Prezentace aplikace PowerPoint - ICT
Transkript
APLIKACE POKROČILÝCH METOD IČ SPEKTROSKOPIE PŘI ANALÝZE MINERALOGICKÉHO SLOŽENÍ HORNIN Ing. Lenka VACULÍKOVÁ, Ph.D. Ústav geoniky AV ČR, v.v.i. Ostrava Ing. Michal RITZ, Ph.D. Katedra analytické chemie a zkoušení materiálu, FMMI VŠB - Technická univerzita Ostrava Výzkumné aktivity a cíle Stanovení minerálů v sedimentárních horninách za pomoci IČ spektroskopie a chemometrických metod Jak validní výsledky lze získat díky chemometrické analýze IČ spekter? Budou-li získané výsledky srovnatelné s výsledky XRD analýzy? Spolupráce • Ritz, M. (Katedra analytické chemie a zkoušení materiálu, FMMI, VŠB-TU) - Regional Materials Science and Technology Centre • Vaculíková, L. - Plevová E. (Oddělení laboratorního výzkumu geomateriálů, Ústav geoniky, v.v.i. AV ČR) - Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use • Matýsek, D. – Mališ, J. (Institut geologického inženýrství, HGF, VŠB-TU) - Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use Technické vybavení FTIR spektrometr 6700 (Thermo Fisher Scientific, USA) The Unscrambler v. 9.7 (CAMO Software, Oslo, Norway) (Oddělení laboratorního výzkumu geomateriálů, Ústav geoniky, v.v.i. AV ČR) FTIR spektrometr Nexus 470 (ThermoScientific, USA) (Katedra analytické chemie a zkoušení materiálu, FMMI, VŠB-TU) XRD difraktometr ID3003 (Rich Seifert-FPM, Německo) (Institut geologického inženýrství, HGF, VŠB-TU) Instrumentální metody k analýze mineralogického složení hornin Spektrální metody – Rentgenová difrakční analýza (XRD), Infračervená spektroskopie, Ramanova spektroskopie, Mössbauerova spektroskopie, … Mikroskopické metody – Optická mikroskopie, Skenovací elektronová mikroskopie (SEM), Transmisní elektronová mikroskopie (TEM), … Metody termické analýzy – Termogravimetrie (TGA), Diferenční termická analýza (DTA), … Přítomnost jílových minerálů v horninách jílové minerály významným způsobem ovlivňují fyzikálně – chemické a mechanické vlastnosti hornin • velikost částic jílových minerálů 2-4 m • široká variabilita v chemickém složení • poruchy ve struktuře a různý stupeň uspořádanosti základních stavebních jednotek • existence různých forem smíšených struktur (prorůstání základních strukturních jednotek různých typů jílových minerálů) Uplatnění chemometrických metod Klasické metody (kalibrační křivka, standardní přídavek) • Aplikace Lambert-Beerova zákona • Existence charakteristického spektrálního pásu • Izolovaný pás (nesmí se překrývat s dalšími pásy) • Malý počet kalibračních standardů Chemometrické metody (multikomponentní, multivariační) • Možnost využití celé spektrální informace • Spektrální pásy se mohou překrývat • Značný počet kalibračních standardů Chlorit CCa-2 (Ripidolite), California USA Směs CHLORIT – MONTMORILLONIT (hm. %) Chemometrické metody • alternativa ke klasickým kvantitativním metodám • extrakce důležitých spektrálních informací z naměřených IČ spekter a jejich následné použití pro další zpracování naměřených dat vícenásobná lineární regrese (multiple linear regression – MLR) regrese hlavních komponet (principal component regression – PCR) regrese částečně nejmenších čtverců (partial least-squares regression – PLS) • pro vytvoření kalibračních modelů jsou nezbytné kalibrační a validační vzorky Chemometrická kvantitativní analýza Chemometrická kvalitativní analýza Chemometrická kvalitativní analýza Vzorková základna vzorky sedimentárních hornin (jílovce, jílové břidlice, pískovce) z různých lokalit v rámci ČR 1. Vypracování kalibrační modelů (128 vzorků) 2. Ověření metody (10 „kontrolních“ vzorků) 3. Stanovení obsahu minerálů (XRD analýza – Rietveldova metoda) Chlorit (111), Muskovit (136), Albit (106), Křemen (128), Ankerit, Siderit, Dolomit, Kalcit, Kaolinit, Pyrit, Rutil, Hematit, … IČ spektra stanovovaných minerálů IČ spektra hornin Použité chemometrické metody Analýza hlavních komponent (PCA) – analýza spektrálních dat (odlehlá spektra, výběr spektrálních oblastí) Regrese