The results of paleostress analyses in the
Transkript
The results of paleostress analyses in the
Vìstník Èeskéhogeologickéhoústa!::u75, l, 2000 The results of paleostressanalysesin the easternparts of the Nízký Jeseníkand the Drahany Uplands JOSEFHA vIØ Ostavfyziky Zemì, PøFMU Brno, Tvrdého 12,602 00 Brno, e-mail: [email protected] A b str a c t. The orientation of the principal paleostress axes were studied in the Culmian sediments ín the eastem partsof the Nízký Jeseník area (the Moravice and the Hradec-Kyjovice Formations) and ofthe Drahany Uplands (the Myslejovice Formation). The paleostress analyses were based on the fault geometry investigation. Several different Variscan paIeostress fields were computed. In the case of compressional stress fields with subvertical oríentation of the maximum extension, the axis of maximum compression (JI were orientated from E- W to NW -SE, in south-eastem part of the Drahany Uplands up to NNW-SSE. In some cases, both the maximum compression axis and the maximum extension axis are orientated sub-horizontally. The axis of (JI was orientated NE-SW or E- W, axis of (JJwas orientated NW -SE or N-S. But at one síle (the site 26) in the eastem part of the Nízký Jeseník area the inverse orientation of the (JI axis and the (JJaxis were aIso computed. The extensional paleostress fields were computed only in the Nízký Jeseník area. The maximum extension axes were orientated approximately E- W (in wide range of orientations from NW -SE up to NESW). The orientations of the tensile fractures and the quartz veins measured in the eastem part of the Nízký Jeseník area do not agree to this result. The facts discussed in the article indicate the generally Variscan age of the found compressional stress fields. The younger extensional stress fields are probably late- Variscan and they can reflect the gravitational collapse of the Variscan orogene. A b str ak t. V kulmských sedimentech východní èásti Nízkého Jeseníku (moravické a hradecko-kyjovické souvrství) a Drahanské vrchoviny (myslejovické souvrství) byla studována orientace hlavních os paleonapìtí. Paleonapì•ová analýza byla založena na studiu geometrie zlomù se striacemi. Bylo zjištìno nìkolik rùzných paleonapì•ových polí. V pøípadì kompresních napì•ových polí se subvertikální orientací maximální extenze byla osa maximální komprese orientována ve smìru V-Z až SZ-JV, v jižní èásti Drahanské vrchoviny až ve smìru SSZ-JJV. V nìkterých pøípadechbyly jak smìry maximální komprese, tak i smìry maximální extenze orientovány subhorizontálnì. Osa 0"\ byla orientována ve smìru SV -JZ nebo až VZ, osa 0"3pak ve smìru SZ-JV nebo S-J. Na jedné z lokalit ve východní èásti Nízkého Jeseníku (lokalita 26) však bylo spoèítáno také paleonapì•ové pole s obrácenými orientacemi os 0"1a 0"3.Extenzní paleonapì•ová pole byla zjištìna pouze v Nízkém Jeseníku. Smìr maximální extenze byl pøibližnì V.-z. (s širokým rozptylem orientací od smìru SZ-JV po smìr SV-JZ). S tímto výsledkem nesouhlasí orientace tahových puklin a køemenných žil, které byly mìøeny v regionu Nízkého Jeseníku. Skuteènosti diskutované v tomto èlánku ukazují obecnì variské stáøí zjištìných kompresních napì•ových polí. Mladší extenzní paleonapì•ová pole jsou pravdìpodobnì pozdnì variská a mohou být odrazem gravitaèního kolapsu variského orogenu. Ke y word s: brittle deformation, faults with striations, paleostress analyses, Nízký Jeseník area, Drahany Uplands, Variscides lntroduction The Lower Carboniferous Culmian sediments depositeï at the eastem boundary of the Bohemian Massif (in the Moravian-Silesian region) belong to the extemal domain of the Variscan orogene. They have been proposed to be a part of the Rhenohercynian zane (for instance Behr et aj. 1984). There are two main outcrops of the Culmian