On performance of Meta-learning Templates on Different
Transkript
On performance of Meta-learning Templates on Different
On performance of Meta-learning Templates on Different Datasets Pavel Kordík, Jan Černý Czech Technical University in Prague Department of Computer Systems Faculty of Information Technology Computational Intelligence Group MI-POA Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 1/17 Introduction Overview Overview • Introduction to predictive modeling o Base models o Optimization of topology and parameters o Ensembles • • • • • Meta-learning templates explained Benchmarking results Landmarking experiment Evaluation Conclusion Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 2/17 Meta-learning templates An example Meta-learning template – An Example Ensembles: • Bagging (Bootstrap Agregating), • Boosting, • Stacking, • and many others Bagging DT (sm=5) Boosting 2NN 5NN Stacking (SVM) NN DT (sm=2) Pavel Kordík, Jan Černý (CTU in Prague) DT (sm=10) Base algorithms: • DT (Decision Tree), • KNN (K-Nearest Neighbor), • NN (Neural Network), • SVM (Support Vector Machine), • and many others ClassifierBagging{DecisionTree(splitmin=5),Cl assifierBoosting{2NearestNeighborClassifier, StackingClassifier(SVM){NeuralNetClassifier, DecisionTree(splitmin=2}}, 5NearestNeighborClassifier, DecisionTree(splitmin=10)} Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 3/17 Meta-learning templates Template execution Meta-learning template execution Template execution: Bootstrap sampling Sequential Boosting weighted sampling DT (sm=5) 2NN • Distributing data • Building base models • Finalizing meta models 5NN DT (sm=10) Stacking (SVM) Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 4/17 Meta-learning templates Template execution Meta-learning template execution Template execution: Bootstrap sampling Sequential weighted sampling DT (sm=5) 2NN • Distributing data • Building base models • Finalizing meta models 5NN DT (sm=10) Copy train set Collect outputs Build SVM NN DT (sm=2) Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 5/17 Meta-learning templates Model generated Meta-learning template Template execution: Bagging DT Boosting 5NN DT Model finished 2NN Stacking (SVM) NN Pavel Kordík, Jan Černý (CTU in Prague) DT Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 6/17 Meta-learning templates Model recall explained Using the model Input vector Model recall: Bagging • Input vectors propagation • Base models recall • Output blending and propagation DT Boosting Input vector 2NN Input vector DT 5NN Input vector Input vector Stacking (SVM) NN Input vector DT Input vector Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 7/17 Meta-learning templates Model recall explained Using the model Model recall: Bagging Output Output DT Boosting 5NN Output • Input vectors propagation • Base models recall • Output blending and propagation DT Output 2NN Stacking (SVM) Output Output NN DT Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 8/17 Meta-learning templates Model recall explained Using the model Model recall: Bagging Output Output DT Boosting 5NN Output Output 2NN Stacking (SVM) Output • Input vectors propagation • Base models recall • Output blending and propagation DT Combined by the SVM meta-model Output Output NN DT Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 9/17 Meta-learning templates Model recall explained Using the model Model recall: Bagging Output DT Output Output Boosting 5NN Output Output 2NN Stacking (SVM) NN Pavel Kordík, Jan Černý (CTU in Prague) Output • Input vectors propagation • Base models recall • Output blending and propagation DT Combined by the weighted voting DT Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 10/17 Meta-learning templates Using the model Combined by voting Output Model recall: Bagging Output DT 2NN Model recall explained Output Output Boosting 5NN Output • Input vectors propagation • Base models recall • Output blending and propagation DT Stacking (SVM) NN Pavel Kordík, Jan Černý (CTU in Prague) DT Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 11/17 Meta-learning templates Evolving templates by the genetic programming Evolution of templates Genetic