částečně nejmenších čtverců (PLS) – tvorba chemometrických modelů, predikce obsahu minerálů Použité techniky IČ spektroskopie DRIFT • 5 mg vzorku; cca 400 mg KBr • 128 skenů; rozlišení 8 cm-1 • každý vzorek měřen 5x průměrné spektrum KBr pelety • 0,5 mg vzorku; cca 200 mg KBr • 64 skenů; rozlišení 4 cm-1 • každý vzorek měřen 2x průměrné spektrum Úprava a zpracování spektrálních dat Úpravy IR spekter • korekce základní linie – DRIFT, KBr pelety • MSC korekce (korekce nestejné optické dráhy) – DRIFT Spektrální regiony • Metoda hlavních komponent (PCA) – Loading plot • 4.000 – 3.000 cm-1 a 1.300 – 400 cm-1 Použitý SW • OMNIC – měření a předúprava IR spekter (korekce základní linie) • The Unscrambler v. 9.7 (CAMO Software, Oslo, Norway) Kalibrační parametry chemometrických modelů Slope Offset RMSEC R2 Chlorit - DRIFT 0.928739 0.74 2.28 0.971165 Chlorit - pelety 0.830215 1.74 3.63 0.928983 Muskovit - DRIFT 0.787678 5.00 6.92 0.938520 Muskovit - pelety 0.839587 3.18 7.05 0.935545 Albit - DRIFT 0.834364 1.73 2.97 0.945646 Albit - pelety 0.837939 1.42 3.39 0.929289 Křemen - DRIFT 0.853073 6.80 8.23 0.973998 Křemen- pelety 0.857886 4.23 10.20 0.966078 Model Výsledek chemometrické kvantitativní analýzy Ověření statistické shody Výsledky analýzy kontrolních vzorků získané z chemometrických modelů -> ověření statistické shody s výsledky XDR analýzy Použity 3 statistické metody Párový test Porovnání dvou výběrů Youdenova grafická metoda Všechny tři použité statistické metody potvrdily statistickou shodnost výsledků. Závěr Chemometrické zpracování IČ spekter (kvantitativní analýza) – zjištěné parametry metody nejsou výrazně horší než parametry udávané v literatuře pro kvantitativní aplikace XRD analýzy. Správnost metody – velmi podobná pro DRIFT i KBr pelety Přesnost metody – výrazně lepší u DRIFTu (nízká navážka při přípravě KBr pelet) Použití IČ spekter při kvantitativní fázové analýze (dostupnost IČ spektroskopie oproti XRD je snazší) Závěr Chemometrická analýza IČ spekter je v porovnání s Rietveldovou metodou XRD analýzy jednodušší a časově méně náročná při samotném zpracování naměřených dat (s výjimkou vytvoření kalibračních modelů na počátku analýzy). Současně, vzhledem k pořizovacím cenám a nákladům spojeným s provozem FTIR spektrometrů, je tato metoda i cenově dostupnější. Publikační výstupy Ritz,M., Vaculíková, L., Plevová E., Matýsek, D., Mališ, J. Determination of chlorite,muscovite,albite and quartz in claystones and clay shales by infrared spectroscopy and partial least-squares regression. Acta Geodyn. Geomater. (2012), Vol. 9, No. 4 (168), 511–520, (IF - 0,53) Ritz, M., Vaculíková, L., Plevová E., Matýsek, D., Mališ, J. Determination of predominant minerals in sedimentary rocks by chemometric analysis of infrared spectra. Clay and clay minerals (2012) Vol.60, No.6, 655-665. (IF - 1,162)
Podobné dokumenty
Nové poznatky z výzkumu a využívání genetických zdrojů rostlin
již z doby Římanů. Centrum jejího původu leží v Mediteránu a západní Asii, kde roste
planě. Zdomácněla v oblasti střední Evropy, přes Španělsko do Maroka, Blízkého východu
a centrální Asie a na výc...
technická řešení a specifika využití různých stavebních
1) Rc+Ra nestmelená směs pro podkladní vrstvu
z části asfaltového a betonového recyklátu,
očekává se efekt „stmelení rozehřátým
zbytkovým asfaltem“ ve zhutněné směsné vrstvě;
výhodné také při nedos...
Analýza hlavních komponent (PCA)
1) Hledání struktury v proměnných (metrická škála): faktorová
analýza FA, analýza hlavních komponent PCA a shluková
analýza.
2) Hledání struktury v objektech (metrická škála): shluková analýza
3) H...
Gta san andreas kod na supermana ps2 pl
BeRnxHBne uVoOur how to is being protected from. That is Gods good 0916. 8 is a schematic work in the Jacksonville imaging module of the. We help end the Telling you
that you are not allowed to. gt...
1. Cattelův indexový graf úpatí vlastních čísel
3, 4 a 5 značí čas sklizně. PCX souvisí s časem sklizně.