sediments (shales,graywackes and conglomerates) on the eastem margin of the Bohemian Massif: the Nízký Jeseník and the Drahany Upland areas.These sediments represent a flysh and Jateran early molasse of the Variscan orogeThe age and deformation of the Culmian sediments decreasegenerally from west to eastor from north-west to south-east in the Moravian-Silesian units (Dvoøák 1973, 1993, 1994; Hrouda 1979; Kumpera 1972). In Dvoøák's (1993) opinion, the Culmian sedimentation started in the Andìlská Hora Formation (the western part of the Nízký Jeseník Uplands) already during the Famennian. The age of sediments decreaseseastwards through the Tournaisian and Viséan up to Namurian in the eastern part of the Nízký Jeseník Uplands. The Culmian sediments were folded during Variscan deformation, the fold axes and strike of the cleavage planes are predominantly orientated approximately NNESSW in the Moravian-Silesian region (Dvoøák 1973, 1993; Kumpera 1983). Cháb (1986) supposes the nappe fabric of the Culmian units. Some evidence of the nappe fabric was shown by some other authors (for instance Èížek, Tomek 1991; Melichar, Buèek 1994). Stress analyses based on the fau1t geometry investigation were carried aut in the eastern part of the Nízký JeseníkUpland by Grygar (1991). Both the axes ofmaximum compression (0"1)and extension (0"3)computed by his analyses were subhorizontal. The axis 0"1was orientateï in WNW-ESE direction, 0"3was orientated in NNESSW direction in the Jakubèovice quarry. Hanžl (1997) distinguished several different stressfield analyses at sites in the Brno pluton. Only some from the distinguished stress field are considered to be Variscan age. Hanžl supposes the post-Variscan age of the NE-SW extension, the E-W compression also could be post-Variscan. New results of the paleostress ana}yses based on the fault geometry investigation, carried aut in the easternparts of the Nízký Jeseník area (the Moravice and the HradecKyjovice Formations) and of the Drahany Uplands (the Myslejovice Formation), are discussed in this article. 27 ~ r..I, f'~ Bulletin ofthe CzechGeologicaJSurvey 75, 1,2000 O" N H ~ N ple t of Km o 10 Angelier-Mechler's graphical Mechler 20 30 c- I!::> 40 analysis 1977). '>- aut : in the Nízký eastern Jeseník Sub-region in the part area valley Bystøicí, cr,\\. ."; ;~~ ~: ~<:,,~ ~~,~ ., '~""" ~ " of '.' '. . ,,:;:: ~~;jj;' ~t ~ ~ ~::~::Jlli~ ~ 0", ~ !\\ N '?~ western rocks base Formation Sub-region sites south-eastwards the most ~ ~: Us TRIA West Car pathians Bohemian Massif :g ~ OuterFlyschBelt of Neogenesedi~entsol Formation). Vienna Basln E3 Tertlary.Quaternary~ volcanicrocks Permlan E1 Cretaceous eastern part n. river in the nort- of this Uplands, Front01Principal named aut in the western of Vítkov. ~ Only sub-region aut. On ly at some sites it was possible to carry Moldah.ubian. analysis. Varlscan one E was single .. granrtolds aut a separate results were program S erner et al. com p uted INVERS (1993) and the ~ Cadomlanlgneous gram BRUTE3 Hardcastle and made by Hllls (1991), which simple stress analyses (see text). les of (Angelier et al. principal data ratio matic indicators of the analyses Nízký measurements planes were based mainly with striations in the Culmian Jeseník rocks and of the of the quartz dikes on the in- and other kine- in the eastern parts Drahany Uplands. and extensional les were used less often. Planes of micro-faults number of sites, Jeseník area. But the number insufficient at a single 28 striations in the eastern were found ofmeasured analysed at a part of the Nízký data were often sites. That is why the data from tes near each other were But the together using si- the sim- (defined accuracy was too low. of the principal stress Thus tensor the orientations of the of the stress by Angelier of the 1975) calculation only the computed stress field 1989). variab- we- of the orienta- axes are discussed in this article. The kinematic ten show indicators strongly Somewhere, with mainly tions the reduced It means, 0=(0"2-0"3).