programming: Fitness of template – average generalization performance of models produced by the template Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 12/17 Benchmarking templates Templates evolved for individual datasets Benchmarking results - templates Glass Balance Breast Diabetes Ecoli Heart Texture1 Texture2 Ionosphere Spirals Pendigits Vehicle Wine Spambase Segment Fourier Spirals+3 Spread Meta-learning templates evolved on benchmarking datasets StackingProbabilities{4x KNN(k=2,vote=true,measure=ManhattanDistance)} Boosting{57x ClassifierModel{<outputs>x PolynomialModel(degree=4)}} ClassifierModel{<outputs>x CascadeGenModel[7x CascadeGenModel[5x GaussianModel]]} SVM(kernel=dot) ClassifierArbitrating{2x ClassifierBagging{3x SVM(kernel=anova)}} KNN(k=15,vote=false,measure=CosineSimilarity) ClassifierArbitrating{4x ClassifierModel{<outputs>x PolynomialModel(degree=2)}} CascadeGenProb{8x Boosting{2x ClassifierModel{<outputs>x ExpModel}}} DecisionTree(maxdepth=20,conf=0.25,alt=10) CascadeGenProb{8x ClassifierArbitrating{4x KNN(k=3,vote=false,measure=MixedEuclideanDistance)}} KNN(k=3,vote=false,measure=CosineSimilarity) ClassifierArbitrating{6x ClassifierModel{<outputs>x DivideModel(mult=6.68)[7x PolynomialModel(degree=3)]}} CascadeGenProb{9x ClassifierModel{<outputs>x BoostingRTModel(tr=0.1)[8x GaussianModel]}} ClassifierModel{<outputs>x CascadeGenModel[9x SigmoidModel]} Boosting{17x DecisionTree(maxdepth=24,conf=0.082,alt=0)} NeuralNetClassifier(net=-1x0,epsilon=0.00001,learn=0.3,momentum=0.2) KNN(k=3,vote=true,measure=EuclideanDistance) CascadeGenProb{5x CascadeGenProb{3x KNN(k=9,vote=true,measure=CosineSimilarity)}} Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 13/17 Benchmarking templates Comparing the results to base algorithms performance Benchmarking results - performances Meta-learn. Templates Baseline algorithms performance [%] Bayes DT KNN NeuNet SVM Glass Balance Breast Diabetes Ecoli Heart Texture1 Texture2 Ionosphere Spirals Pendigits Vehicle Wine Spambase Segment Fourier Spirals+3 Spread 83.08 99.49 97.65 79.03 90.00 86.53 99.38 65.59 95.83 95.56 99.47 78.46 100.00 93.40 97.62 83.33 94.22 99.00 46.38 90.35 95.80 75.13 80.18 83.04 87.87 22.05 89.37 47.79 85.69 43.79 97.65 82.07 80.01 76.52 55.37 2.60 63.81 41.35 94.38 70.53 82.36 73.19 89.49 7.04 92.46 42.84 93.59 54.93 92.35 90.55 94.51 72.14 43.16 3.60 67.33 78.00 95.74 70.74 79.58 77.26 97.36 43.21 86.80 79.47 99.37 71.69 96.12 91.16 96.94 79.63 39.26 62.10 61.96 93.30 96.03 75.42 84.18 82.01 98.44 60.01 89.71 48.56 94.60 75.38 97.65 91.25 95.70 82.79 54.52 4.87 50.38 86.25 96.14 77.68 85.88 78.96 94.85 22.22 84.17 49.05 83.79 67.69 98.71 90.26 88.35 80.19 54.21 6.50 Average [%] 90.98 68.98 66.79 78.43 77.02 71.96 Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 14/17 Landmarking experiment Executing all templates on all datasets Landmarking experiment Run evolved templates on all datasets What is the accuracy of template evolved on dataset X and executed on dataset Y? Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 15/17 Landmarking experiment Resulting performances on individual datasets Questions Discussion Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 16/17 Conclusion Summary and remarks Concluding remarks • Hierarchical templates are specially useful for problems with a complex decision boundary. • They are best in average, even without being optimized to concrete datasets. Average performance over all benchmarking datasets StackingProb{5X StackingProb{5X NeuralNetClassifier}} Pavel Kordík, Jan Černý (CTU in Prague) Meta-learning Templates WCCI (IJCNN) 2012, Brisbane 17/17 Discover meta-learning templates for data predictive modeling. MODGEN provides you with the meta-learning templates for predictive modeling. Upload your data and we compute the performace of several well know algorithms, evolve the best combination of these and produce the report. www.modgen.net Coming soon …
Podobné dokumenty
Soupis publikovaných prací
Guest editorial: Adaptive and natural computing algorithms.
Neurocomputing. Roč. 96, - (2012), s. 1-1. ISSN 0925-2312
Impakt faktor: 1.634, rok: 2012
DOI: 10.1016/j.neucom.2012.03.009
http://hdl.ha...