSTRACT Boutloukos et al. discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M0 = 2.2 ± 0.3 M . We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentum j = cJ /GM 2 . Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M ∼ M0 [1 + 0.55(j + j 2 )]. It is therefore impossible to estimate the mass without independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3 M . We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources. Key words: stars: neutron – X-rays: binaries Online-only material: color figure 2005; Zhang et al. 2007a, 2007b), oscillations that arise due to comptonization of the disk–corona (Lee & Miller 1998) or oscillations excited in toroidal disk (Rezzolla et al. 2003; Rezzolla 2004; Šrámková 2005; Schnittman & Rezzolla 2006; Blaes et al. 2007; Šrámková et al. 2007; Straub & Šrámková 2009) are considered as well. At last but not least, already the kinematics of the orbital motion itself provides space for consideration of “hot-spot-like” models identifying the observed variability with orbital frequencies. For instance, recent works of Čadež et al. (2008) and Kostić et al. (2009) deal with tidal disruption of large accreted inhomogenities. Among the same class of (kinematic) models belongs also the often quoted “relativistic precession” (RP) kHz QPO model that is the focus of our attention here. The RP model has been proposed in a series of papers by Stella & Vietri (1998, 1999, 2002). It explains the kHz QPOs as a direct manifestation of modes of relativistic epicyclic motion of blobs arising at various radii r in the inner parts of the accretion disk. The model identifies the lower and upper kHz QPOs with the periastron precession νp and Keplerian νK frequency, 1. INTRODUCTION Quasi-periodic oscillations (QPOs) appear in variabilities of several low-mass X-ray binaries (LMXBs) including those which contain a neutron star (NS). A certain type of these oscillations, the so-called kHz (or high-frequency) QPOs, often come in pairs with frequencies νL and νU typically in the range ∼50–1300 Hz. This is of the same order as the range of frequencies characteristic for orbital motion close to a compact object. Accordingly, most kHz QPO models involve orbital motion in the inner regions of an accretion disk (see van der Klis 2006; Lamb & Boutloukos 2007, for a recent review). There is a large variety of QPO models related to NS sources (in some but not all cases they are applied to black hole (BH) sources too). Concrete models involve miscellaneous mechanisms of producing the observed rapid variability. One of the first possibilities proposed represents the “beat frequency” model assuming interactions between the accretion disk and spinning stellar surface (Alpar & Shaham 1985; Lamb et al. 1985). Many other models primarily assume accretion disk oscillations. For instance, non-linear resonance scenarios suggested by Abramowicz, Kluźniak and Collaborators (Abramowicz & Kluźniak 2001; Abramowicz et al. 2003b, 2003c; Horák 2008; Horák et al. 2009) are often debated. A set of the later models join the beat frequency idea, magnetic field influence, and presence of the sonic point (Miller at al. 1998b; Psaltis et al. 1999; Lamb & Miller 2001). Some of the numerous versions of non-linear oscillation models and the late beat frequency models rather fade into the same concept that commonly assumes the NS spin to be important for excitation of the resonant effects (Kluźniak et al. 2004; Pétri 2005a, 2005b, 2005c; Miller 2006; Kluźniak 2008; Stuchlı́k et al. 2008; Mukhopadhyay 2009). Resonance, influence of the spin, and magnetic field also play a role in the ideas discussed by Titarchuk & Kent (2002) and Titarchuk (2002). Other resonances are accommodated in models assuming deformed disks (Kato 2007, 2008, 2009a, 2009b; Meheut & Tagger 2009). Further effects induced in the accreted plasma by the NS magnetic field (Alphén wave model, Zhang νL (r) = νp (r) = νK (r) − νr (r), νU (r) = νK (r), (1) where νr is the radial epicyclic frequency of the Keplerian motion. (Note that, on a formal side, for Schwarzschild spacetime where νK equals a vertical epicyclic frequency this identification merges with a model assuming m = −1 radial and m = −2 vertical disk-oscillation modes). In the past years, the RP model has been considered among the candidates for explaining the twin-peak QPOs in several LMXBs and related constraints on the sources have been discussed (see, e.g., Karas 1999; Zhang et al. 2006; Belloni et al. 2007a; Lamb & Boutloukos 2007; Barret & Boutelier 2008a; Yan et al. 2009). While some of the early works discuss these constraints in terms of both NS mass and spin and include also the NS oblateness (Morsink & Stella 1999; Stella et al. 1999), most of the published implications for individual sources focus on the NS mass and neglect its rotation. 748 No. 1, 2010 ON MASS OF CIRCINUS X-1 Two simultaneous kHz QPOs with centroid frequencies of up to 225 (500) Hz have also recently been found by Boutloukos et al. (2006a, 2006b) in 11 different epochs of RXTE/Proportional Counter Array observations of the peculiar Z-source Circinus X-1. Considering the RP model they reported the implied NS mass to be M ∼ 2.2 M . The estimate was obtained assuming the non-rotating Schwarzschild spacetime and was based on fitting the observed correlation between the upper QPO frequency and the frequency difference Δν = νU −νL . In this paper, we improve the analysis of mass estimate carried out by Boutloukos et al. In particular, we consider rotating spacetimes that comprehend the effects of frame-dragging and fit directly the correlation between the twin QPO frequencies. We show that good fits can be reached for the mass–angular momentum relation rather than for the preferred combination of mass and spin. 2. DETERMINATION OF MASS Spacetimes around rotating NSs can be approximated with a high precision by the three-parametric Hartle–Thorne (HT) solution of Einstein field equations (Hartle & Thorne 1968; see Berti et al. 2005). The solution considers mass M, angular momentum J, and quadrupole moment Q (supposed to reflect the rotationally induced oblateness of the star). It is known that in most situations modeled with the present NS equations of state (EoS) the NS external geometry is very different from the Kerr geometry (representing the “limit” of HT geometry for q̃ ≡ QM/J 2 → 1). However, the situation changes when the NS mass approaches maximum for a given EoS. For high masses the quadrupole moment does not induce large differences from the Kerr geometry since q̃ takes values close to unity (Appendix A.1). The previous application of the RP model mostly implied rather large masses (e.g., Belloni et al. 2007a). These large masses are only marginally allowed by standard EoS. Also the mass inferred by Boutloukos et al. (2006a, 2006b) takes values above 2 M . Motivated by this we use the limit of twoparametric Kerr geometry to estimate the influence of the spin of the central star in Circinus X-1 (see Appendix A.1 where we pay a more detailed attention to rationalization and discussion of this choice allowing usage of simple and elegant Kerr formulae). 2.1. Frequency Relations Assuming a compact object of mass MCGS = GM/c and dimensionless angular momentum j = cJ /GM 2 described by the Kerr geometry, the explicit formulae for angular velocities related to Keplerian and radial frequencies are given by the following relations (see Aliev & Galtsov 1981; Kato et al. 1998, or Török & Stuchlı́k 2005): 6 8j 3j 2 ΩK = F (x 3/2 + j )−1 , ωr2 = Ω2K 1 − + 3/2 − 2 , (2) x x x 2 where F ≡ c3 /(2π GM) is the “relativistic factor” and x ≡ r/MCGS . Considering Equations (1) and (2), we can write for νL and νU , both expressed in Hertz (see also Appendix A.1.2 where we discuss a linear expansion of this formula), 2/3 8j νU νU νL = νU 1 − 1 + −6 F − j νU F − j νU 4/3 1/2 νU . (3) − 3j 2 F − j νU 749 In the Schwarzschild geometry, where j = 0, Equation (3) simplifies to νL = νU ν 2/3 1/2 U 1− 1−6 F (4) leading to the relation Δν = νU 1 − 6 (2π GMνU )2/3/c2 (5) that was used by Boutloukos et al. for the mass determination. 2.2. “Ambiguity” in M There is a unique curve given by Equation (3) for each different combination of M and j (see Appendix A.2 for the proof). The frequencies νL and νU scale as 1/M and, as illustrated in the left panel of Figure 1, they increase with growing j. Naturally, one may ask an interesting question whether for different values of M and j there exist some curves that are similar to each other. We investigate and quantify this task in Appendix A.2. There we infer1 that for j up to ∼0.3 one gets a set of nearly identical integral curves where M, j, and M0 roughly relate as follows: (6) M = [1 + k(j + j 2 )]M0 with k = 0.7. This result is illustrated in the right panel of Figure 1. Clearly, when using relation (6), any curve plotted for a rotating star of a certain mass can be well approximated by those plotted for a non-rotating star with a smaller mass, and vice versa. Furthermore, we find that (see Appendix A.2) when the top parts of the curves (corresponding to νU /νL ∼ 1–1.5) are considered only, the best similarity is reached for k = 0.75. These parts of the curves are potentially relevant to most of the atoll and high-frequency Z-sources data. On the other hand, for the (bottom) parts of the curves that are potentially relevant to low-frequency Z-sources including Circinus X-1, the best similarity is achieved for k = 0.65 (0.55, 0.5) when νU /νL ∼ 2 (3, 4). Taking into account the above consideration we can expect that the single-parameter best fit to the data by relation (4) roughly determines a set of mass–angular-momentum combinations (6) with similar χ 2 . The result of Boutloukos et al. then implies that good fits to their data, displaying νU /νL ∼ 3, should be reached for M ∼ 2.2 M [1 + 0.55(j + j 2 )]. In what follows we fit the data and check this expectation. 1 We first consider a special set of apparently similar curves sharing the terminal points. The set is (numerically) given by the particular choice of M, for any j implying the same orbital frequency at the marginally stable circular orbit. The curves then only slightly differ in their concavity that increases with growing j. 750 TÖRÖK ET AL. Vol. 714 Figure 1. Left: relation between the upper and lower QPO frequency following from the RP model for the mass M = 2.5 M . The consecutive curves differ in j ∈ (0, 0.3) by 0.05. Right: relations predicted by the RP model vs. data of several NS sources. The curves are plotted for various combinations of M and j given by Equation (6) with k = 0.7. The datapoints belong to Circinus X-1 (red/yellow color), 4U 1636-53 (purple color) and most of other Z- and atoll-sources (black color) exhibiting large population of twin-peak QPOs. Figure 2. Left: χ 2 dependence on the parameters M and j assuming Kerr solution of Einstein field equations. The continuous white curve indicates the mass–angular momentum relation (7). The continuous thin green curve denotes j giving the best χ 2 for a fixed M. The dashed and thick green curve indicates the same dependence but calculated using formulae (A2) and (A6) linear in j, respectively. The reasons restricting the calculation of the thick curve up to j = 0.4 are discussed in Section A.1.2. Right: related profile of the best χ 2 for a fixed M. The arrow indicates increasing j. 2.3. Data Matching In the right panel of Figure 1, we show the twin-peak frequencies measured in the several atoll and Z-sources2 together with the observations of Circinus X-1. For the Circinus X-1 data we search for the best fit of the one-parametric relation (4). Already from Figure 1, where these data are emphasized by the red/yellow points, one may estimate that the best fit should arise for M0 ∈ 2–2.5 M . Using the standard least squares method . . (Press et al. 2007) we find the lowest χ 2 = 15 = 2 dof for . the mass M0 = 2.2 M which is consistent with the value reported by Boutloukos et al. The symmetrized error corresponding to the unit variation of χ 2 is ±0.3 M . The asymmetric evaluation of M0 reads 2.2[+0.3; −0.1] M . The white curve in Figure 2 indicates the mass–angular momentum relation implied by Equation (6), M = 2.2 M [1 + k(j + j 2 )], k = 0.55. (7) For the exact fits in Kerr spacetime we calculate the relevant frequency relations for the range of M ∈ 1–4 M and j ∈ 0–0.5. These relations are compared to the data in order to calculate 2 After Barret et al. (2005a, 2005b), Boirin et al. (2000), Belloni et al. (2007a), di Salvo et al. (2003), Homan et al. (2002), Jonker et al. (2002a, 2002b), Méndez & van der Klis (2000), Méndez et al. (2001), van Straaten et al. (2000, 2002), Zhang et al. (1998). the map of χ 2 . We use the step equivalent to a thousand points in both parameters and obtain a two-dimensional map of 106 points. This color-coded map is included in the left panel of Figure 2. One can see in the map that the acceptable χ 2 is rather broadly distributed. The thin solid green curve indicates j corresponding to the best χ 2 for a fixed M. It agrees well with the expected relation (7) denoted by the white curve. The right panel of Figure 2 then shows in detail the dependence of the best χ 2 for the fixed M. It is clearly visible that the quality of the fit tends to very gently, monotonically increase with rising j and it is roughly χ 2 ∼ 15 for any considered j. 3. DISCUSSION AND CONCLUSIONS The quality of the fit tends to very gently, monotonically increase with rising j and it is roughly χ 2 ∼ 2 dof ⇔ M ∼ 2.2[+0.3, −0.1] M × [1 + 0.55(j + j 2 )]. (8) Therefore, one cannot estimate the mass without independent knowledge of the spin or vice versa, and the above relation provides the only related information implied by the geodesic RP model. To obtain relation (8), the exact Kerr solution of Einstein field equations was considered. The choice of this two-parametric spacetime description and related formulae (2) is justified by No. 1, 2010 ON MASS OF CIRCINUS X-1 a large value of the expected mass M0 (see Appendix A.1 for details). In Appendix A.1.2 we discuss the utilization of the linearized frame-dragging description. Figure 2 includes the mass–spin dependence giving best χ 2 resulting when the fitting of datapoints is based on the associated formulae (A2) and (A6), respectively. Considering that νL (νU ) formula (3) merge up to the first order in j with the νL (νU ) relation (A6) linear in j one can expect that the associated M(j ) relations obtained from fitting of data should roughly coincide up to j ∼ 0.1–0.2. From the figure we can find that there is not a big difference