(0"1-0"3)-1 stress ratio The fractu- 1982). are based on the inversion axes (0"1, 0"2 and 0"3) and the value re computed. of fault by pro- -..p andvolcanicrocks method (Angelier 1984; Both programs computed The paleostress usmg made simple graphicaI Angelier-Mechler's method of the paleostress analysis (Lambert projection, lower hemisphere, 0"1-horizontal hatching, 0"3-vertical hatching). A-E are sub-regions single aut for common vestigation stress At these sites the nume- rocks. ofthe In the part of the Drahany Lugianand Moravo-Slleslan crystaillneurnts.the sedlmentary ana1yses near sub-region Fig. I. Schematic geologicaI map of the eastern margin of the Bohemian Massif and the results of the Paleostress area. in the area, Moravicí, single PrincipalFaults crystalllne urnts ..ncal - -Devonian-Carbonilerous and theCarpathian Faredeep sub- aut in the val- C is situated Hradec Nappes ~cr3 Jurassic Neogene of the Two hern part of the investigated southeastern ~ ~ part 0"3 ~ ~ the Vítkov Formation upper part, northwards 111111111 ' .. the B contains were single D was I (" of Tise on sur- face. ley of Moravice ~ of of the Sub-region tP -. part tes Moravice 'lili,. ) river, Domašov n. area. At these si- and ~3 by sites Bystøice in the regions the 1). (the Hradec-Kyjovice " \t? D the the investigated Moravice 11111110,-'1 of (see fig. A is created southwards of ,4 (Angelier, Four sub-regions for common stress analysesof the measureddata were single ~'" ~I~ method the reversed slips, which at same site. different stress fields Jeseník represent character and cannot be created re found Nízký on the micro-fault various the After normal faults planes separation were found of- movement. and in the same stress field, area and Drahany Variscan of strike we- of data sets, more in the eastern parts ofthe Uplands. compression, other Some of them stres s fields ;. ~ '?~::~,.; !;,'-f: "K; ~ '*: Vìstnik ÈeskéboKeoloKickébo ústavu 75. 1.2000 show probably late-V ariscan or post-V ariscanextension. Compressionalpaleostress fields o 10 20 30 t ~.~~~; Km 40 +"\~ o((f Compressionalpaleostressfields with subvertical orientation of the axis of maximum extension No. a, Drahany ~ i? Uplands. The orientation of maximum compression 0"\ computed in N separated sub-regions various from E-W to NW-SE (fig.l). The orientation E-W or WNW-ESE were found in the sub-regions C (ji" + ,No. ofsite: 21 -'J( . (0"3) were found both in the Nízký Jeseník area and N I:.J '\\ a, NO.ofsite:~~ }) a, a, No.ofsite:192.-::::: and D in the north-easternern part N of the Nízký Jeseník area. Result of stress analysis in the sub-region B (south-eastern part ofthe Nízký Jeseník area) shows orientation of 0"1 rather in direction NW-SE. ..~'+ .. ++, ++.' " ~ part of the Drahany Uplands gave two different results of compressi- ~ : >ht maximum extension 0"3. First resuIt shows orientation of 0"\ approximately in direction from WNWESE to NW -SE, second result shows trus orientation rather in di.Fig. rectlon NNW -SSE. Other paleostress fields connected with the Variscan compression show sub-horizontal ori- ":;;~~~~~~~~ Principal axesofpaleostress field: A U STR IA ~ No. ofsite: 108 .a, Á a, .a, maximumofcompression intennediateaxis maximum of extension 2. Schematicgeologicalmapof the easternmarginof the BohemianMassif (legendis sameasin fig. I) and the orientationsof principal paleostressaxes(arrowsrepresentorientationof principal horizontal stresses)-compressionalpaleostressfields (Lambertprojection,lower hemisphere,great circles -fault planes). the eastern part of the Nízký Jeseník. The axis of maximum compression 0"1 is orientated in direction NE-SW, axis of maxim extension 0"3is orientated in direction NWSE. Same orientations of principal axes of paleostress field were found also in the south-eastern part of the Drahany Uplands. But in this sub-region E also another stress field with orientation of 0"1 in direction W-E and with orientation of 0"3 in direction N-S was singled aut (fig. I). Results of the common analyses in separated sub-regions agree to some results of numerical analyses carried aut at single sites in the eastern part of the Nízký Jeseník area (fig. 2). Subvertical orientation of 0"3and axis of 0"1orientated in direction E-W and NW-SE follows from analyses carried aut at sites I and 21. Paleostress field with axis of 0"\ orientated in direction NE-SW and axis of 0"3orientated in direction NW-SE was found at site 25 north-eastwards of This field 1 ]No. ofsite: 120 ) entation both axis 0"1and axis 0"3. This paleostress field were found in the sub-region C in Vítkov. ~r::+~~) \ onal paleostress fields with subvertical orientation of the axis of , ~ " I+ Common stress analysis of the fault striations in the south-eastern ;"" No.ofsite: agrees to result from sub-region D. Notwithstanding, the strongly different result, with opposite orientations of {J] and {J3,follows from kinematic indicators found at some micro-fault planes at site 26, southwards of Domašov n. Bystøicí (the sub-region A). Unfortunately, small numberof measurementsand existence another strikeslip faults with opposite characterof movements at site 26 bring some uncertainty into result of analysis at this site. Numerical paleostress analyses were carried aut also at three single sites in the south-eastern part of the Drahany Uplands (sites 102, 108 and 120). At the site 102, the principal axes orientations are similar to orientations at the site 25. The axis of maximum compression {Jj is orientated in direction NE-SW, axis of maximum extension {J3is orientated in direction NW-SE (fig. 2). Another result was computed at the site 108. The axis of maximum compression {J] is orientated in direction E- W or ENE- WSW and the axis of maximum extension {J3is orientated in direction N-S or NNW -SSE. The subvertical orientation of {J3and axis of {J] orientated approximately in direction NW-SE were found at the site 120. These re29 ~ íÍ~ ~; ~~ 1~ ~ ~ 30 -::::k::; Bulletin ofthe Czech GeolopJcal S!![vey75. 1.2000 N Km o 10 20 30 .40 ~ ~C1,r N x -'~No. or site: 32 No. ofsite: 24" ..1;::3 ~, ~ ~ q ~;;,,~ N N ty and their orientationvery well t retlects the orientationof maximum extension. But the planes are often pre-existing and their polescould differ from the orientation of principal extensional stressaxis. The rangeof the orientationdifferencesof the quartz ...,,"! mineralfibres onthe fractureplanesandthepole of this planesvisible at somesitesis up to value ~]i1J 200 in the eastern part of the Nízký Jeseníkarea. The ma:ximumof densitydistributionof the fracturepolesis ~ ' ", orientated in direction to NNE-SSW r from N-S (fig. 4). AIso poles of quartzveins are predominantly south-dipping(fig. 4). It can " indicate rather N-S extension, while resultsof normalfault geo-~ metry analysesshow ratherE-W extension. No.ofsite:5 ~?J> :~c No.ofsite: Ages of found paleostress Principalaxesof pa1eostress field: fields .(J, maximumof compression Á (J, inte~ediate axis .Important question is age of (J, maxlmumofextenslon found stress fields. Some infor-Fig. AUSTRIA 3. Schematicgeologicalmapof the easternmarginof the BohemianMassif (legendis sameasin fig. I) and the orientationsof principal paleostressaxes(arrowsrepresentorientationof principal horizontal stresses)-extensional paleostressfields (Lambertprojection,lower hemisphere,greatcircles -fault planes). mation about relative ages of the stress fields can be obtained from the study of relationships of different products of brittle defor- sults agree to mentioned mation. At a few sites it was ra- results obtained from common simple graphical analyses in this slib-region E. rely possible to see two different generations of striations on same fault planes. The striation showing oblique re- Extensional versed movement along the fault plane is covered younger paleostress fields Micro-fault planes with striations proving the existence of the extensional stress fields with subvertical orientation of axis of maximum compression (JI were found auly in the Nízký Jeseník area. The orientations of axes ofmaximum extension (J3 strongly differ from place to place. rather strike-slip striation at site I in the southeastem part of the Nízký Jeseník area, south-eastwards of Vítkov. Similarly, the younger striation showing normal movement covers the older strike-slip striation on the fault plane at site 32 northwards of Vítkov. AIso the quartz mineral fibres indicating the younger tensile movement on the Significant some predominantly differences are visible mainly from results of separated numerical analyses at some single sites. The axis of (J3is orientated approximately in direction E- W at sites I and 24, at site 5 the NW-SE extension was found E-W orientated fault planes with ki- nematic indicators of the older sinistral strike-slip movement is important for study of relative age of stress fields. The crossing of different planes (faults, fractures and and at site 32 the NE-SW extension follows from analysis (fig. 3). Also extensional fractures with quartz mineralization and quartz veins gel evidence about extension in the eastem part of the Nízký Jeseník area. But it is necessary to veins) can give another important information about relative age of the stress fields. For example the crossing of tensile fractures and reversed fault planes was found at site 21 in the valley of Moravice river in the eastem part of the Nízký Jeseník area. Absence of any offset of parts of draw attention to the fact lhal the orientation of maximum extension is parallel to the orientation of the miner~l fib- tensile fractures crossing the reversed fault plane proves the younger age of tensile fractures. At the same site the res on the fracture plane rather lhali to the pole of thlS pla- crossing quartz vein and a few normal and reversed faults ne. The mineral fibres grew during the stress field activi- was observed. The quartz vein is shifted along the normal Vìstnik Ceského J!eo1oJ!ickéhoústavu 75. 1.2000 Equal Area (Schmidt) Conclusion Fig. 4. Diagram of the poles of fractureswith quartz mineralization (circles)and the polesofthe quartzveins (squares)-the eastempart of the Nízký Jeseníkarea(Lambertprojection,lower hemisphere). fault planes, blit no movement along the reversed fault planes was found. The relationships of different products of brittle deformation show the generally oldest age of compressional stress fields obtained from analyses of reversed faults, younger age of the stress fields with subhorizontal orientations of maximum compression axis (JI and of maximum extension axis (J3represented by the strike-slip faults and youngest age or extensional stress fields connected with normal faults. The tensile fractures are probably generally younger than strike-slip faults and older than normal faults. This distinguishing of relative ages, based on the observation of relationships of different products of brittle deformation, is only schematic, the existence more different generation of fault planes with similar orientation and sense of movements could be possible. The