between the resulting M(j ) relations even up to much higher j. The extended coincidence can be clearly explained in terms of the kHz QPO frequency ratio R ≡ νU /νL .3 Observations of Circinus X-1 result to R ∼ 2.5–4.5 while usually it is R ∼ 1.2–3 (and most often R ∼ 1.5; Abramowicz et al. 2003b; Török et al. 2008a; Yan et al. 2009). Assuming the RP model along with any j ∈ (0, 1), the ratio R = 2 corresponds with good accuracy to radii where the radial epicyclic frequency reaches its maximum (Török et al. 2008c). Only values lower than R ∼ 2 are then associated with the proximity of the innermost stable circular orbit (ISCO) where the effects of frame dragging come to be highly non-linear in both j and r. Accordingly, for a given j, in the case when R ∼ 3, the individual formulae restricted up to certain orders in j are already close to their common linear expansion in j and differ much less than for R ∼ 1.5 (see Appendix A.1). The rarely large R and associated high radial distance (both already remarked by Boutloukos et al. 2006a, 2006b, although in a different context) in addition to large M0 warrant the relevance of relation (8) for rather high values of the angular momentum. Consequently, we can firmly conclude that the upper constrained limit of the mass changes from the value 2.5 M to 3 M for j = 0.3 and even to 3.5 M for j = 0.5. The value of M0 that is above 2 M and the increase of M with growing j for corotating orbits elaborated here are challenging for the adopted physical model. Further detailed investigation involving realistic calculations of the NS structure can therefore be effective in relation to EoS selection or even falsifying the RP model. Finally, we note that the discussed trend of increase of estimated mass arising due to rotational effects should be relevant also for several other sources. Of course, many systems display mostly low values of R. These low values of R are in context of the RP model suggestive of proximity of ISCO. Török (2009) and Zhang et al. (2009) pointed that under the consideration of the RP model and j = 0, most of the high-frequency sources data are associated with radii close to r = 6.75M. Possible signature of ISCO in high frequency sources data has been also reported in a series of works by Barret et al. (2005a, 2005b, 2006) based on a sharp drop in the frequency behavior of the kHz QPO quality factors (for instance the atoll source 4U 1636-53 denoted by “blueberry” points in Figure 1 clearly exhibits both low R and a drop of QPO coherence, see Boutelier et al. 2010). Considering the proximity of ISCO, high-order non-linearities in both j and r are important and even small differences between the actual NS and Kerr metric could have certain relevance. For this reason some caution is needed when applying our results to high frequency sources. 3 Orbital frequencies scale with 1/M. For any model considering νL and νU given by their certain combination, the ratio R represents the measure of radial position of the QPO excitation (provided that the NS spin and EoS are fixed). 751 This work has been supported by the Czech grants MSM 4781305903, LC 06014, and GAČR 202/09/0772. The authors thank the anonymous referee for his objections and comments which helped to greatly improve the paper. We also appreciate useful discussions with Milan Šenkýř. APPENDIX APPROXIMATIONS, FORMULAE, AND EXPECTATIONS A.1. Matching Influence of Neutron Star Spin Rotation and the related frame-dragging effects strongly influence the processes in the vicinity of compact objects and there is a need of their reflection in the appropriate spacetime description. External metric coefficients related to up-to-date sophisticated models of rotating NS are taken out of the model in two distinct ways. In the first way, the coefficients are obtained “directly” from differential equations solved inside the numeric NS model, while in the second (more usual) way, they are inferred from the main parameters of the numeric model (mass, angular momentum, etc.) through an approximative analytic prescription. Several commonly used numerical codes related to rotating NS have been developed and discussed (see, RNS, Stergioulas & Morsink 1997; LORENE: Gourgoulhon et al. 2000; and also Nozawa et al. 1998; Stergioulas & Friedman 1995; Cook et al. 1994; Komatsu et al. 1989). A.1.1. Analytical Approximations and High-mass Neutron Stars In the context of a simplified analysis of NS frame-dragging consequences, an approximation through two solutions of Einstein field equations is usually recalled: Lense–Thirring metric also named linear-Hartle metric (Thirring & Lense 1918; Hartle & Sharp 1967; Hartle 1967) and Kerr-black-hole metric together with related formulae (Kerr 1963; Boyer & Lindquist 1967; Carter 1971; Bardeen et al. 1972). It is expected that the Lense–Thirring metric fits well the most important changes (compared to the static case) in the external spacetime structure of a slowly rotating NS. This expectation is usually assumed for j < 0.1–0.2.4 Due to asymptotical flatness constraints the formulae related to Lense–Thirring, Kerr and some other solutions considered for rotating NS merge when truncated to the first order in j. Accordingly, for astrophysical purposes there is a widespread usage of the approximate terms derived with the accuracy of the first order in j. While these approximations are two-parametric, the more realistic approximations—for instance, those given by the HT metric (Hartle & Thorne 1968) and related terms (Abramowicz et al. 2003a), relations of Shibata & Sasaki (1998) or the solution of Pachón et al. (2006)—deal with more parameters and provide less straightforward formulae. Perhaps also because of that they are not often considered in discussions of concrete astrophysical compact objects. Astrophysical applicability of the above analytical approaches has been extensively tested in the past 10 years. Criteria based on the comparison of miscellaneous useful quantities have The interval 0 < j < 2 × 10−1 is often assumed as one of the several possible definitions of “slow rotation”. However, in relation to implications of the frame-dragging effects, the effective size of this interval depends on the radial coordinate. For x close or below xms the interval in j rather reduces to low values. On the other hand for x above the radius of the maximum of νr the interval can be extended to j higher than j = 0.2. The term slow rotation is also frequently considered in another context. For instance, when using the Ht metric in NS models the slow rotation is usually associated with the applicability of the metric and consequently to spins up to ∼800 Hz for most EOS and NS masses. For these reasons we do not use the term elsewhere in the paper. 4 752 TÖRÖK ET AL. Vol. 714 Figure 3. Left: parameter q̃ for several EoS. Shaded areas denote q̃ = 6 and q̃ = 3. Right: ISCO frequencies for the same EoS as used in the left panel. The curves are calculated for mass 1.4 M and a relevant maximal allowed mass. The curves following from the exact Kerr solution and linear relation (A4) are displayed as well. The quadratic relation denoted by the black-dashed curve is discussed later in Section A.2.1. Figure 4. Frequencies of the perturbed circular geodesic motion. Relations for the Kerr metric given by Equation (A2) are denoted by blue and dashed-blue curves. Relations (A2) are indicated by red curves, while relation (A5) is plotted using the green color. Dotted relations denote the Kerr- and linearized-vertical frequencies that are not discussed here (see Morsink & Stella 1999; Stella et al. 1999). Inset emphasizes a difference between the radii fulfilling the ISCO condition νr = 0 for the relations ((2), explicitly given by Equation (A1)), Equation (A2), and the ISCO-radius given by (A3). Figure 5. Left: the RP model frequency relations given by Equation (3), blue curves; formulae (A2), red curves; relations (A6), green curves. Relation (A7) roughly determining the applicability of Equation (A6) is denoted by the dashed black/yellow curve. Right: related differences Δν between the lower QPO frequency implied by the Kerr formulae (3) and those following from Equation (A2) and (A6), respectively indicated by continuous respectively dashed curves. Different colors correspond to different frequency ratio R. Shaded areas indicate Δν < 5% and Δν < 2%. been considered for these tests (e.g., Miller et al. 1998a; Berti et al. 2005). It has been found that spacetimes induced by most up-to-date NS EoS without inclusion of magnetic field effects are well approximated with the HT solution of the Einstein field equations (see Berti et al. 2005, for details). The solution re- flects three parameters: NS mass M, angular momentum J, and quadrupole moment Q. Note that Kerr geometry represents the “limit” of the HT geometry for q̃ ≡ Q/J 2 → 1. The parameter q̃ then can be used to characterize the diversity between the NS and Kerr metric. No. 1, 2010 ON MASS OF CIRCINUS X-1 753 The left panel of Figure 3 displays a dependence of q̃ on the NS mass. This illustrative figure was calculated following Hartle (1967), Hartle & Thorne (1968), Chandrasekhar & Miller (1974), and Miller (1977). The considered EoS are denoted as follows (see Lattimer & Prakash (2001, 2007) for details): [EoS1] SLy 4, Rikovska Stone et al. (2003). [EoS2] APR, Akmal et al. (1998). [EoS3] AU (WFF1), Wiringa et al. (1988); Stergioulas & Friedman (1995). [EoS4] UU (WFF2), Wiringa et al. (1988); Stergioulas & Friedman (1995). [EoS5] WS (WFF3), Wiringa et al. (1988); Stergioulas & Friedman (1995). Inspecting the left panel of Figure 3 we can see that for EoS configurations resulting in low or medium mass of the central star (M up to 0.8Mmax , i.e., roughly up to 1.4M–1.8 M ) depending on EOS, the implied HT geometry is rather different from the Kerr geometry. More specifically, for a fixed central density, q̃ strongly depends on the given EoS and substantially differs from unity. On the contrary, for high mass configurations q̃ approaches unity implying that the actual NS geometry is close to Kerr geometry. One can expect that in such cases formulae related to the Kerr geometry should provide better approximation than for low values of M. Next, focusing on high-mass NS, we briefly elaborate some points connected to the applicability of the Kerr formulae and related linearized terms. Note that the root of the expression for ωr2 from Equation (A2) is of higher order in j so that the exact radius where ωr vanishes agrees with the solution (A3) only in the first order of j. The related ISCO frequency can be evaluated as (Kluźniak & Wagoner 1985; Kluźniak et al. 1990) A.1.2. Kerr and Linearized Kerr Formulae: Comparison, Utilization, and Restrictions When the expression for the radial epicyclic frequency given by Equation (2) or (A2) is fully linearized in j, it leads to The radial epicyclic frequency goes to zero on a particular, so-called marginally stable circular orbit xms (e.g., Bardeen et al. 1972). In Kerr spacetimes it is given by the relation (Bardeen et al. 1972) xms = 3 + Z 2 − (3 − Z 1 )(3 + Z 1 + 2Z 2 ), (A1) where Z 1 = 1 + (1 − j 2 )1/3 [(1 + j )1/3 + (1 − j )1/3 ], Z 2 = 3j 2 + Z 21 . Below xms there is no circular geodesic motion stable with respect to radial perturbations. The orbit is often named ISCO and determines the inner edge of a thin accretion disk. The corresponding ISCO orbital frequency νK (xms ) represents the highest possible orbital frequency of the thin disk and the related “spiraling” inhomogenities (Kluźniak et al. 1990). Dependence of ISCO frequency on j following from Equation (A1) is shown in the right panel of Figure 3. Assuming the description of geodesic motion accurate in the first order of j, using Taylor expansion around j = 0, one may rewrite the explicit terms in Equation (2) as 1 6 8j j 2 2 ΩK = F , ω 1 − . + − = Ω r K x 3/2 x3 x x 3/2 (A2) Consequently, linearized formula for the ISCO radius can be expressed as 2 xms = 6 − 4 j. (A3) 3 νK (xms ) = (M /M) × (1 + 0.749j ) × νK (xms , M = M , j = 0) . = (M /M) × (1 + 0.749j ) × 2197 Hz. (A4) This frequently considered relation is included in the right panel of Figure 3. In the right panel of Figure 3 we integrate the ISCO frequencies plotted for several EoS (the same as in the left panel). We choose two groups of models—one calculated for the set of five different EoS and “canonic” mass 1.4 M , the other one for the same set of EoS but considering a maximal mass allowed by each individual EoS. This choice allows for the illustration of medium and high mass behavior of ISCO relations and comparison of their simple approximations. Clearly, for medium mass configurations Equation (A4) provides better approximation than using the Kerr-spacetime formulae (see also Miller et al. 1998a). On the other hand, when the high mass configurations are considered, the Kerr solution provides better approximation than Equation (A4). Moreover, its accuracy is higher than the accuracy of both approximations for middle mass configurations. A.1.3. Geodesic Frequencies and RP Model ωr = (x − 6)x 3/2 + 3j (x + 2) . (x − 6)x 7 (A5) Relation (A5) provides a good approximation except for the vicinity of xms (j ) as it diverges at x = 6. Note that this divergence arises only for corotating but not counterrotating orbits (which we however do not discuss in this paper). For any positive j < 0.5 the fully linearized frequency (Equation (A5)) does not differ from ωr given by Equation (A2) for more than about 5% when x 6 + 4j . The left panel of Figure 4 compares the frequencies of geodesic motion associated directly with Kerr metric to formulae (A2) and (A6), respectively. Assuming linearized Keplerian frequency given by Equation (A2) and the radial epicyclic frequency (Equation (A5)), we can write for the RP model the relation between νL and νU as ν 2/3 √ 2j νU (α − 2) U νL = νU 1 − 1 − 6α + √ , , α= F F 1 − 6α (A6) which equals the first-order expansion of Kerr spacetime Equation (3) and also to the first-order expansion of the same relation if it would be derived for Lense–Thirring or HT metric. Similarly to relation (A5), relation (A6) loses its physical meaning for frequencies close to νK (ISCO) since it reaches a maximum at frequencies that can be expressed with a small inaccuracy as M νU (Hz). (A7) νL = 12 − νU /200 M The left panel of Figure 5 compares the frequency relations (A6) to relations (3) and those following from formulae (A2). It is 754 TÖRÖK ET AL. useful to discuss their differences in terms of the frequency ratio R = νU /νL . For a fixed j the frequencies νL and νU scale with 1/M. The ratio R then represents a “measure” of the radial position of the QPO excitation. It always reaches R = 1 at ISCO where the non-linear j terms are important and R = 0 at infinity where the spacetime is flat. Note that R = 2 almost exactly corresponds to the maximum of νr for any j (Török et al. 2008c). The right panel of Figure 5 quantifies differences between the QPO frequency implied by the Kerr formulae (3), relations (A2), and relation (A6). We can see that differences between the Kerr relations (3) and those implied by formulae (A2) become small when R 2 (Δν 5% for j 0.5). For R ∼ 3 and higher, relations (3) and those implied by Equation (A2) are almost equivalent nearly merging to their common linear expansion (A5). Note that taking into account relation (A7) the linear expansion (Equation (A6)) provides reasonable physical approximation for spins and frequency ratios roughly related as j 0.3(R − 1). (A8) A.1.4. Applications Several values of NS mass previously reported to be required by the RP model, including the estimate of Boutloukos et al., belong to the upper part of the interval allowed by standard EoS. We can therefore expect low q̃ and take advantage of the exact Kerr solution for most of the practical calculations needed through the paper. Unlike formulae truncated to certain order, all the formulae derived from the exact Kerr solution are from the mathematical point of view fully self-consistent for any j. This allows us to present the content of Appendix A.2 in a compact and demonstrable form. In Section 3, we finally compare the results of QPO frequency relation fits for Circinus X-1 using the Kerr solution and those done assuming Equations (A2) and (A6), respectively. From the previous discussion it can be expected that for Circinus X-1, due to its exceptionally high R, the fits obtained with the Kerr formulae (3) and “linear” formulae (A2) should nearly merge with the fits obtained assuming the common linear expansion (Equation (A6)). Note also that, on a technical side, the linear expansion can be used up to j ∼ 0.3–0.4 since the highest R in the Circinus X-1 data is R ∼ 2–2.5 (Equation (A8)). A.2. Uniqueness of Predicted Curves and “Ambiguity” in M The radial epicyclic frequency vanishes at xms . In the RP model it is then νUmax = νLmax = νK (xms ). Obviously, if there are two different combinations of M and j which, based on the RP model, imply the same curve νU (νL ), such combinations must also imply the same ISCO frequency. In the left panel of Figure 6 we show a set of curves constructed as follows. We choose M0∗ = 2.5 M and j ∈ (0, 0.5) and for each different j we numerically find M such that the corresponding ISCO frequency is equal to those for M0∗ and j = 0. Then we plot the νU (νL ) curve for each combination of M and j. We can see that except for the terminal points the curves split. The frequencies in the figure can be rescaled for any “Schwarzschild” mass M0 as M0∗ /M0 . Thus, the scatter between the curves provides the proof that one cannot obtain the same curve for two different combinations of M and j. On the other hand, the discussed scatter is apparently small and the curves differ only slightly in the concavity that grows with increasing j. This has an important consequence. The curves are very similar with respect to the typical inaccuracy Vol. 714 of the measured NS twin-peak data and there arises a possible mass–angular momentum ambiguity in the process of fitting the datapoints. Next, we derive a simple relation approximating this ambiguity. A.2.1. Formulae for ISCO Frequency The ambiguity recognized in the previous section is implicitly given by the dependence of the ISCO frequency on the NS angular momentum which for the Kerr metric follows from relations (2) and (A1). In principle we can try to describe the ambiguity starting with these exact relations. The other option is to assume an approximative formula for the ISCO frequency. One can expect that this formula should be at least of the second order in j if consideration of spin up to j = 0.5 is required. We check an arbitrarily simple form νK (xms ) = (M /M) × [1 + k(j + j 2 )] × 2197 Hz. (A9) The right panel of Figure 6 indicates the square of difference between the exact ISCO frequency in Kerr spacetimes following from Equation (A1) and the value following from Equation (A9). Inspecting the figure we can find that the particular choice of k = 0.75 provides a very good approximation. Figure 7 then directly compares the exact relation and relation (A9) with k = 0.75. For comparison, the first-order Taylor expansion formula (A4) is indicated. Clearly, using Equation (A9) one may well approximate the Kerr-ISCO frequency up to j ∼ 0.4 and describe the discussed ambiguity in terms of Schwarzschild mass M0 as M ∼ [1 + k(j + j 2 )]M0 , (A10) where k = 0.75. In further discussion we therefore assume this formula. A.2.2. Comparison Between Curves The curves given by Equation (A10) with k = 0.75 are illustrated in the left panel of Figure 8. Here we quantify their (apparent) conformity and investigate its dependence on k. It is natural to consider the integrated area S between the curve for M0 , j = 0 and the others as the relevant measure. The right panel of Figure 8 shows this area as the function of k in Equation (A10) for several values of j. The same panel also indicates the values related to the set of curves for mass found numerically from the exact Equations (A1), i.e., curves in the left panel of Figure 6. We can see that values of S for k = 0.75 are comparable to those related to Figure 6. Moreover, for a slightly different choice of k = 0.7, all the values are smaller. The ambiguity in mass with relation (A10) is therefore best described for k ∼ 0.7 when the data uniformly cover the whole predicted curves. The available data are restricted to certain frequency ranges and often exhibit clustering around some frequency ratios νU /νL (see Abramowicz et al. 2003b; Belloni et al. 2007b; Török et al. 2008c, 2008a, 2008b; Barret & Boutelier 2008b; Török 2009; Boutelier et al. 2010; Bhattacharyya 2009). It is then useful to separately examine the mass ambiguity for related segments of the curves. Such investigation is straightforward for small segments. Let us focus on a single point [νL , νU ] representing a certain frequency ratio for a non-rotating star (j = 0) of mass M0 . Assuming relation (A10) one may easily calculate the value of k which rescales the mass to M = M0 for a fixed No. 1, 2010 ON MASS OF CIRCINUS X-1 755 Figure 6. Left: set of curves plotted for various combinations of M and j giving identical ISCO frequency. Right: the square of difference between the exact ISCO frequency and the frequency given by Equation (A9). Figure 7. Left: ISCO frequency calculated from Equation (A9) vs. exact relation implied by the Kerr solution (dashed vs. thick curve). The linear relation (A4) is shown as well for comparison (dotted curve). Right: the related relative difference from ISCO frequency in Kerr spacetime. Figure 8. Left: the set of curves plotted for combinations of M and j given by Equation (A10) with k = 0.75. Right: the integrated area S related to Equation (A10). Different values of j are color-coded. The same color code is relevant for horizontal lines. These lines denote the values of S arising for the set of curves numerically found from Equation (A1) and plotted in the left panel of Figure 6. The two red vertical lines denote the case of k = 0.75 (curves νU (νL ) shown in the left panel of this figure) respectively k = 0.7 (see the text for explanation). Table 1 The Coefficient k Representing Mass–Angular Momentum Ambiguity (A10) Segment νL /νU νL /νU νL /νU νL /νU νL /νU νL /νU ∼ 1.5 ∼2 ∼3 ∼4 ∼5 ∼6 Whole curve k in M ∼ [1 + k(j + j 2 )]M0 l (%) Distance from ISCO × M /M (km) 0.75 0.65 0.55 0.50 0.45 0.40 25 50 70 80 83 85 1 3 7 12 16 20 0.7 756 TÖRÖK ET AL. Figure 9. Values of k approximating the M – j ambiguity for the individual segments. The upper axes indicate the length of the curve νU (νL ) integrated from the ISCO point to the relevant frequency ratio. (A color version of this figure is available in the online journal.) non-zero j in order to get exactly the same point [νL , νU ]. We applied this calculation for νU /νL ∈ (1, 10) and j ∈ (0, 0.5). The output is shown in Figure 9. From the figure, it is possible to find k that should best describe the ambiguity for a given frequency ratio (and thus for a small segment of data close to the ratio). It also indicates the length of the curve νU (νL ) integrated from the terminal (i.e., ISCO) point to the relevant frequency ratio (assuming j = 0). This length is given in terms of the percentage share l on the total length L of the curve νU (νL ), whereas the absolute numbers scale with 1/M. Apparently, the segments with νU /νL ∈ (1, 2) cover about 50% of the total length L while k only slightly differs from the value of 0.7. We recall that this top part corresponds to most of the atoll and Z-sources data. For the segments of curves related to the sources exhibiting high frequency ratios such as Circinus X-1, there is an increasing deviation from the 0.7 value and the coefficient reaches k ∼ 0.6–0.5. More detailed information is listed up to νU /νL = 5 in Table 1 providing the summary of this section. REFERENCES Abramowicz, M. A., Almergren, G. J. E., Kluźniak, W., & Thampan, A. V. 2003a, arXiv:gr-qc/0312070 Abramowicz, M. A., Bulik, T., Bursa, M., & Kluźniak, W. 2003b, A&A, 404, L21 Abramowicz, M. A., Karas, V., Kluźniak, W., Lee, W. H., & Rebusco, P. 2003c, PASJ, 55, 466 Abramowicz, M. A., & Kluźniak, W. 2001, A&A, 374, L19 Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. 1998, Phys. Rev. C, 58, 1804 Aliev, A. N., & Galtsov, D. V. 1981, Gen. Rel. Grav., 13, 899 Alpar, M. A., & Shaham, J. 1985, Nature, 316, 239 Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347 Barret, D., & Boutelier, M. 2008a, MNRAS, 384, 1519 Barret, D., & Boutelier, M. 2008b, New Astron. Rev., 51, 835 Barret, D., Olive, J. F., & Miller, M. C. 2005a, MNRAS, 361, 855 Barret, D., Olive, J. F., & Miller, M. C. 2005b, Astron. Notes, 326, 808 Barret, D., Olive, J. F., & Miller, M. C. 2006, MNRAS, 370, 1140 Belloni, T., Méndez, M., & Homan, J. 2007a, MNRAS, 376, 1133 Belloni, T., Méndez, M., & Homan, J. 2007b, MNRAS, 379, 247 Berti, E., White, F., Maniopoulou, A., & Bruni, M. 2005, MNRAS, 358, 923 Bhattacharyya, S. 2009, Res. Astron. Astrophys., 10, 227 Vol. 714 Blaes, O. M., Šrámková, E., Abramowicz, M. A., Kluźniak, W., & Torkelsson, U. 2007, ApJ, 665, 642 Boirin, L., Barret, D., Olive, J. F., Bloser, P. F., & Grindlay, J. E. 2000, A&A, 361, 121 Boutelier, M., Barret, D., Lin, Y., & Török, G. 2010, MNRAS, 401, 1290 Boutloukos, S., van der Klis, M., Altamirano, D., Klein-Wolt, M., Wijnands, R., Jonker, P. G., & Fender, R. P. 2006a, ApJ, 653, 1435 Boutloukos, S., van der Klis, M., Altamirano, D., Klein-Wolt, M., Wijnands, R., Jonker, P. G., & Fender, R. P. 2006b, ApJ, 664, 596 Boyer, R. H., & Lindquist, R. W. 1967, J. Math. Phys., 8, 265 Čadež, A., Calvani, M., & Kostić, U. 2008, A&A, 487, 527 Carter, B. 1971, Phys. Rev. Lett., 26, 331 Chandrasekhar, S., & Miller, J. C. 1974, MNRAS, 167, 63 Cook, G. B., Shapiro, S. L., & Teukolsky, S. A. 1994, ApJ, 422, 227 Di Salvo, T., Méndez, M., & van der Klis, M. 2003, A&A, 406, 177 Gourgoulhon, E., Grandclément, P., Marck, J.-A., Novak, J., & Taniguchi, K. 2000, http://www.lorene.obspm.fr/ Hartle, J. B. 1967, ApJ, 150, 1005 Hartle, J. B., & Sharp, D. V. 1967, ApJ, 147, 317 Hartle, J. B., & Thorne, K. S. 1968, ApJ, 153, 807 Homan, J., van der Klis, M., Jonker, P. G., Wijnands, R., Kuulkers, E., Méndez, M., & Lewin, W. H. G. 2002, ApJ, 568, 878 Horák, J. 2008, A&A, 486, 1 Horák, J., Abramowicz, M. A., Kluźniak, W., Rebusco, P., & Török, G. 2009, A&A, 499, 535 Jonker, P. G., Méndez, M., & van der Klis, M. 2002a, MNRAS, 336, L1 Jonker, P. G., van der Klis, M., Homan, J., Méndez, M., Lewin, W. H. G., Wijnands, R., & Zhang, W. 2002b, MNRAS, 333, 665 Karas, V. 1999, ApJ, 526, 953 Kato, S. 2007, PASJ, 59, 451 Kato, S. 2008, PASJ, 60, 111 Kato, S. 2009a, PASJ, 61, 1237 Kato, S. 2009b, PASJ, 60, 889 Kato, S., Fukue, J., & Mineshige, S. (ed.) 1998, Black-hole Accretion Disks (Kyoto, Japan: Kyoto Univ. Press) Kerr, R. P. 1963, Phys. Rev. Lett., 11, 237 Kluźniak, W. 2008, New Astron. Rev., 51, 841 Kluźniak, W., Abramowicz, M. A., Kato, S., Lee, W. H., & Stergioulas, N. 2004, ApJ, 603, L89 Kluźniak, W., Michelson, P., & Wagoner, R. V. 1990, ApJ, 358, 538 Kluźniak, W., & Wagoner, R. V. 1985, ApJ, 297, 548 Komatsu, H., Eriguchi, Y., & Hachisu, I. 1989, MNRAS, 237, 355 Kostić, U., Čadež, A., Calvani, M., & Gomboc, A. 2009, A&A, 496, 307 Lamb, F. K., & Boutloukos, S. 2007, in Astrophysics and Space Science Library, Vol. 352, Short-Period Binary Stars: Observations, Analyses, and Results, ed. E. F. Milone, D. A. Leahy, & D. Hobill (Dordrecht: Springer) Lamb, F. K., & Miller, M. C. 2001, ApJ, 554, 1210 Lamb, F. K., Shibazaki, N., Alpar, M. A., & Shaham, J. 1985, Nature, 317, 681 Lattimer, J. M., & Prakash, M. 2001, ApJ, 550, 426 Lattimer, J. M., & Prakash, M. 2007, Phys. Rep., 442, 109 Lee, H. C., & Miller, G. S. 1989, MNRAS, 299, 479 Meheut, H., & Tagger, M. 2009, MNRAS, 399, 794 Méndez, M., & van der Klis, M. 2000, MNRAS, 318, 938 Méndez, M., van der Klis, M., & Ford, E. C. 2001, ApJ, 561, 1016 Miller, J. C. 1977, MNRAS, 179, 483 Miller, M. C. 2006, Adv. Space Res., 38, 2680 Miller, M. C., Lamb, F. K., & Cook, G. B. 1998a, ApJ, 509, 793 Miller, M. C., Lamb, F. K., & Psaltis, D. 1998b, ApJ, 508, 791 Morsink, S. M., & Stella, L. 1999, ApJ, 513, 827 Mukhopadhyay, B. 2009, ApJ, 694, 387 Nozawa, T., Stergioulas, N., Gourgoulhon, E., & Eriguchi, Y. 1998, A&AS, 132, 431 Pachón, L. A., Rueda, J. A., & Sanabria-Gómez, J. D. 2006, Phys. Rev. D, 73, 104038 Pétri, J. 2005a, A&A, 439, L27 Pétri, J. 2005b, A&A, 439, 443 Pétri, J. 2005c, A&A, 443, 777 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007, Numerical Recipes: The Art of Scientific Computing (3rd ed.; Cambridge: Cambridge Univ. Press) Psaltis, D., et al. 1999, ApJ, 520, 763 Rezzolla, L., Yoshida, S., & Zanotti, O. 2003, MNRAS, 344, 978 Rezzolla, L. 2004, AIP Conf. Proc. 714, X-ray Timing 2003: Rossie and Beyond (New York: AIP), 36 Rikovska Stone, J., Miller, J. C., Koncewicz, R., Stevenson, P. D., & Strayer, M. R. 2003, Phys. Rev. C, 68, 3 Schnittman, J. D., & Rezzolla, L. 2006, ApJ, 637, L113 No. 1, 2010 ON MASS OF CIRCINUS X-1 Shibata, M., & Sasaki, M. 1998, Phys. Rev. D, 58, 104011 Šrámková, E. 2005, Astron. Nachr., 326, 835 Šrámková, E., Torkelsson, U., & Abramowicz, M. A. 2007, A&A, 467, 641 Stella, L., & Vietri, M. 1998, in Abstracts of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, ed. J. Paul, T. Montmerle, & E. Aubourg (CEA Saclay: North-Holland) Stella, L., & Vietri, M. 1999, Phys. Rev. Lett., 82, 17 Stella, L., & Vietri, M. 2002, in 9th Marcel Grossmann Meeting. Proceedings of the MGIXMM Meeting held at The University of Rome “La Sapienza,” 2000 July 2–8, ed. V. G. Gurzadyan, R. T. Jantzen, & R. Ruffini (Singapore: World Scientific), 426 Stella, L., Vietri, M., & Morsink, S. M. 1999, ApJ, 524, L63 Stergioulas, N., & Friedman, J. L. 1995, ApJ, 444, 306 Stergioulas, N., & Morsink, S. 1997, http://www.gravity.phys.uwm.edu/rns/ Straub, O., & Šrámková, E. 2009, Class. Quantum Grav., 26, 055011 Stuchlı́k, Z., Konar, S., Miller, J. C., & Hledı́k, S. 2008, A&A, 489, 963 Thirring, H., & Lense, J. 1918, Phys. Z., 19, 156 Titarchuk, L. 2002, ApJ, 578, L71 Titarchuk, L., & Kent, W. 2002, ApJ, 577, L23 Török, G. 2009, A&A, 497, 661 Török, G., Abramowicz, M. A., Bakala, P., Bursa, M., Horák, J., Kluźniak, W., Rebusco, P., & Stuchlı́k, Z. 2008a, Acta Astron., 58, 15 757 Török, G., Abramowicz, M. A., Bakala, P., Bursa, M., Horák, J., Rebusco, P., & Stuchlı́k, Z. 2008b, Acta Astron., 58, 113 Török, G., Bakala, P., Stuchlı́k, Z., & Čech, P. 2008c, Acta Astron., 58, 1 Török, G., & Stuchlı́k, Z. 2005, A&A, 437, 775 van der Klis, M. 2006, in Compact Stellar X-Ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 39 van Straaten, S., Ford, E. C., van der Klis, M., Méndez, M., & Kaaret, P. 2000, ApJ, 540, 1049 van Straaten, S., van der Klis, M., di Salvo, T., & Belloni, T. 2002, ApJ, 568, 912 Wiringa, R. B., Fiks, V., & Fabrocini, A. 1988, Phys. Rev. C, 38, 1010 Yan, C. M., Zhang, Y., Yin, H. X., Yan, Y. H., & Zhao, Y. H. 2009, Astron. Nachr., 330, 398 Zhang, C. M. 2005, Chin. J. Astron. Astrophys., 5, 21 Zhang, C. M., Wei, Y. C., Yin, H. X., Zhao, Z. H., Lei, Y. J., Song, L. M., Zhang, F., & Yan, Y. 2009, Sci. China-Phys. Mech & Astron, 53 (Suppl. 