Culmian sediments were folded during Variscan deformation in the eastern part of the Nízký Jeseníkarea. Variscan folding involved also fault geometries at some sites. For example fault planes found in arm of large fold at site 17 near Hradec n. Moravicí were rotated together with the sedimentary layers during folding. Before the rotation the fault geometries had character of sinistral strikeslip and reversed faults. This relationship proves Variscan age of found rotated faults indicating compressional stress fields. Similarly the close orientations of maximum compression (JI, cleavage poles and the minimum axis offinal fabric ellipsoid of deformed Culmian conglomerates at site 21 can indicate Variscan age of compressional stressfield obtained from analysis of reversed micro-faults found at this site. The discussed facts indicate the generally Variscan -, "'" --~ R 31 age of the found compressional stress fields. The younger extensional stress fields connected with tensile fractures and normal faults are probably late- Variscan and they can reflect the gravitational collapse of the Variscan orogene. But the post-Variscan (saxonian) age ofyounger stress fields cannot be excluded on base of discussed results. The results of stress analysis in the easternparts of the Nízký Jeseník area and Drahany Uplands show the existence of some different stress field. There is evidence of the Variscan age of the compressional stress fields. The axis of maximum compression (J\ of stressfields with subvertical axis of maximum extension (J3were orientated in direction from E-W to NW-SE, in south-eastern part of the Drahany Uplands up to NNW-SSE. Other compressional stress fields connected with the Variscan compression show sub-horizontal orientation both axis (JI and axis (J3.The axis of (JI was orientated in direction NE-SW, axis of (J3was orientated in direction NW -SE. In addition, in the southeastern part of the Drahany Uplands another stress field with orientation of (JI in direction W-E and with orientation of (J3in direction N-S was found. The stress analyses of younger predominantly normal micro-fault geometry show rather E-W orientation of the axis of maximum extension (in wide range from NW-SE up to NE-SW). The orientation of tensile fracture poles and quartz veins do not agree to this result. The maximum of density distribution of the fracture poles is orientated in direction from N-S to NNE-SSW. The younger extensional stress fields connected with tensile fractures and normal faults are probably late- V ariscan and they can reflect the gravitational collapse of the Variscan orogene. But the post- V ariscan (saxonian) age of some younger stress fields cannot be excluded. R eferences Angelier, f. (1975): Sur I'analyse de mesures recueillies dans des sites faillés: L 'utilité ïune confrontation entre les méthodes dynamiques et cinématiques. -C. R. hebd. SéaNC. Acad. Sci., Sér. D, 281, 23, 1805-1808. -(1984): Tectonic analysis of fault slip data sets. -J. geophys. Res., 89, B7, 5835-5848. -(1989): From orientation to magnitudes in paleostress determinations using fault slip data. -J. struct. Geol., II, 1/2, 37-50. Bristol. Angelier, f. -Mechler, P. (1977): Sur UDeméthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des diedres.droits. -Bull. soc. geól. France, 7, 6,1309-1318. Paris. Angelier, f. -Tarantola, A. -Va/elfe, B. -Manousis, S. (1982): lnversion offield data in fault tectonics to obtain the regional stress -I. Single phase fault populations: a new method of computing the stress tensor. -Geophys. J. Roy. astron. Soc., 69,607-621. Behr, H.-f. -Engel, W. -Franke, W. -Giese, P. -Weber.. K. (1984): The variscan belt in central Europe: main structures, geodynamic implications, open questions. -Tectonophysics 109, 15-40. Amsterdam. Èížek, P. -Tomek, È. (1991): Large-scale thin-skinned tectonics in the ()unetin ofthe CzechGeo1ogicaJSurvey75,1,2000 eastern boundary of the Bohemian Massif. -Tectonics, 10,2,273286. Dvofák, J. (1973): Synsedimentary tectonic of the Palaeozoic of the Drahany Upland (Sudeticum, Moravia, Czechoslovakia). Tectonophysics, 17,359-391. Amsterdam. Dvofák, J. (1993): Moravské paleozoikum. -In: Pøichystal, A. - Obstová, V. -Suk, M. (eds.): Geologie Moravy a Slezska, 41-58, Morav. zem. muz. Brno. Dvofák, J. (1994): Variský flyšový vývoj v Nízkém Jeseníku na Moravì a ve Slezsku. -Èes. geol. úst. Praha. Grygar, R. (1991): Strukturnì-kinematická analýza sv. okraje Èeského masivu. -Záv. zpráva HS 105/90. -MS archív VSB. Ostrava. Hantl, P. (1997): Structural profile through the Brno Massif. -Exploration Geophysics, Remote Sensing and Environment, IV, 1,29-38. Hardcast1e, K.C. -Hil1s, L.S. (1991): BRUTE3 and SELECT: Quickbasic 4 programs for determination of stress tensor configurations and separation of heterogeneous populations of fault-slip data. -Computers & Geosciences, 17, 1,23-43. RECENZE Hrouda, F. (1979): The strain interpretation of magnetic anisotropy in rocks ofthe Nízký Jeseník Mountains (Czechoslovakia). -Sbor. ge01. Vìd, užitá Geofyz., 16,27-62. Praha. Cháb, J. (1986): Stavba moravsko-slezské vìtve evropského mladopaleozoického orogenu. -Vìst. Ústø. Úst. geol., 61, 113-120. Praha. Kumpera, O. (1972): Problém vzniku druhotné tektonické stavby na pøechodu mezi nemetamorfovanými a dynamometamorfovanými sériemi (na pøíkladu sérií západojesenického synklinoria). -Èas. Slez. Muz., Sér. A, 21, 23-34. Opava. Kumpera, O. (1983): Geologie spodního karbanu jesenického bloku. Knih. Ústø. Úst. geol., 59, 5-172. Praha. Melichar, R. -Huèek, Z. (1994): Tektonikajižní èásti šternbersko-hornobenešovského pruhu v Nízkém Jeseníku. -Geol. výzk. Mor. Slez. v Roce 1993, 45-46. Brno. Sperner, H. -Ratschbacher, L. -Ott, R. (1993): Fault-striae analysis: a Turbo Pascal program package for graphical presentation and reduced stress tensor calculation. -Computers & Geosciences, 19, 9, 1361-1388. Karnských Alp a Barrandienu. Èeský pøíspìvek obsahuje i seznam 127 geologù a pøírodovìdcù,kteøí do roku 1918 mìli úzké vztahy jak H Lobitzer -P. Grecula (editoøi, 1999): Geologie ohne Gtenzen. Festschrift 150 Jahre Geo/ogischeBundesansta/t.Abhandlungen,56, 1,460 str., GeologischeBundesanstalt, Wien. Na jiném místì jsme ve Vìstníku Èeského geologického ústavu informovali o 150. výroèí založení Rakouské geologické služby a o oslavách tohoto neobyèejnì významného jubilea. Souèástí tìchto oslav bylo i vydání sborníku prací v kmenovém periodiku vídeòského geologického ústavu. Sborník byl pøipravován již v polovinì roku 1998 a rozvržen tak, aby obsahoval jednak èást historickou, jednak odborné èlánky s tématy vìdecké spolupráce Rakouska s okolními zemìmi. Rukopisù se postupnì nahromadilo tolik, že tento sborník musil být rozdìlen do dvou èástí. První vyšla vèas a byla k dispozici úèastníkùm oslav v listopadu 1999. Rakouští pøátelé, pouèeni tím, že podobné títuly jako "Sborník k výroèí spolupráce" jsou komerèním propadákem, tentokráte nazvali svazek chytøe "Geologie bez hranic". To mùže naopak zájem pøípadných konzumentù pøilákat. Editoøi rozdìlili první svazek na nìkolik sekcí: Po úvodním slovì øeditele ústavu následuje blok s pøíspìvky zástupcù okolních zemí o dìjinách geologické spolupráce s Rakouskem. Druhý blok se soustøedil na nìkterá speciální témata z historie geologických výzkumù. Následuje èást zahrnující geologické pøíspìvky, popisující výsledky mezinárodních výzkumù rakouského krystalinika a staršího paleozoika. Poslední èástí jsou "varia", smìs tematicky rùznorodých geologických statí. Na následujících øádcích postupnì probereme charakter