1), 114 Zhang, C. M., Yin, H. X., & Zhao, Y. H. 2007a, PASP, 119, 854, 393 Zhang, C. M., Yin, H. X., Zhao, Y. H., & Song, L. M. 2007b, Astron. Nachr., 328, 491 Zhang, C. M., Yin, H. X., Zhao, Y. H., Zhang, F., & Song, L. M. 2006, MNRAS, 366, 1373 Zhang, W., Smale, A. P., Strohmayer, T. E., & Swank, J. H. 1998, ApJ, 500, L171 Přı́loha 7 On magnetic-field induced non-geodesic corrections to the relativistic precession QPO model Pavel Bakala, Eva Šrámková, Zdeněk Stuchlík, Gabriel Török Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic Abstract. Fitting the observational data of the twin peak kHz quasiperiodic oscillations (QPO) from low mass X-ray binaries (LMXBs) by the relativistic precession model gives a substantially higher neutron star mass estimate, M ∼ 2M⊙ , than the "canonical value", M ∼ 1.4M⊙ . Using a fully general relativistic approach we discuss the non-geodesic corrections to the orbital and epicyclic frequencies of slightly charged circularly orbiting test particles caused by the presence of a neutron star magnetic field. We show that consideration of such non-geodesic corrections can bring down the neutron star mass estimate and improve the quality of twin peak QPO data fits based on relativistic precession frequency relations. Keywords: stars: neutron — X-rays: binaries — stars: magnetic fields PACS: 95.30.Sf, 97.10.Gz, 97.10.Ld, 97.80.Jp INTRODUCTION X-ray timing measurements provided by the RXTE satellite have revealed existence of nearly periodic modulation of X-ray flux detected from several low-mass X-ray binaries (LMXBs), so called quasi-periodic oscillations (QPOs). Particular, so called high frequency (kHz) QPOs often come in pairs consisting of the so called lower and upper QPO mode with frequencies νL , νU . Notably, the frequencies νL , νU roughly correspond to Keplerian periods in the close vicinity of the binary compact object; see [11] for a review. Miscellaneous orbital QPO models have been proposed [see, e.g., 14, 3, 16]. In particular, relativistic precession (in next RP) model relates the upper and lower kHz QPOs to the Keplerian and periastron precession frequency on an orbit located in the inner part of the accretion disc 1 . Generally, for neutron star sources correlation between νU (νL) is qualitatively well fitted by the RP model prediction [see, e.g., 18, 19, 4]. Nevertheless, there are difficulties when modelling QPO frequency relations from the RP model for individual sources. The mass and angular momentum relevant to the best fits are questionably high (M ∼ 2 ÷ 3M⊙ , j ∼ 0.2 ÷ 0.4); [see, e.g., 19, 8, 4, 20]. Also the quality of the fits is not satisfactory with chi-square indicating a systematic deviation between the expected and empirical trend. It has been discussed that the 1 The same model relates another particular so called low frequency QPOs to the “Lense–Thirring” orbit precession. above mentioned discrepancies could be connected to non-geodesic corrections to the orbital and epicyclic frequencies, most likely originating in the presence of a neutron star magnetic field [18, 19, 20]. In the present paper we discuss in detail non-geodesic perturbative corrections implied by a Lorentz force acting on a slightly charged circularly orbiting matter in the approximation of a spherically symmetric spacetime and intrinsic dipole magnetic field of the neutron star2 . CIRCULAR ORBITAL MOTION IN A DIPOLE MAGNETIC FIELD ON THE SCHWARZSCHILD BACKGROUND The line element in the Schwarzschild spacetime using geometric units, c = G = 1, has the familiar form dr2 2M 1/2 2 2 2 2 2 2 2 . (1) + r (dθ + sin θ dφ ) , ds = −η (r) dt + η (r) ≡ 1 − η (r)2 r Solving the vacuum Maxwell equations on the background of the spacetime geometry (1) for a static magnetic dipole moment µ , parallel to the rotational axis of the star, one obtains formula for an exterior (r > R, where R is the neutron star radius) four-potential Aµ [e.g., 22, 7], M 3r3 2M µ sin2 θ φ 2 1+ . (2) log η (r) + , f (r) = Aµ = − δµ f (r) r 8M 3 r r In case of potential (2), the Maxwell tensor Fµν has only two independent nonvanishing components, µ sin2 θ ( f (r) − r f ′ (r)) µ f (r) sin 2θ , −Fθ φ = Br = . (3) 2 r r Throughout this paper we confine ourselves to studying only circular equatorial motion with appropriate four-velocity U µ = (U t , 0 , 0 ,U φ )3 . Solving the radial component of equation of motion (q̃ ≡ q/m is the specific charge of the particle) Frφ = Bθ = dU µ µ µ + Γαβ U α U β = q̃ Fν U ν (4) dτ together with the normalization condition U µ Uµ = −1 for metric (1) and potential (2) we obtain the nonzero components of U µ in the form s r − q̃ µ Φ(r)U φ ϒ(r , q̃ , µ ) , Uφ = 3 , (5) Ut = (r − 3M) 2r (r − 3M) 2 We restrict here ourselves to the following assumptions: the frame-dragging effects are not considered; the neutron star magnetic field is fully dominant over the magnetic field generated by the currents in the disc. 3 See [13] for a discussion of the existence of nonequatorial, so called "halo", orbits. and the angular velocity defined as Ω = U φ /U t then reads Ω= ϒ(r , q̃ , µ ) r3/2 p 4r4 (r − 3M) − 2q̃ µ Φ (r) ϒ(r , q̃ , µ ) . (6) Here Φ(r), χ (r), Ψ(r) and ϒ(r , q̃ , µ ) are given by Φ(r) ≡ f (r) − r f ′ (r) , q Ψ(r) ≡ 4Mr4 (r − 3M) + (q̃µ χ (r))2 , χ (r) ≡ (r − 2M) Φ(r) , ϒ(r , q̃ , µ ) ≡ Ψ (r) − q̃ µ χ (r) . One may obtain the formulae for epicyclic frequencies by perturbing the particle’s position around the stable circular orbit (r, θ ) = (r0 , π /2), i.e., by presuming that xµ (τ ) = zµ (τ ) + ξ µ (τ ) where ξ µ (τ ) is a small perturbation [1, 2]. In the spacetime geometry (1) and magnetic field (2) the appropriate explicit expressions are given by 2 2 2 −7 t −2 ωr = r U U φ r6 (3r − 8M) + 2M(M − r)r3 U t h io + q̃ µ Φ(r) 2U φ r3 (3r − 7M) + q̃ µ χ (r) +U φ r5 (r − 2M) f ′′ (r) , (7) U φ U φ r3 − 2q̃ µ f (r) 2 ωθ = . (8) (U t )2 r3 MAGNETIC FIELD CORRECTIONS TO ORBITAL AND EPICYCLIC FREQUENCIES We restrict our consideration to the approach of slowly rotating neutron star that posseses a dipole magnetic field and a thin accretion disc that is assumed to consist of test particles moving along nearly circular geodesics in the equatorial plane. As the Maxwell tensor projected into an orthonormal basis of observer located at the equator on the surface of the star with radius R has only Fr̂φ̂ non-zero component, one may write √ 4M 3 R3/2 R − 2M µ= Bsur f ace . (9) 6M(R − M) + 3R(R − 2M) log η (R)2 For a neutron star with a rather weak magnetic field strength, Bsur f ace = 107 Gauss = 2.875 x 10−16 m−1 , mass M = 1.5M⊙ and radius R = 4M, we have µ = 1.06 x 10−4 m−2 . We present here the resulted frequencies for the above value of µ and two different values of q̃, q̃ = 5.555 x 1010 and q̃ = 1.111 x 1012. Both of these values are still very low in comparison with the value q̃ = 1.111 x 1018 corresponding to matter purely consisting of ions of hydrogen. The left panel of Fig. 1, made for q̃ = 5.555 x 1010 , shows a high sensitivity of the radial epicyclic frequency keeping qualitatively the same profile that is however shifted to lower values and away from the central object. The presence of the dipole magnetic field also violates the νK = νθ equality corresponding to spherical symmetry of the background Schwarzschild geometry. However this corrections are much less significant. FIGURE 1. Left: An illustration of the radial epicyclic, νr0 = ωr0 /(2π ), vertical epicyclic, νθ0 = ωθ0 /(2π ), and orbital, νK0 = ΩK /(2π ) = νθ0 , frequency behaviour in the Schwarzschild geometry in a pure geodesic case compared to case with a presence of an intrinsic external dipole magnetic field B = 107 Gauss on the surface of the star with M = 1.5 M⊙ and R = 4M (quantities νK , νθ and νr without a superscript). Right: The same comparison but for a higher value of the specific charge q̃. Effective innermost stable circular orbit (EISCO) The Lorentz force naturally alters the location of a charged test particle’s effective innermost stable circular orbit (in next EISCO) given by the condition ωr (rEISCO ) = 0 . With growing values of q̃ it rapidly draws apart from the well-known radius of ISCO in the Schwarzschild geometry, rISCO = 6M. In case of µ = 1.06 x 10−4 m−2 corresponding to Fig. 1 we find that for q̃ = 5.555 x 1010 there is rEISCO = 7.39M, while for q̃ = 1.111 x 1012 we obtain rEISCO = 22.16M. For the extremal specific charge q̃ = 1.111 x 1018 the location of EISCO orbit flies away onto rEISCO = 177864.76M. IMPLICATIONS FOR THE RELATIVISTIC PRECESSION QPO MODEL AND DISCUSSION The widely discussed RP QPO model identifies the frequencies of the lower and upper QPO peaks (νL and νU , respectively ) as νL (r) = νK (r) − νr (r), νU (r) = νK (r), (10) where νK (r) and νr (r) are the orbital and radial epicyclic frequencies [17]4 . It has been shown by [4] that these relations qualitatively well describe the trends presented in the observational data, but the characteristic mass of neutron stars in LMXBs obtained by such fits, M ∼ 2M⊙ , is high in comparison with the canonical value. Considering in the RP model the the corrected frequencies introduced above, the new fits can provide 4 The orbital and epicyclic frequencies also play a significant role in the QPO models dealing with warped disc [e.g., 9] and tori [e.g., 5] oscillations. Our conclusion is therefore touching directly not only the hot spot kinematic QPO models, like the RP model, but also the "disc or torus oscillation - like" QPO models. FIGURE 2. Inspired by [4]. The RP model rough fits of the observational twin peak kHz QPO data for a wide set of LMXBs. The thick solid curve refers to the case with M = 1.4M⊙ and the orbital and epicyclic frequencies being corrected by the presence of the Lorentz force induced by the specific charge of orbiting matter, q̃ = 5 x 1010, and the star intrinsic magnetic dipole moment, µ = 1.06 x 10−4 m−2 . We also present fits corresponding to a pure geodesic case (thin dashed curves) for M = 2M⊙ that was discussed by [4] including data from [8, 23, 15, 4]. the characteristic neutron star mass close to the canonical value, M ∼ 1.4M⊙. We illustrate this finding in Fig. 2 for the intrinsic magnetic dipole moment of the star, µ = 1.06 x 10−4 m−2 , and the specific charge of the orbiting matter, q̃ = 5 x 1010 , when the effective innermost stable circular orbit is shifted to rEISCO ∼ 7M. Such a rough fit for a wide set of LMXBs is shown together with the fits for a pure Schwarzschild geodesic cases with M = 2M⊙ [4] and M = 1.4M⊙. A natural implication of the RP model (and several other models) identifies the highest observed frequency of a particular source with the orbital frequency at ISCO. It is then possible to derive the mass of source using this direct identification [see, e.g, 10, 14]. Even here straightforward replacing the geodesic ISCO orbital frequency by the corrected EISCO one provides a significant decrease of the estimated mass. Moreover, it was shown by [20] that the lowering of the radial epicyclic frequency corresponding above discussed corections may in general significantly improve the quality of the fits based on the RP model. It is widely expected [e.g, 12, 11] that magnetic field of the central compact objects in LMXBs should be given by an intrinsic exterior magnetic field, B ∈ 106 ÷ 109 Gauss. There are also several indices supporting evidence of matter being accreted in the region with r ≤ 10M [see, e.g., 11]. Our results then imply that the specific charge related to the accreted plasma should not exceed q̃ ∼ 1.86 x 1012 (1.87 x 1011, 1.90 x 1010, 1.91 x 109) for B = 106 Gauss (107 , 108 , 109 Gauss). Discussed values of the specific charge are small in comparison to the charge of a fully ionized matter. Here we do not touch a problem of the (considerable) magnetic field induced by such a rotating charge. The full discussion of its role exceeds the framework of the paper. We however note that in principle its external exposure can be supressed by an influence of a corotating charge in a corona if the total assumed charge is approximately zero. Finally we stress that also the diamagnetic effects should be considered in order to obtain coherent formulae describing approximately motion of a slightly charged accreted matter. We plan to include relevant corrections within a fully general relativistic approach in our consequent work. ACKNOWLEDGMENTS This work has been supported by the Czech grants LC 06014 (PB, ES) and MSM 4781305903 (ZS, GT). We thank to W. Kluzniak and D. Psaltis for comments. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. A. N. Aliev, D. V. Galtsov, 1981, GRG, 13, 899 A. N. Aliev, 2007, astro-ph/0612730v2 B. Aschenbach, 2007, astro-ph/0710.3454 T. Belloni, M. Méndez, J. Homan, 2007, MNRAS , 376/3 , 1133 O. M. Blaes, P. Arras, P. C. Fragile, 2006, MNRAS, 369, 1235 O. M. Blaes, E. Šrámková, M. A. Abramowicz, W. Kluźniak, U. Torkelsson, 2007, ApJ, 665, 642 T. M. Braje, R. W. Romani, 2001, ApJ, 550, 392 S. Boutloukos, M. van der Klis, D. Altamirano, M. Klein-Wolt, R. Wijnands, P. G. Jonker, R. P. Fender, 2006, ApJ, 653, 1435 9. S. Kato, J. Fukue, S. Mineshige, 1998, Black Hole Accretion Disks (Kyoto: Kyoto University Press) 10. M. van der Klis, 2005, AN, 326/9, 798 11. M. van der Klis, 2006 , in Compact stellar X-ray sources, ed. W. Lewin & M. van der Klis. (Cambridge: Cambridge University Press), 39 12. W. Kluźniak, P. Michelson, R. V. Wagoner, 1990, ApJ, 358, 538. 13. J. Kovář, Z. Stuchlík, V. Karas, 2008, CQG, in press 14. F. K. Lamb, S. Boutlokous, 2007, in Short-period Binary Stars: Observation, Analyses, and Results, ed. E.F. Milone, D.A. Leahy & D. Hobill (Dordrecht: Springer) 15. M. Linares, M. van der Klis, D. Altamirano, C. B. Markwardt, 2005, ApJ, 634, 1250 16. J. M. Miller, 2007, astro-ph/0705.0540 17. L. Stella, M. Vietri, 1998, in Abstracts of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, ed. J. Paul, T. Montmerle & E. Aubourg (CEA Saclay) 18. L. Stella, M. Vietri, 1999, Physical Review Letters 82, 17. 19. L. Stella, M. Vietri, 2002,in The Ninth Marcel Grossmann Meeting. Proceedings of the MGIXMM Meeting held at The University of Rome "La Sapienza", 2-8 July 2000, ed. V. G. Gurzadyan, R. T. Jantzen & R. Ruffini (World Scientific Publishing), Part A, 426 20. G. Török, P. Bakala, Z. Stuchlík, E. Šrámková, 2007, in Proceedings of RAGtime , ed. Z. Stuchlík & S. Hledík (Opava: Silesian University in Opava) , 8/9, 489 21. G. Török, P. Bakala, Z. Stuchlík, P. Čech, 2008, Acta Astronomica, 58, pp. 1–14. 22. I. Wasserman, S. L. Shapiro, 1983, ApJ, 265, 1036 23. R. Wijnands, M. van der Klis, J. Homan, D. Chakrabarty, C. B. Markwardt, E.H. Morgan , 2003, Nature, 424, 44 Přı́loha 8 IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 27 (2010) 045001 (19pp) doi:10.1088/0264-9381/27/4/045001 On magnetic-field-induced non-geodesic corrections to relativistic orbital and epicyclic frequencies Pavel Bakala, Eva Šrámková, Zdeněk Stuchlı́k and Gabriel Török Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic E-mail: [email protected] Received 5 May 2009, in final form 17 December 2009 Published 20 January 2010 Online at stacks.iop.org/CQG/27/045001 Abstract We discuss non-geodesic corrections to orbital and epicyclic frequencies of charged test particles orbiting a non-rotating neutron star with a dipole magnetic field. Using a fully relativistic approach we consider the influence of both the magnetic attraction and repulsion on the orbital and epicyclic motion. The magnetic repulsion introduces a rather complex and unusual behaviour of the circular orbital motion that is well defined down to the radius where the vertical epicyclic frequency loses its meaning. We demonstrate that for the intensity of the magnetic interaction appropriately restricted, the stable circular orbits extend down to the magnetic innermost stable circular orbit (MISCO) that is located well under the geodetic innermost stable circular orbit (GISCO) and even can reach the region under the photon circular orbit. The lowest stable MISCO = 2.73M, associated with the highest possible orbital circular orbit at rmin max frequency νK = 3284 Hz(1.5 M /M), corresponds to the critical value of the particle-specific charge and the neutron star magnetic dipole moment product (q̃μ)crit = 1.87M 2 . For the magnetic attraction acting above the GISCO, the situation is much more simple and we demonstrate that the most significant correction arises for the radial epicyclic frequency and consequently for the location of the MISCO when the strong magnetic attraction pushes its location far behind the location of GISCO. We show that the Lorentz force also naturally violates the equality of the orbital and vertical epicyclic frequencies implied by the spherical symmetry of the background Schwarzschild geometry giving rise to the new effect of nodal precession of the orbital motion plane. Finally, we apply the magnetic attraction corrections on the relativistic precession model of the twin-peak high-frequency quasiperiodic oscillations observed in the galactic low mass x-ray binaries, showing possible high relevance of the modified radial epicyclic frequency. (Some figures in this article are in colour only in the electronic version) 0264-9381/10/045001+19$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al 1. Introduction The study of charged particles motion in strong gravitational and electromagnetic fields related to black holes and neutron stars enables us to understand the nature of the objects as well as the structure of the force fields and their role in astrophysical phenomena. The motion has been investigated both for Kerr–Newman black holes having intrinsically coupled gravitational and electromagnetic fields and for strong gravitating objects (black holes and neutron stars) with a test electromagnetic field influenced by gravity (see, e.g., Johnston and Ruffini (1974), Prasanna and Vishveshwara (1978), Prasanna (1980), Calvani et al (1982), Balek et al (1989), Bičák et al (1989), Vokrouhlický and Karas (1991), Stuchlı́k and Hledı́k (1998), Stuchlı́k et al (1999), Abdujabbarov and Ahmedov (2009)). It has been shown that magnetic fields around a rotating black hole could be related to the extraction of the rotation energy from the black hole through the so-called Blandford– Znajek process enabling formation of the relativistic jets along the black hole rotation axis (Blandford and Znajek 1977). Motion of charged particles in the magnetic field generated by accretion discs orbiting black holes was discussed in Znajek (1976) and Mobarry and Lovelace (1986). On the other hand, the magnetic field tied to a neutron star could substantially influence the structure of an equatorial accretion disc orbiting the neutron star. Here we focus our attention on the equatorial orbital and epicyclic motion in the combined gravitational and dipole magnetic fields related to a slowly rotating neutron star. Its spacetime is represented by the Schwarzschild geometry that influences the structure of the dipole magnetic field. In the case of motion in test fields on strong gravity backgrounds, the equations of motion are complex and have to be integrated numerically (Prasanna and Vishveshwara 1978, Prasanna and Sengupta 1994, Preti 2004). Quite recently, off-equatorial circular orbits were discussed in astrophysically relevant situations (Kovář et al 2008, Stuchlı́k et al 2009b). Of high interest is the equatorial motion, especially the circular and quasi-circular orbits that seem to be crucial from the point of view of accretion processes. Numerical integration of the motion equations gives a number of interesting results but is not sufficient for a complete classification and understanding of the motion in the equatorial plane. In order to extend the understanding of the charged particle motion, we consider for the first time its very important aspect, namely the quasi-circular equatorial epicyclic motion corresponding to oscillations of particles around stable circular orbits. It is quite interesting that such epicyclic motion can be excited in the innermost parts of the accretion discs orbiting a neutron star by inhomogeneities (mountains) on its surface (Stuchlı́k et al 2008). The epicyclic motion could be relevant in modelling the high-frequency quasi-periodic oscillations (QPOs) that have been detected during the past two decades from a number of low-mass x-ray binaries (LMXBs)1 containing a neutron star. These oscillations occur at frequencies lying in the kHz range and often come in pairs of the lower and upper QPO mode with frequencies νL , νU , forming the so-called twin-peak QPOs. Notably, νL , νU roughly correspond to Keplerian periods in the close vicinity of the binary compact object (see, e.g., van der Klis (2006)). Moreover, there are indications that the twin-peak frequencies are clustered near rational ratios that are mostly around 3:2, but also 4:3 and 5:4 (see, e.g., Török et al (2008a), (2008b), (2008c)). Miscellaneous orbital QPO models have been proposed (see, e.g., Lamb et al (2007), Aschenbach (2007) and Miller (2007)). In particular, the relativistic precession (RP) model (Stella and Vietri 1999) relates the upper and lower kHz QPOs to the Keplerian and periastron 1 2 Binary systems containing a neutron star where the companion mass is smaller than the mass of the neutron star. Class. Quantum Grav. 27 (2010) 045001 P Bakala et al precession frequency on a geodesic orbit located in the inner part of the accretion disc2 . It has been noted that, in general, correlation νU (νL ) is qualitatively well fitted by the RP model prediction (see, e.g., Stella and Vietri (1999), (1999) and Belloni et al (2007)). There are, however, other QPO models based on the oscillations of toroidal discs (Šrámková et al 2005, Straub and Šrámková 2009) or ‘discoseismology’ (Kato et al 1998, Pétri 2005) and so far no definite agreement on the validity of the QPO models has been established. Let us stress that the orbital and epicyclic frequencies, that will be discussed in this paper, play an important role in all of the mentioned QPO models. When modelling individual frequency relations from the RP model, mass and angular momentum relevant to the best fits are questionably high (M ∼ 2–3M , j ∼ 0.2–0.4) (see, e.g., Stella and Vietri (2002), Boutloukos et al (2006), Belloni et al (2007) and Török et al (2007a)) in comparison with the ‘canonical value’, M ∼ 1.4M , which has been estimated for a variety of well-studied pulsars (e.g. Glendenning (1997) and Weber (1999). Also, quality of the fits is not satisfactory with chi-square indicating a systematic deviation between the expected and empirical trend (Belloni et al 2007, Török et al 2007a, 2007b). In fact, we show that both discrepancies can be corrected by non-geodesic corrections of the orbital and epicyclic frequencies using the magnetic attraction introduced in the present paper. On the other hand, the magnetic repulsion makes the situation worse due to the shift to higher frequencies (neutron star masses). In this paper we discuss in detail the non-geodesic, magnetic corrections to the epicyclic motion using a fully general relativistic approach. These corrections are assumed to be implied by the Lorentz force acting on a slightly charged matter in the approximation of a spherically symmetric spacetime. We focus consideration to the case of motion in the field of magnetized neutron stars. We use the approximation of a dipole magnetic field whose axis of symmetry coincides with the axis of neutron star’s rotation. The spacetime outside the neutron star is described by the Schwarzschild geometry and the effects of frame-dragging and contribution of the electromagnetic field to the stress–energy tensor are thus neglected3 . Such approximation is suitable for describing the charged particles motion around slowly rotating neutron stars with a relatively weak magnetic field which does not affect the spacetime curvature in the vicinity of the neutron star, but its structure is governed by the neutron star spacetime structure4 . Epicyclic motion and the related frequencies have so far been extensively discussed for the quasi-circular geodesic motion (see, e.g., Aliev and Galtsov (1981), Abramowicz and Kluźniak (2005) and Török and Stuchlı́k (2005)). Using the approach of Aliev (2008), we turn our attention for the first time to a detailed study of magnetically influenced perturbative epicyclic motion around equatorial circular orbits. We calculate the relevant frequencies of the non-geodesic charged test particles motion and the corresponding shift of the position of the innermost stable circular orbit that is governed by vanishing of the radial (vertical) epicyclic frequency. We consider both the cases of magnetic attraction when the innermost stable orbit is shifted above the GISCO and magnetic repulsion when it is shifted below the geodesic orbit. We find a variety of interesting new phenomena of the epicyclic motion, with unusual behaviour of the epicyclic frequencies and their relation to the orbital (Keplerian) frequency. We also discuss some implications of the magnetic attraction case for the RP 2 A similar model relates the low-frequency QPO branch to the ‘Lense–Thirring’ orbit precession; see, e.g., Stella and Vietri (1998). 3 More general and accurate approximation which takes into account the effects of frame dragging and declination of the dipole magnetic field symmetry axis can be found in Rezzolla et al (2001a), (2001a). 4 The neutron star magnetic field is however fully dominant over the magnetic field generated by the currents in the disc. 3 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al model, in particular the remarkable lowering of the neutron star mass estimation obtained by fitting the QPO observational data. 2. Circular orbital motion in a dipole magnetic field on the Schwarzschild background The line element in the Schwarzschild spacetime has the familiar form ds 2 = −η(r)2 dt 2 + where η(r) is given by dr 2 + r 2 (dθ 2 + sin2 θ dφ 2 ), η(r)2 (1) 2M 1/2 . (2) η(r) ≡ 1 − r We have adopted here geometric units, c = G = 1, that we will use throughout the paper, if not stated otherwise. Solving the vacuum Maxwell equations ∗ μν μν F ;μ = 0 F ;μ = 0 (3) on the background of the spacetime geometry (1) for a static magnetic dipole moment μ, parallel to the rotational axis of the star, one obtains the formula for an exterior (r > R, where R is the neutron star radius) 4-potential Aμ (e.g. Wasserman and Shapiro (1983) and Braje and Romani (2001)): μ sin2 θ , (4) r which has the form of the flat space result, multiplied by a function f (r) given by 2M M 3r 3 2 1+ . (5) In η(r) + f (r) = 8M 3 r r In the case of potential (4), the Maxwell tensor Fμν , connected to the 4-potential Aμ through the relation ∂Aν ∂Aμ − , (6) Fμν = μ ∂x ∂x ν has only two independent non-vanishing components Aα = −δαφ f (r) Frφ = μ sin2 θ (f (r) − rf (r)) r2 (7) and μf (r) sin 2θ , r which are related to the components of a magnetic field three-vector B as follows: Fθφ = − Frφ = B θ , Fθφ = −B r . (8) (9) Note that the symbol ‘ ’ in equation (7) denotes partial derivative with respect to the radial coordinate r. In a curved spacetime with the presence of an electromagnetic field, the equation of motion for a charged test particle of mass m and charge q reads dU μ μ (10) + αβ U α U β = q̃ Fνμ U ν , dτ where U μ is the 4-velocity and q̃ ≡ q/m is the specific charge of the particle. 4 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al We shall study the epicyclic, near circular motion in the equatorial plane of a neutron star with a dipole magnetic field. In order to obtain maximal information on the epicyclic motion, we shall consider its properties down to the minimal radius R = 2.25M allowed for internal Schwarzschild geometry with uniform energy density distribution (Stuchlı́k 2000). On the other hand, we put a limit of validity of our result in the field of astrophysically plausible neutron stars using the minimal radius R ∼ 3.5M allowed for a variety of realistic equations of state (see the appendix for details). The Lorentz force in the equation of motion, and consequently the described effects on the orbital motion, depends on the product of μ and q̃ determining the magnitude of the magnetic interaction. Therefore, instead of changing the magnitude and orientation of μ we can, without any loss of generality, study only the influence of changes of the specific charge q̃. We shall focus on a typical LMXB neutron star with a relatively weak magnetic field strength B = 107 Gauss, mass M = 1.5M and radius R = 4M. Then the magnetic dipole moment μ = 1.06 × 10−4 m2 and it changes linearly with the field strength B (see the appendix). In order to keep the magnetic force fixed, the specific charge q̃ must be changed inversely to changes of B, if the neutron star parameters R and M remain fixed. 2.1. Orbital angular velocity of equatorial circular orbits The symmetry properties of the spacetime geometry (1) and electromagnetic field (4) allow for charged test particles motion restricted to the equatorial plane θ = π/2. Throughout this paper we confine ourselves to studying only circular equatorial motion5 . The 4-velocity then has only two non-vanishing components, U μ = (U t , 0, 0, U φ ). Solving the radial component of equation (10) together with the normalization condition U μ Uμ = −1 for metric (1) and potential (4), we obtain two pairs of the nonzero components of U μ in the form −q̃μχ(r) ± (r) , 2r 3 (r − 3M) φ r − q̃μ(r)U± U±t = , (r − 3M) φ U± = φ and the appropriate angular velocities ± = U± U±t then read −q̃μχ(r) ± (r) ± = . r 3/2 4r 4 (r − 3M) − 2q̃μ(r)[−q̃μχ(r) ± (r)] Here (r), χ (r) and (r) are given by (11) (12) (13) (r) ≡ f (r) − rf (r), (14) χ (r) ≡ (r − 2M)(r), (r) ≡ 4Mr 4 (r − 3M) + (q̃μχ(r))2 . (15) (16) For uncharged particles we arrive at the Keplerian geodesic limit with orbital angular velocity ± (q̃ = 0) = ±K = ± M/r 3 . The constants of motion of charged particles at the equatorial circular orbits are given by the relations E = −Ut = η(r)2 U t , 5 (17) See Kovář et al (2008) for discussion of the existence of non-equatorial, so-called halo, orbits. 5 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Figure 1. The orbital frequency ν = /2π as a function of the specific charge q̃ and radial coordinate for the test neutron star with M = 1.5M and μ = 1.06 × 10−4 m2 . L = Uφ + q̃Aφ = r 2 U φ − q̃μ f (r) , r (18) with E being the specific energy and L being the generalized specific angular momentum. It is apparent from the form of equations (11)–(13) that for a fixed magnetic dipole φ moment of the neutron star, the 4-velocity components U± and U±t are symmetric with respect to simultaneous interchange of their sign (orientation of the orbital angular velocity ) and the sign of the specific charge q̃. It is therefore sufficient to analyse only one of these solutions—in φ the following we choose U+ , U+t and + . φ The existence of the circular orbits is limited by the condition that both U+t and U+ , defined by equations (11) and (12), take real values. The reality conditions related to the magnitude of the magnetic interaction given by q̃μ are given by the relations 4r 4 (r − 3M) − 2q̃μ(r)[−q̃μχ(r) ± (r)] > 0 (19) 4Mr 4 (r − 3M) + (q̃μχ(r))2 > 0. (20) and The first of these conditions is satisfied for all values of q̃μ at all radii r > 2M. The second condition puts limit on the allowed values of q̃μ at radii 2M < r < 3M. The limit region starts for q̃μ = 0 at r = 3M reaches its maximum of q̃μ = ±1.971 M 2 at r = 2.441M and takes the value of q̃μ = ±1.333 M 2 for r → 2M. In figure 1 we illustrate the behaviour of the orbital angular velocity (related frequency ν = /2π) in dependence on the specific charge q̃ for a fixed magnetic dipole moment μ = 1.06 × 10−4 m2 and neutron star mass M = 1.5M . For such a value of μ, the critical values of the specific charge are given by q̃ = ±8.986 × 1010 at r = 2.441M and by q̃ = ±6.8×1010 for r → 2M. From figure 1 it follows that for positively charged particles the Lorentz force has a repulsive character and lowers the orbital frequency with respect to the Keplerian frequency K corresponding to the geodesic motion (q̃ = 0), while for negatively charged particles the force is attractive and grows with respect to the Keplerian frequency K . 6 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Considering both attractive and repulsive character of the Lorentz force, there exist three qualitatively different types of the orbital angular velocity profile behaviour. For a sufficiently small charge, corresponding to orbital motion that is not very far from the geodesic motion, there is a minimum possible value of r for which the circular orbits may exist. With increasing magnitude of the specific charge (both positive and negative), there appears a second region of the existence of circular orbits close to the horizon with a certain maximal value of the radial coordinate. With growing charge both regions merge and circular orbits exist for all r > Rg . A surprising behaviour of arises for negatively charged particles under the circular photon orbit at rph = 3M since they orbit in the opposite direction as compared to those orbiting above rph. (A similar effect was investigated by Balek et al (1989) for ultrarelativistic charged particles orbiting in the field of Kerr–Newman black holes.) We should stress, however, that for astrophysically plausible situations, with neutron stars modelled by using realistic equations of state, validity of our results, being restricted to exterior regions of the neutron stars, is limited to r > 3.5M, or r > 2.8M, in the most exotic case of the so-called Q-stars (see the appendix). The test particle motion in combined gravitational and magnetic fields can be described by the effective potential Veff (r, θ ) generally determining 3D motion that is reduced to 2D motion in the symmetry (equatorial) plane. Examples of such effective potential corresponding to our discussion can be found in Aliev and Galtsov (1981) and Kovář et al (2008). The epicyclic motion along a stable circular orbit, given by the condition dVeff /dr = 0, is governed by the second derivatives of the effective potential. In such approximation the effective potential takes the form corresponding to the linear harmonic oscillation; therefore, the radial and vertical epicyclic frequencies are related to the effective potential by ∂ 2 Veff ∂ 2 Veff 2 , ω ∼ . (21) ωr2 ∼ θ ∂r 2 ∂θ 2 Clearly, vanishing of the radial ωr and vertical ωθ epicyclic frequencies generally determines the marginally stable circular orbits that are defined by vanishing of the second derivatives of the effective potential, putting thus limits on the existence of astrophysically important stable circular orbits. A detailed analysis of the effective potential that can give an overview of the stability for the charged particle circular motion can be found, e.g., in Kovář et al (2008), even for off-equatorial circular orbits. Here we use a more straightforward and simple perturbative analysis of the epicyclic motion along equatorial stable circular orbits. 3. Epicyclic frequencies and stability of circular motion Formulae for the radial and vertical epicyclic frequencies of a charged test particle in the presence of a general electromagnetic field have been derived by Aliev and Galtsov (1981) and Aliev (2008). One may obtain the formulae by perturbing the particle’s position around the equatorial circular orbit (r, θ ) = (r0 , π/2), i.e. by assuming that x μ (τ ) = zμ (τ ) + ξ μ (τ ), where ξ μ (τ ) is a small perturbation. Substituting this into the equation of motion (10) and restricting to first-order terms in ξ μ one arrives at the relation for ξ μ that takes the form of equation for a linear harmonic oscillator: d2 ξ a + ωa2 ξ a = 0, a ∈ (r, θ ), (22) dt 2 with the appropriate epicyclic angular frequencies defined as (Aliev 2008) r 1/2 ∂V r A ωr = , A ∈ (t, φ) (23) − γA γr ∂r 7 Class. Quantum Grav. 27 (2010) 045001 ωθ = ∂V ∂θ P Bakala et al θ 1/2 , (24) where γαμ and V μ have the form q̃ μ U β (U t )−1 − t Fαμ , γαμ = 2 αβ U 1 q̃ Vμ = γαμ U α (U t )−1 − t Fαμ U α (U t )−1 . 2 U (25) (26) Note that the derivatives in equations (23) and (24) must be taken at the appropriate equatorial circular orbit (r, θ ) = (r0 , π/2) with Ut and U φ given by equations (12) and (11). In the spacetime geometry (1) and the magnetic field (4), the explicit expressions for the epicyclic angular frequencies are given by ωr2 = {(U φ )2 r 6 (3r − 8M) + 2M(M − r)r 3 (U t )2 + q̃μ[(r)(2U φ r 3 (3r − 7M) + q̃μχ (r)) + U φ r 5 (r − 2M)f (r)]}/r 7 (U t )2 , (27) U φ (U φ r 3 − 2q̃μf (r)) . (28) (U t )2 r 3 One can easily check that in the absence of the Lorentz force (μ = 0 or q̃ = 0) the expressions for the orbital (13) and epicyclic (27), (28) frequencies merge into the well-known formulae for geodesic motion in the Schwarzschild geometry: ωr = M(r − 6M)/r 2 . (29) = ωθ = K = M/r 3 , ωθ2 = 3.1. Radial epicyclic frequency In the context of the perturbation analysis, the existence of the real values of the radial epicyclic frequency ωr implies the stability of the circular orbit with respect to small radial perturbations (which lead to oscillation behaviour of the perturbed radial coordinate of the orbiting particle). In the left panel of figure 2, the line of ωr = 0 in the q̃–r plane denotes the boundary of region where the stable circular orbits exist. Outside this region the appropriate (a = r) solution of equation (22) loses its oscillatory character. In the region corresponding to the attractive Lorentz force ωr decreases with growing q̃ and the marginally stable orbit with respect to radial oscillations moves away from the analogous orbit in the purely geodesic case, rms = 6M. On the other hand, in the region of the repulsive Lorentz force ωr grows as the negative charge q̃ increases and the boundary of region with ‘radially stable’ orbits approaches the horizon where ωr diverges to infinity. 3.2. Vertical epicyclic frequency Analogically, the existence of the vertical epicyclic frequency implies the stability of the circular orbit with respect to small vertical perturbations. The region where such stable circular orbits may exist is shown in the right panel of figure 2. As seen from the figure, the behaviour of ωθ exhibits a bit more complicated features than those in the case of ωr . There are two separate curves of ωθ = 0 defining a part of the boundary of region with circular orbits that are stable with respect to vertical perturbations. One of the curves lies in the area of the repulsive Lorentz force, while the other one corresponds to an area with attractive character of the Lorentz force. Contrary to the radial case, this region of ‘vertical stability’ never reaches 8 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Figure 2. Left: contour plot of the radial epicyclic frequency νr = ωr /2π as a function of the specific charge q̃ and the radial coordinate. Right: same as the left panel, but for the vertical epicyclic frequency νθ = ωθ /2π . Plots are constructed for the test neutron star with M = 1.5M and μ = 1.06 × 10−4 m2 . Figure 3. Left: the region of stable circular orbits filled up by the contour plot of the orbital frequency ν = /2π . Right: same as the left panel, but filled up by the contour plot of the nodal precession frequency νn . Constructed for M = 1.5M and μ = 1.06 × 10−4 m2 . the horizon. For relatively small values of both positive and negative charge corresponding to near geodesic motion, the rest of the boundary of the region where the vertically stable circular orbits exist coincides with the boundary of region defining the existence of circular orbits itself (see figure 1). 3.3. Stable orbits and magnetic innermost stable circular orbit (MISCO) Clearly, stable orbits have to be stable to both radial and vertical perturbations simultaneously. From the above discussion of the behaviour of the radial and vertical epicyclic frequency, it is apparent that the region of circular orbits which are stable with respect to both radial and vertical perturbations is defined by the intersection of regions where the radial and vertical epicyclic frequencies are defined. As shown in the left panel of figure 3, there exists a critical value of the specific charge, q̃crit , inside the area of the repulsive Lorentz force, such that for q̃ > q̃crit the boundary of the region of stable orbits in the q̃–r plane is defined by the ωθ = 0 9 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al curve. For q̃ < q̃crit , the boundary of stable orbits region is formed by the curve of ωr = 0. These curves thus define the location of the marginally stable orbit for particles of a given q̃ with a fixed μ. For such orbits we introduce the term MISCO (magnetic innermost stable circular orbit) to distinguish them from the corresponding geodesic innermost stable circular orbits that we will refer to as GISCO. In the Schwarzschild spacetimes rGISCO = 6M. It is, therefore, clear that the repulsive Lorentz force gives rise to a new class of stable circular orbits with r < rGISCO = 6M that extends below the circular photon orbit. The critical charge MISCO = 2.73M and q̃crit corresponds to the lowest MISCO orbit with the radial coordinate rmin max for a given mass of the neutron star. The the highest possible orbital angular frequency location of the MISCOmin orbit is given by the condition that equations ωr = 0 and ωθ = 0 are fulfilled simultaneously, the critical value of the product of the particle specific charge and the neutron star magnetic dipole moment is thus given by (q̃μ)crit = 1.869M 2 . For the test neutron star of M = 1.5M and μ = 1.06 × 10−4 m2 , we have q̃crit = 8.76 × 1010 and ν max = max /2π = 3124 Hz. 4. Relations of the non-geodesic orbital and epicyclic frequencies The orbital and epicyclic frequencies exhibit a qualitatively different behaviour in regions of attractive and repulsive magnetic interaction that strongly depends on the particular value of q̃. For the test neutron star, we present in figure 4 non-geodesic orbital and epicyclic frequency profiles in typical situations representing both the repulsive and attractive magnetic interaction. In the region of magnetic repulsion (q̃ > 0), two qualitatively different types of the frequency profile behaviour are given by the condition q̃ > q̃crit (q̃ < q̃crit ) when the region of stable orbits is given by ωθ = 0 (ωr = 0). The resulted frequency profiles are given for four representative values of q̃ lying in both attractive and repulsive regions. Namely we choose q̃ = 1.0 × 1011 , q̃ = 8.7 × 1010 , q̃ = −6.0 × 1010 and q̃ = −1.5 × 1011 . Absolute values of all used specific charge values are very low in comparison with q̃ = 1.111 × 1018 corresponding to matter consisting purely of ions of hydrogen. 