jednotlivých sekcí. Pøedešlemejen, že sborník je dvojjazyèný, èástje publikována nìmecky, èást anglicky. Všechny èlánky pak mají nìmecký a anglický abstrakt. Èlánky do historické èásti byly pøímo objednány oslavencem, Rakouskou geologickou službou. Editoøi pøitom ponechali na vùli autorù, jak tyto pøíspìvky pojmou. Švýcaøi pojednali o pøíkrovové stavbì Alp a o úloze rakouských geologù pøi tektonických studiích. Zástupce Bavorska psal sice též o Alpách, soustøedil se však spíše na biostratigrafické studie v druhé polovinì minulého století. Nezùstal jen pøi historii, nýbrž vìnoval se i moderním koncepcím deskové tektoniky. Èeský pøíspìvek je ponìkud odlišný. Jde spíše o esej, nebo• si vybral nìkolik zajímavých témat rakousko-èeských vztahù: osobu Franze Eduarda Suesse a jeho pøedstavu moldanubického nasunutí pøes moravikum, osudy bloku ortocerového vápence z Kosova, práci rakouských a èeských geologù na Blízkém východì, vztahy mezi hornickými akademiemi v Leobenu a Pøíbrami a nápadnou faunistickou pøíbuznost mezi silurem 32 k Rakousku, tak k Èeským zemím. Slovenský pøíspìvek je velmi struèný a bohužel ho nenapsal zamìstnanec spøátelené geologické služby. Maïaøi a Slovinci se vìnovali historii spoleèných geologických výzkumù a svá pojednání vyzdobili portréty, ukázky rukopisù a starých map. Podobnì je koncipován i italský pøíspìvek. Z Bosny a Hercegoviny došel rukopis, který je vlastnì biografií rakouských geologù, geografù a montanistù, pracujících v této balkánské zemi, patøící kdysi k monarchii. Druhá èást sborníku je historicko-biografickou všehochutí. Obsahuje krátké èlánky o nìkterých osobnostech nebo událostech. Nìkteré z nich popisují vyloženì "vnitøní záležitosti" Rakouska, jako tøeba vztahy mezi Geologickou službou a univerzitou ve Štýrském Hradci. Bylo sem zaøazeno i pojednání o Joachimu Barrandovi, jehož úzké vztahy k Vídni byly obšírnì popsány v jiných pub)ikacích. Do tøetí sekce sborníku jsou zaøazeny spoleèné práce, týkající se krystalinika a staršího paleozoika. Pomohli ji naplnit i naši autoøi. Jeden z nich popisuje silurské a spodnodevonské mlže Kamských Alp, druhý spolupracoval na výzkumu silurských èerných bøidlic téhož regionu a tøetí studoval dvojsIídné žuly jihoèeského plutonu. Ostatní pøíspìvky se týkají krystalických vápencù Štýrska, metamorfovaných bazaltù Solné Komory a silurských nautiloidù Karnských Alp. Do poslední sekce byly zaøazenyrukopisy, které byly v termínu redakènì zpracovány. I zde má Ceský geologický ústav své zastoupení, a to v èláncích o miocenním vulkanismu. Jinak jde o skuteènou smìs petrografických a paleontologických prací z Rakouska i zahranièí. Z této struèné recenze vyplývá, že spoleèným jmenovatelem vydaného sborníku je starší i souèasná mezinárodní spolupráce v geologických vìdách. Zámìrem vydavatele bylo dodržet koncepci a pøitom pøíliš neomezovat autory a netrvat na dodržování osnovy. Takový pøístup má samozøejmì své výhody i nevýhody. Již se objevily názory, že nìkteré rozsáhlejší paleontologické práce pøíliš neodpovídají pùvodnímu zámìru. Odvážíme se též kritizovat, že nìkteré historické poznámky mají až pøíliš místní význam. Vìtšina prací však ètenáøepotìší. Pamìtníkù ubývá, dokumenty ze starého Rakouska-Uherskajsou vzácnìjší a vzácnìjší. Dík patøí našim rakouským pøátelùm nejen za vydání sborníku, ale i za peèlivé archivování a zpracovávání historických materiálù, ve kterých najdeme mnoho údajù o zemích koruny Ceské i o pøírodovìdcích, kteøí mìli zásluhu na jejich geologickém prozkoumání. Zdenìk Kukal
Podobné dokumenty
Variscan Accretion Wedge, Bohemian Massif, Czech
The weak seismo-tectonic activity occurs in the NE part of the
Bohemian Massif. In the period of years 2001–2003 the detailed monitoring of this natural seismic activity was carried
out using tempo...