4.1. Magnetic repulsion The top-left panel of figure 4 displays the behaviour of the investigated frequencies in the repulsive region for q̃ = 1.0 × 1011 (q̃ > q̃crit ), whereas and ωr are defined for all radii above the horizon. exhibits a maximum and converges to 0 at the horizon, while ωr monotonically grows diverging to infinity at the horizon. On the other hand, ωθ exhibits a maximum and falls to zero. Therefore, the region of stability of the circular orbits is defined by the radial coordinate rMISCO where ωθ = 0. Different features are shown in the top-right panel of figure 4 which illustrates the situation for q̃ = 8.7 × 1010 (still in the repulsive region but for q̃ < q̃crit ). Contrary to the previous case there exists an interval of radial coordinate values over which is not defined and where no circular orbits exist. Similarly, ωr is discontinuous and the boundary of the stability region rMISCO is now defined by the radial coordinate satisfying ωr = 0. Close to the horizon a new separate region appears where the circular orbits may again exist, although they are stable only with respect to radial perturbations. For the value of q̃ used here, the upper boundary of such a region slightly outreaches the minimal possible size of the stellar compact object, R = 2.25M. Generally, for stable circular orbits in the repulsive region, ωr increases with growing charge, while both and ωθ exhibit opposite behaviour. Both the orbital and vertical epicyclic 10 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Figure 4. Illustration of the radial epicyclic, νr = ωr /(2π ), vertical epicyclic, νθ = ωθ /(2π ), and orbital, ν = /(2π ), frequency behaviour in the case of the intrinsic external dipole magnetic field B = 107 Gauss on the surface of the star with M = 1.5 M and R = 4M compared to the pure Schwarzschild geodesic case (quantities νK = νθ0 and νr0 ). The top panels illustrate the situation in the repulsive region, for q̃ = 1.0 × 1011 (left) and for q̃ = 8.7 × 1010 (right). Bottom panels show the behaviour of frequencies from the attractive region for q̃ = −6.0 × 1010 (left) and q̃ = −1.5 × 1011 (right). frequencies are lower than the Keplerian frequency K , and the orbital frequency exceeds the epicyclic one. The influence of the Lorentz force enables extension of the region with stable circular orbits deep below the Schwarzschild rGISCO = 6M and, surprisingly, even below the radius of the circular photon orbit rph = 3M. 4.2. Magnetic attraction The bottom-left panel of figure 4 illustrates the behaviour of the orbital and epicyclic frequency profiles in the attractive region for q̃ = −6.0 × 1010 . displays a discontinuity that is characteristic for the whole attractive region and changes its sign at radius r = 3M corresponding to the circular photon orbit. The region of inversely orbiting radially unstable circular non-geodesic orbits does not reach the horizon for the chosen value of q̃. The boundary of the stability region rMISCO is again defined by the radial coordinate where ωr = 0. The frequency profiles constructed for q̃ = −1.5 × 1011 , shown in the bottom-right panel of figure 4, are qualitatively somewhat different when compared with the previous magnetic attraction case. Even in the attractive region, sufficiently large values of negative q̃ enable extension of the region of existence of the circular orbits down to the horizon; however, such orbits are, contrary to the case of magnetic repulsion, unstable with respect to both radial and vertical perturbations. The region of vertical stability is restricted from below by the radial coordinate for which ωθ = 0, while the region of both radial and vertical stabilities is again limited by rMISCO such that ωr (rMISCO ) = 0. 11 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Generally, in the attractive region, the orbital and epicyclic frequency profiles exhibit opposite behaviour from that in the repulsive region. With increasing negative q̃, the frequency ωr decreases, while both and ωθ grow. Now both orbital and vertical epicyclic frequencies exceed the Keplerian one K and, moreover, ωθ > . However, at the circular photon orbit radius rph = 3M, both and ωθ coincide with the Keplerian angular velocity 0 independently of q̃. In the case of magnetic attraction, the MISCO radius strongly draws apart from the Schwarzschild rGISCO = 6M with growing q̃. Finally, we can conclude that at astrophysically relevant values of the radial coordinate (r > 3.5M) the sensitivity of ωr to q̃ is significantly higher than the sensitivity of the remaining two frequencies for both attractive and repulsive magnetic interactions. This is qualitatively in accordance with what one would expect, as the Lorentz force acting on charged particles moving in the equatorial plane has only the radial non-zero component. 5. Nodal precession The presence of the Lorentz force violates the ν = νθ equality implied by the spherical symmetry of the background Schwarzschild geometry. In the repulsive region, both ν and νθ decrease as the specific charge q̃ grows, while in the attractive region these frequencies increase with rising negative specific charge. However, νθ is changing faster than ν which gives rise to the nodal precession of the plane of the orbital motion. The nodal precession is present in addition to the relativistic precession of periastron having frequency νp (r) = ν(r) − νr (r). The nodal precession frequency is given by the formula νn (r) = ν(r) − νθ (r). (30) This nodal precession of frequency νn is qualitatively similar to the Lense–Thirring precession (LTP) occurring in rotating, axially symmetric spacetimes. For attractive magnetic interaction, some of its features differ from those of the repulsive interaction. It is, however, common for both attractive and repulsive magnetic interactions that for a fixed value of q̃ the frequency νn (r) exhibits a maximum at the MISCO orbit and decreases with increasing r. As follows from the definition of νn given by equation (30), for the attractive interaction, the nodal precession induced by the Lorentz force has an opposite phase as compared to the LTP, reflected by its negative values in the right panel of figure 3. It is interesting to plot νn (rMISCO ) versus negative q̃ for fixed μ and M (see the right panel of figure 5). For the attractive magnetic interaction the nodal precession frequency νn (rMISCO ) is small (νn 1 Hz) except for a relatively narrow range of q̃ (about q̃ ∼ −1.8 × 1011 ) where it demonstrates a sharp maximum νn (rMISCO ) = 0.106ν(rMISCO ). For the repulsive magnetic interaction, the nodal precession phase is consistent with the LTP phase. When q̃ < q̃crit , the frequency νn (rMISCO ) grows along with growing q̃. For MISCO orbits with q̃ > q̃crit , there is νθ (rMISCO ) = 0; the nodal precession frequency νn (rMISCO ) = νK (rMISCO ) and it decreases with growing q̃. It is evident that for the repulsive interaction νn (rMISCO ) there exhibits a sharp maximum at q̃ = q̃crit which is identical with the ν max of the lowest stable circular orbit (see the left panel of figure 5). 6. Implications for the relativistic precession QPO model The widely discussed relativistic precession QPO model identifies the frequencies of the lower and upper QPO peaks (νL and νU , respectively) as νL (r) = ν(r) − νr (r), 12 νU (r) = ν(r). (31) Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Figure 5. The behaviour of νn at the innermost stable circular orbit in the presence of the intrinsic external dipole magnetic field with B = 107 Gauss on the surface of the test neutron star with M = 1.5 M and R = 4M as a function of q̃. Left: in the repulsive region the frequency has its maximum νn = ν max = 3124 Hz for q̃ = q̃crit at the lowest stable circular orbit. Right: in the attractive region the frequency has its maximum νn = 78.3 Hz for q̃ = −1.8 × 1011 which corresponds to the shift of MISCO to 9.9 M. It has been shown by Belloni et al (2007) that these relations qualitatively well describe the trends presented in the observational data, but the characteristic mass of neutron stars in LMXBs obtained by such fits, M ∼ 2M , is too high in comparison with the canonical value, M ∼ 1.4M . Moreover, it was demonstrated by Török et al (2007a) that decreasing the radial epicyclic frequency may in general notably improve the quality of fits based on the RP model. The significant reduction of νr (r) along with keeping the other frequencies more or less the same well corresponds to the above-discussed features of the frequencies in the region of the attractive Lorentz force. Consider an astrophysically relevant situation of a rather slowly rotating neutron star that possesses a dipole magnetic field and is orbited by a thin accretion disc consisting of charged test particles moving along nearly circular geodesics in the equatorial plane. In addition we assume the dipole magnetic field to be fully dominant in the total electromagnetic field in the vicinity of the star, so that the influence of the magnetic field generated by the currents in the disc and the influence of the total disc charge are both negligible. This criterion is fulfilled if the specific charge of the material in the disc is very low. Further, such a configuration allows us to use the test particle approximation, and this is in agreement with the assumed rather small non-geodesic corrections to geodesic orbital motion. Considering the RP model in line with the corrected frequencies introduced above, the new fits can provide the characteristic neutron star mass close to M ∼ 1.4M . In figure 6 we illustrate this finding for μ = 1.06 × 10−4 m2 and q̃ = 5 × 1010 when the innermost stable circular orbit is shifted to rMISCO ∼ 7M. Such a rough fit for a wide set of LMXBs6 is shown together with the fits for the pure Schwarzschild geodesic cases with M = 2M (Belloni et al 2007) and M = 1.4M . However, a detailed analysis for the particular LXMB sources should be carried out taking into account the above-derived formulae7 . Natural and simple implication of the RP model (and several other orbital models) identifies the highest observed frequency of the particular source with the orbital frequency at the appropriate ISCO, and thus allows for the estimation of the mass of the source (see, e.g., 6 Data from Boutloukos et al (2006), Wijnands et al (2003), Linares et al (2005) and Belloni et al (2007). Influence of the neutron star rotation (spin j ) is shown to be relatively weak for both radial and vertical epicyclic frequencies, and it is quite negligible for small values of the spin (j < 0.1) (Török et al 2008c). 7 13 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Figure 6. The RP model rough fits of the observational twin-peak kHz QPO data for a wide set of LMXBs. The thick solid curve refers to the case with M = 1.4M and with the orbital and epicyclic frequencies being corrected by the presence of the Lorentz force induced by q̃ = 5.0 × 1010 and μ = 1.06 × 10−4 m2 . For illustration we also present fits corresponding to the pure Schwarzschild geodesic case (thin dashed curves), namely for M = 2M that was discussed by Belloni et al (2007), and for M = 1.4M for the comparison with the non-geodesic case. Figure 7. Left: the location of MISCO in the attractive region as a function of the test particle’s specific charge q̃ and the intrinsic magnetic dipole moment μ of the star. The curves at the 3D plot surface and their projections into the μ–q̃ plane denote rMISCO = 10M, 100M, 1000M. Right: projection of the astrophysically relevant region from the left panel to the μ–q̃ plane with distinctive values of rMISCO . van der Klis (2005) and Lamb et al (2007)). A straightforward replacement of the GISCO orbital frequency by the corrected MISCO orbital frequency provides a significant decrease of the estimated mass. Figure 7 illustrates high sensitivity of the MISCO orbit location on the intensity of the attractive magnetic interaction. With growing values of q̃ or μ, rMISCO rapidly draws apart from the radius of GISCO. In the case of the test neutron star with fixed μ = 1.06 × 10−4 m2 , we find that for q̃ = 6.0 × 1010 corresponding to the bottom-left panel of figure 4, there is rMISCO = 7.48M, while for q̃ = 1.5 × 1011 corresponding to the bottom-right panel of figure 4 we obtain rMISCO = 9.32M. For the extremal specific charge q̃ = 1.111 × 1018 corresponding 14 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al to the case of matter purely consisting of ions of hydrogen, the location of the MISCO orbit flies away to rMISCO = 177 864.76M. It is widely expected (e.g. Kluźniak et al (1990) and van der Klis (2006)) that the magnetic field of the central compact objects in LMXBs should be given by the intrinsic exterior magnetic field, B ∈ 106 –109 Gauss. There are also several indices supporting the evidence of matter being accreted in the region with r 10M (see, e.g., van der Klis (2006)). Our results then imply that the specific charge related to the accreting matter should not exceed q̃ ∼ 1.86×1012 (1.87 × 1011 , 1.90 × 1010 , 1.91 × 109 ) for B = 106 Gauss (107 , 108 , 109 Gauss). 7. Conclusions The aim of this paper is to study the influence of the Lorentz force generated by a magnetic field of a neutron star on the quasi-circular, epicyclic orbital motion. In particular, we focus on the behaviour of the non-geodesic orbital and epicyclic frequencies in dependence on the neutron star magnetic dipole moment and the specific charge of the orbiting matter. In general, the Lorentz force may be of attractive or repulsive character depending on the sign of orbiting particle’s specific charge, and the magnetic dipole moment and orbital velocity orientations. When the specific charge is large enough, the influence of both types of the force allows for the existence of circular orbits for all radii above the horizon. In the attractive region, a discontinuity appears, only unstable circular orbits exist under the circular photon orbit at rph = 3M being oppositely oriented to those located above rph. Surprisingly, in the repulsive region, the stable circular orbits associated with the radial and vertical epicyclic oscillations can extend below the circular photon orbit radius rph. A critical charge q̃crit exists MISCO = 2.73M with the for given μ, corresponding to the lowest stable circular orbit at rmin highest possible orbital frequency max of the stable circular motion8 . In contrast, inside the attractive region, the MISCO orbits always appear above rGISCO = 6M and the rMISCO can be substantially shifted above r = 6M. We can conclude that the presence of the Lorentz force strongly affects the location of the inner edge of the thin accretion disc. In both repulsive and attractive regions of the magnetic interaction, the behaviour of the orbital and epicyclic frequency profiles is quite complicated, giving rise to two separated regions of the circular orbital motion for certain values of q̃. Generally, for stable circular orbits in the repulsive region, ωr increases with growing specific charge, while both and ωθ decrease. In the attractive region, on the other hand, the frequencies exhibit opposite behaviour. For both regions of the magnetic interaction and astrophysically relevant values of the radial coordinate (r > 3.5M) sensitivity of the radial epicyclic frequency ωr to q̃ is significantly higher than the sensitivity of the two remaining frequencies. The presence of the dipole magnetic field also violates the ν = νθ equality corresponding to the spherical symmetry of the background Schwarzschild geometry. As a result, nodal precession of the orbital motion plane arises, having an opposite phase for attractive and repulsive magnetic interaction. Orbital motion and related epicyclic frequencies have been considered by several authors as a key agent in their models of the high-frequency QPOs (Kato et al 1998, Stella and Vietri 1999, Kluźniak and Abramowicz 2001, Török et al 2005, Stuchlı́k and Kotrlová 2009); in this paper, we focused our attention on the relativistic precession QPO model. The models mostly assume geodesic motion although some non-geodesic corrections have been studied in the past, e.g., due to pressure-gradient forces (Blaes et al 2006, 2007, Šrámková et al 8 However, it should be stressed that the repulsive magnetic interaction applicability of the stable orbits region has to be confronted with the location of the neutron star surface (see the appendix). 15 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al 2005, Straub and Šrámková 2009), or due to diamagnetic forces in hot plasma interacting with the central compact object magnetic field (e.g. Vietri and Stella (1998)). However, nongeodesic corrections that arise from the interaction of dipole magnetic field with test particle’s specific charge (i.e. the Lorentz force) have not been considered in this context yet. The formulae derived in this work therefore represent the first attempt to describe the appropriate problem within the scope of general relativity. We have shown that such effects are of high importance and for attractive magnetic interaction they can improve significantly the fitting of high-frequency QPOs data for some LMXB sources by the RP model. Recently, sophisticated attempts appeared that are able to explain the high frequency QPOs by the models of the oscillating toroidal disc (Rezzolla et al 2003a, 2003b, Lee et al 2004, Li and Narayan 2004, Montero et al 2004, Zhang 2004, Zanotti et al 2005, Schnittman and Rezzolla 2006) or by discoseismology of (warped) discs (Wagoner 1999, Wagoner et al 2001, Kato 2004, Blaes et al 2007). In all of these models, the orbital and epicyclic frequencies of the geodetical motion have an important role. It would be interesting to check, if the orbital and epicyclic frequencies of magnetic non-geodesic motion of slightly charged particles could be relevant for oscillations of slightly charged toroidal and warped discs. In the present work we considered the dipole magnetic field on the background of the spherically symmetric Schwarzschild geometry. Generalization of our results to axially symmetric spacetimes (e.g. Hartle–Thorne or Lense–Thirring solutions) that describe that the influence of the neutron star rotation is the subject of our future study. Acknowledgments This work has been supported by the Czech grants LC 06014 (PB, ES), MSM 4781305903 and GACR 202/09/0772 (ZS, GT). The authors (PB, ES, ZS) would like to thank the Copacabana Rio Hotel in Rio de Janeiro for great hospitality. They would also like to thank Dr J Kovář for useful discussions. Appendix. Radius and magnetic dipole moment of neutron stars The presented analysis of circular and epicyclic motion is relevant in the exterior of the neutron star only. Therefore, it is very important to fix the neutron star radius R. In order to obtain a complete view of the motion, we study its properties down to R = 2.25M that represents an innermost limit on the neutron star radius, being given by the limit on the existence of internal (but unrealistic) Schwarzschild spacetime with uniformly distributed energy density—for such configuration the central pressure diverges (Stuchlı́k 2000, Stuchlı́k et al 2001)9 . On the other hand, realistic equations of state for both neutron and quark stars put the neutron (quark) star radius into the interval (3–5)M; we take the intermediate value of R = 4M for our test neutron star. Most of the realistic equations of state put the lower limit on the neutron star radius at the value of R = 3.5M (Glendenning 1997) which is considered here as a limit radius of astrophysically plausible neutron stars. Nevertheless, the existence of extremely compact neutron stars with R < 3M is still discussed and is not excluded; for example, realistic models of the so-called Q-stars allow R ∼ 2.8M (Bahcall et al 1989, Miller et al 1998, Stuchlı́k et al 2009a). Clearly, in vicinity of extremely compact neutron stars, the exotic phenomena related to the magnetic repulsion under the photon circular orbit could be observed, giving thus the signature of the existence of these extreme objects. 9 Admitting the existence of hypothetical gravastars (Mazur and Mottola 2004, Chirenti and Rezzolla 2007) we can extend our analysis down to the gravitational radius Rg = 2M. 16 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Figure A1. Intrinsic magnetic dipole moment μ of the star as a function of the star radius R and mass M for a fixed magnetic field strength B at the star surface. The z-axis is scaled in relative units of μ/B while the colour scaling at the 3D plot surface shows the values of μ for B = 107 Gauss = 2.875 × 10−16 m−1 . The intrinsic magnetic dipole moment of a neutron star can be obtained from the presumed magnetic field strength at the neutron star surface. The orthonormal basis of local static observers in the Schwarzschild spacetime reads 1 , 0, 0, 0 , er̂ = 0, η(r), 0, 0 , et̂ = η(r) (A.1) 1 1 eθ̂ = 0, 0, , 0 , eφ̂ = 0, 0, 0, . r r sin θ Locally measured magnetic field strength is given by the projection of the Maxwell tensor into μ the orthonormal basis of a static observer Fα̂β̂ = eα̂ eβ̂ν Fμν , at the surface of the star. For such an observer located at the equator of the star with radius R, the magnetic field 3-vector has only one nonzero component: η(R) Frφ . R Therefore, using equations (5) and (7), one may write √ 4M 3 R 3/2 R − 2M μ= B θ̂ . 6M(R − M) + 3R(R − 2M)In η (R)2 B θ̂ = Fr̂ φ̂ = (A.2) (A.3) For a neutron star with a rather weak magnetic field strength, B = 107 Gauss 2.875 × 10−16 m−1 , mass M = 1.5M and radius R = 4M, we have μ = 1.06 × 10−4 m2 (B [cm−1 ] = (G1/2 /c2 )B [Gauss] 2.875 × 10−25 B [Gauss]). We have used neutron stars of such parameters as the test model for our analysis. The dependence of the magnetic dipole moment μ (expressed in terms of the surface value of the magnetic field strength B) on the neutron star mass M and its radius R is illustrated in figure A1. The electromagnetic 4-potential (4) used here corresponds to the case of magnetic dipole moment connected to the central compact object (neutron star). In the case of Schwarzschild black holes with the magnetic field generated by a current loop in the accretion disc (Petterson 17 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al 1974), the discussed solution is valid only for particles orbiting at the radius higher than the loop radius. Discussion on the so-called internal solution of the 4-potential and orbits of the particles below the loop radius can be found in Preti (2004). References Abdujabbarov A A and Ahmedov B J 2009 Astrophys. Space Sci. 321 225 Abramowicz M A and Kluźniak W 2005 Astrophys. Space Sci. 300 127 Aliev A N and Galtsov D V 1981 Gen. Rel. Grav. 13 899 Aliev A N 2008 Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity (Berlin) ed H Kleinert, R T Jantzen and R Ruffini (Singapore: World Scientific) p 1057 Aschenbach B 2007 astro-ph/0710.3454 Bahcall S L, Bryan W and Selipsky S B 1989 Nucl. Phys. B 325 606 Balek V, Bičák J and Stuchlı́k Z 1989 Bull. Astron. Inst. Czech. 40 133 Belloni T, Méndez M and Homan J 2007 Mon. Not. R. Astron. Soc. 376 1133 Bičák J, Stuchlı́k Z and Balek V 1989 Bull. Astron. Inst. Czech. 40 65 Blaes O M, Arras P and Fragile P C 2006 Mon. Not. R. Astron. Soc. 369 1235 Blaes O M, Šrámková E, Abramowicz M A, Kluźniak W and Torkelsson U 2007 Astrophys. J. 665 642 Blandford R D and Znajek RL 1977 Mon. Not. R. Astron. Soc. 179 433 Boutloukos S, van der Klis M, Altamirano D, Klein-Wolt D, Wijnands R, Jonker P G and Fender R P 2006 Astrophys. J. 653 1435 Braje T M and Romani R W 2001 Astrophys. J. 550 392 Calvani M, de Felice F, Fabbri R and Turolla R 1982 Nuovo Cimento B 67 1 Chirenti C B M H and Rezzolla L 2007 Class. Quantum Grav. 24 4191 Glendenning N K 1997 Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (New York: Springer) Johnston M and Ruffini R 1974 Phys. Rev. D 10 2324 Kato S 2004 Publ. Astron. Soc. Japan 56 905 Kato S, Fukue J and Mineshige S 1998 Black Hole Accretion Disks (Kyoto: Kyoto University Press) Kluźniak W and Abramowicz M A 2001 Acta Phys. Pol. B 32 3605 Kluźniak W, Michelson P and Wagoner R V 1990 Astrophys. J. 358 538 Kovář J, Stuchlı́k Z and Karas V 2008 Class. Quantum Grav. 25 095011 Lamb F K and Boutlokous S 2007 Short-Period Binary Stars: Observation, Analyses, and Results ed E F Milone, D A Leahy and D Hobill (Dordrecht: Springer) Lee W H, Abramowicz M A and Kluźniak W 2004 Astrophys. J. Lett. 603 L93 Li L X and Narayan R 2004 Astrophys. J. 601 414 Linares M, van der Klis M, Altamirano D and Markwardt C B 2005 Astrophys. J. 634 1250 Mazur P O and Mottola E 2004 Proc. Natl Acad. Sci. 101 9545 Miller J C, Shahbaz T and Nolan L A 1998 Mon. Not. R. Astron. Soc. 294 L25 Miller J M 2007 astro-ph/0705.0540 Mobarry C M and Lovelace R V E 1986 Astrophys. J. 309 455 Montero P J, Rezzolla L and Yoshida S 2004 Mon. Not. R. Astron. Soc. 354 1040 Petterson J A 1974 Phys. Rev. D 10 3166 Pétri J 2005 Astron. Astrophys. 443 777 Prasanna A R 1980 Nuovo Cimento 3 1 Prasanna A R and Sengupta S 1994 Phys. Lett. A 193 25 Prasanna A R and Vishveshwara C V 1978 Pramana 11 359 Preti G 2004 Class. Quantum Grav. 21 3433 Rezzolla L, Ahmedov B J and Miller J C 2001a Mon. Not. R. Astron. Soc. 322 723 Rezzolla L, Ahmedov B J and Miller J C 2001b Found. Phys. 31 1051 Rezzolla L, Yoshida S and Maccarone T J 2003a Mon. Not. R. Astron. Soc. 344 L37 Rezzolla L, Yoshida S and Zanotti O 2003b Mon. Not. R. Astron. Soc. 344 978 Schnittman J D and Rezzolla L 2006 Astrophys. J. Lett. 637 L113 Šrámková E, Torkelsson U and Abramowicz M A 2005 Astron. Astrophys. 467 641 Stella L and Vietri M 1998 Astrophys. J. Lett. 492 L59 Stella L and Vietri M 1999 Phys. Rev. Lett. 82 17 18 Class. Quantum Grav. 27 (2010) 045001 P Bakala et al Stella L and Vietri M 2002 Proc. of the MGIXMM Meeting (University of Rome ‘La Sapienza’, 2–8 July 2000) Part A, ed V G Gurzadyan, R T Jantzen and R Ruffini (Singapore: World Scientific) p 426 Straub O and Šrámková E 2009 Class. Quantum Grav. 2 055011 Stuchlı́k Z 2000 Acta Phys. Slovaca 50 219 Stuchlı́k Z, Bičák J and Balek V 1999 Gen. Rel. Grav. 31 53 Stuchlı́k Z and Hledı́k S 1998 Acta Phys. Slovaca 48 549 Stuchlı́k Z, Hledı́k S, Šoltés J and Ostgaard E 2001 Phys. Rev. D 64 044004 Stuchlı́k Z, Konar S, Miller J and Hledı́k S 2008 Astron. Astrophys. 489 963 Stuchlı́k Z and Kotrlová A 2009 Gen. Rel. Grav. 41 1305 Stuchlı́k Z, Kovář J and Karas V 2009 Cosmic magnetic fields: from planets, to stars and galaxies, Proc. of the Int. Astronomical Union, IAU Symposium vol 259 p 125 Stuchlı́k Z, Török G, Hledı́k S and Urbanec M 2009 Class. Quantum Grav. 26 035003 Török G, Abramowicz M A, Bakala P, Bursa M, Horák J, Kluźniak W, Rebusco P and Stuchlı́k Z 2008a Acta Astron. 58 15 Török G, Abramowicz M A, Bakala P, Bursa M, Horák J, Rebusco P and Stuchlı́k Z 2008b Acta Astron. 58 113 Török G, Abramowicz M A, Kluźniak W and Stuchlı́k Z 2005 Astron. Astrophys. 436 1 Török G, Bakala P, Stuchlı́k Z and Čech P 2008c Acta Astron. 58 1 Török G, Bakala P, Stuchlı́k Z and Šrámková E 2007a Proc. RAGtime 8/9: Workshop on Black Holes and Neutron Stars (Opava) ed Z Stuchlı́k and S Hledı́k (Opava: Silesian University in Opava) p 489 Török G and Stuchlı́k Z 2005 Astron. Astrophys. 437 775 Török G, Stuchlı́k Z and Bakala P 2007b Cent. Eur. J. Phys. 5 457 van der Klis M 2005 Astron. Nachr. 326 798 van der Klis M 2006 Compact Stellar X-ray Sources ed W Lewin and M van der Klis (Cambridge: Cambridge University Press) p 39 Vietri M and Stella L 1998 Astrophys. J. 503 350 Vokrouhlický D and Karas V 1990 Astron. Astrophys. 243 165 Wagoner R V 1999 Phys. Rep. 311 259 Wagoner R V, Silbergleit A S and Ortega-Rodrı́guez M 2001 Astrophys. J. Lett. 559 L25 Weber F 1999 Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (Philadelphia: Institute of Physics Publishing) Wasserman I and Shapiro S L 1983 Astrophys. J. 265 1036 Wijnands R, van der Klis M, Homan J, Chakrabarty D, Markwardt C B and Morgan E H 2003 Nature 424 44 Zanotti O, Font J A, Rezzolla L and Montero P J 2005 Mon. Not. R. Astron. Soc. 356 1371 Zhang C 2004 Astron. Astrophys. 423 401 Znajek R 1976 Nature 262 270 19
Podobné dokumenty
Vznik tohoto materiálu byl podpořen z projektu SYNERGY „Podpora
Proceedings IAU Symposium No. 291, 2012
DOI: 00.0000/X000000000000000X
J. van Leeuwen, ed.