Modelování odtoku z povodí pomocí Boussinesqovy rovnice
Transkript
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Fakulta životního prostředí Katedra vodního hospodářství a environmentálního modelování Obor: Environmentální modelování Modelování odtoku z povodí pomocí Boussinesqovy rovnice (Diplomová práce) Autor: Veronika Kajtárová Vedoucí: Ing. Jiří Pavlásek, Ph.D. 2008 Prohlašuji, že jsem celou diplomovou práci na téma „Modelování odtoku z povodí pomocí Boussinqovy rovnice“ vypracovala samostatně za použití uvedené literatury a podle pokynů vedoucího diplomové práce. V Praze dne 30. dubna 2008 …………………………………… Veronika Kajtárová Poděkování Děkuji všem, kteří mě doprovázeli, podporovali a pomáhali mi při studiu a při psaní diplomové práce, nejdříve svému vedoucímu diplomové práce Ing. Jiřímu Pavláskovi, Ph.D, dále svému manželovi, rodičům, sestrám, přátelům a také Bohu. Modeling of outflow from catchment using Boussinesq equation Abstract This diploma work is focused on modeling of outflow from small sylvan catchments. Total runoff from catchment is build by base flow and direct runoff. Direct runoff is build by surface runoff and by subsurface runoff and develops as a quick reaction on precipitation. Base flow is build by ground water and develops as a slow reaction on a long lasting precipitation. This work solves the outflow from sloping area using Dupuit assumption and second Boussinesq approximation. The Boussinesq equation is solved by separation of space and time variables. Some of equations are carried out by the numerical method Runge-Kutta. For model calibration and verification are used data, which are obtained from experimental catchment Modrava 2 in Šumava (experimental catchment of ČZU). The model is able to simulate the base flow and also the direct runoff. Obsah Obsah Obsah .....................................................................................................................................1 1 ÚVOD............................................................................................................................1 2 ROZBOR LITERATURY .............................................................................................2 2.1 Voda v půdě ...........................................................................................................2 2.2 Proudění vody v půdě ............................................................................................3 2.3 Vlastnosti půdního prostředí..................................................................................3 2.3.1 Pórovitost .......................................................................................................3 2.3.2 Storativita.......................................................................................................5 2.3.3 Homogenita, heterogenita..............................................................................5 2.3.4 Izotropie, anizotropie .....................................................................................6 2.4 Proudění podzemní vody .......................................................................................6 2.4.1 Darcyho zákon ...............................................................................................7 2.4.2 Meze platnosti Darcyho zákona.....................................................................8 2.4.3 Nasycená hydraulická vodivost .....................................................................9 2.4.4 Počáteční podmínky.....................................................................................10 2.4.5 Okrajové podmínky .....................................................................................11 2.4.6 Hydraulický přístup .....................................................................................12 2.4.7 Dupuitovy postuláty.....................................................................................12 2.4.8 Boussinesqova rovnice ................................................................................14 2.4.9 Boussinesqova první a druhá aproximace ...................................................15 3 ŘEŠENÍ DIFERENCIÁLNÍCH ROVNIC ..................................................................19 3.1 Ustálené proudění na nakloněné nepropustné rovině ..........................................19 3.2 Neustálené proudění na nakloněné nepropustné rovině ......................................23 4 MODEL ODTOKU PODZEMNÍ VODY ...................................................................26 5 VÝSLEDKY A DISKUZE..........................................................................................29 5.1 Ustálené proudění na nakloněné nepropustné rovině ..........................................29 5.2 Neustálené proudění na nakloněné nepropustné rovině ......................................32 5.3 Kalibrace a verifikace modelu .............................................................................36 5.4 Simulace...............................................................................................................37 6 ZÁVĚR ........................................................................................................................39 7 PŘÍLOHY ....................................................................................................................40 7.1 Ustálené proudění na nakloněné nepropustné rovině ..........................................40 7.2 Neustálené proudění na nakloněné nepropustné rovině ......................................44 7.3 Kalibrace modelu .................................................................................................49 7.4 Verifikace modelu................................................................................................57 Seznam použitých symbolů .................................................................................................60 Seznam literatury .................................................................................................................63 Úvod 1 ÚVOD Tato diplomová práce zaměřená na problematiku malých lesních povodí řeší odtok vody z povodí. Celkový odtok z povodí je tvořen základním odtokem a přímým odtokem. Přímý odtok tvořen povrchovým a podpovrchovým odtokem vzniká jako rychlá reakce na srážkovou událost. Základní odtok, což je většinová část celkového odtoku, tvořen odtokem podzemní vody, vzniká jako pomalá reakce povodí na dlouhodobou dotaci vody do podzemí z trvalé pokrývky sněhu, či z dlouhodobých dešťů. Krátkodobé, třebaže vydatné, deště se na základním odtoku téměř nepodílejí, neboť k povrchu podzemní vody „nestihnou“ dotéct, způsobují však rychlé navýšení průtoků v říčním profilu, přívalové deště pak povodňovou událost. Pro člověka, zvířata a rostliny nemají krátkodobé deště příliš velký význam, neboť většina vody i ze silného přívalového deště z krajiny během pár dnů zmizí a také období beze srážek jsou delší než období se srážkami. Naopak podzemní voda jako zásoba vody v povodí poskytuje stálý přísun vody do půdy, toků, vodních nádrží, studní, a tak slouží jako zdroj života pro rostliny, živočichy i pro člověka. Tato práce si klade za cíl namodelovat odtok vody z povodí, především odtok základní a také odtok přímý, pomocí Boussinesqovy rovnice. V první části diplomové práce je uveden přehled základních vztahů a zákonitostí popisujících problematiku proudění podzemní vody. Dále jsou upraveny rovnice pro řešení proudění podzemní vody na svahu pomocí separace časových a prostorových proměnných. Tyto rovnice jsou použity pro modelování odtoku podzemní vody z malých lesních horských povodí. Při kalibraci a verifikaci modelu jsou použita data naměřená na pokusném povodí Modrava 2 nacházejícím se na Šumavě. 1 Rozbor literatury 2 ROZBOR LITERATURY 2.1 Voda v půdě Veškerá voda nacházející se pod zemským povrchem bývá označována termínem podpovrchová voda. Voda dopadající na povrch půdy částečně infiltruje, vlivem gravitace se pohybuje směrem dolů a akumuluje se nad nepropustným podložím. Prostředí, kterým voda proudí pod povrchem půdy je tvořeno pevnou fází a volnými prostory (póry, puklinami, kavernami apod.). Podle relativního vyplnění skulin a pórů vodou může být podpovrchová voda rozdělena na několik horizontálních zón. Na obr. 2.1 je schematicky znázorněno rozdělení podpovrchové vody v homogenním prostředí. Podle toho, zda jsou všechny póry zcela vyplněny vodou, či nikoliv, rozlišujeme zónu nasycenou (zvodnělou) a zónu nenasycenou (zónu provzdušnění – aerace). Nasycená zóna zahrnuje částečně pásmo kapilární vody a celé pásmo podzemní vody. Nenasycená zóna zahrnuje tři pásma: pásmo půdní vody, přechodné pásmo a částečně pásmo kapilární vody (Valentová 2007). Obr. 2.1 Rozdělení vody ve vertikálním profilu (Valentová 2007). Podzemní voda je shora ohraničena volnou hladinou podzemní vody a zdola nepropustným podložím. Na volné hladině podzemní vody je hydraulický tlak roven tlaku atmosférickému (Šilar 1996). 2 Rozbor literatury 2.2 Proudění vody v půdě Proudění vody v půdě je většinou nestacionární. Proud vody v půdě je neustálený (nestacionární), jestliže se průtok v dané průtočné ploše mění s časem a v daném okamžiku je v různých průtočných plochách různý (závisí tedy na dráze). Rychlost proudu vody v nasyceném prostředí počítaná na základě makroskopicky pozorovaných veličin je označována jako makroskopická rychlost (též zdánlivá rychlost), odpovídající průměrné rychlosti v celé ploše průřezu porézním prostředím (jako kdyby půdní zrna neexistovala), tj. kontinuální přístup. Skutečná rychlost vody v pórech je ale velmi různá v závislosti na konfiguraci půdních pórů (rytmická proměnlivost průřezů pórů, existence neprůchodných pórů, zakřivenost pórů apod.). Tato skutečná rychlost je průměrem mikroskopických rychlostí pro jednotlivé průřezy pórů. Mikroskopické rychlosti jsou velmi variabilní, zvětšují se s velikostí pórů, se vzdáleností od stěn pórů od středu jejich průřezové plochy. Dále je třeba podotknout, že voda pevně vázaná na povrchu stěn pórů (částic) není pohyblivá a zmenšuje tak průtočný profil pórů. Proto se místo pórovitosti používá tzv. efektivní pórovitost. Upřesňuje se tím objem pórů s pohyblivou vodou (Drbal 1984). 2.3 Vlastnosti půdního prostředí 2.3.1 Pórovitost Vztah pro výpočet pórovitosti uvádí Tourková (2004): n= kde: Vp V n - pórovitost [-] Vp - objem pórů [L3] V - celkový objem zeminy [L3] (2.1) Na pórovitost má vliv tvar i vzájemné uložení zrn, jak je patrno z obr 2.2, který znázorňuje několik typických případů pravidelného uspořádání kulových částic ve vrstvě. U volně nasypaných vrstev složených z běžných zrnitých nebo krystalických materiálů se pórovitost pohybuje v rozmezí od 0,3 do 0,5 (Novák a Rieger 2000). 3 Rozbor literatury Obr. 2.2 Pórovitost různě uspořádaných vrstev kulových částic (Novák a Rieger 2000). Efektivní pórovitost se nazývá rovněž účinná pórovitost a vyjadřuje objem gravitační vody, který vyteče z plně nasyceného vzorku zeminy. Se stoupající velikostí zrna zeminy pórovitost obvykle klesá a efektivní pórovitost stoupá (obr. 2.3). Tab. 2.1 znázorňuje zařazení zemin do zrnitostních kategorií podle velikosti zrna. Příklady efektivní pórovitosti: štěrk 25%, písek 20%, pískovec 10% a jíl 3% (Tourková 2004). Tab. 2.1 Zrnitostní kategorie dle Kopeckého doplněné podrobnějším dělením I. Kategorie a základním dělením skeletu (Drbal 1984). Označení kategorie Pojmenování kategorie Průměr zrn [mm] I. jílnaté částice <0,01 II. III. IV. prachové částice práškový písek písek 0,01 - 0,05 0,05 - 0,1 0,1 - 2,0 skelet Podrobné dělení Pojmenování Průměr zrn [mm] koloidní jíl <0,0001 fyzikální jíl <0,002 jemný prach 0,002 - 0,01 štěrk drobný štěrk střední štěrk hrubý kameny >2,0 2,0 - 16,0 16,0 - 63,0 63,0 - 125,0 >125,0 Obr. 2.3 Závislost efektivní pórovitosti na velikosti zrn (Valentová 2007). 4 Rozbor literatury 2.3.2 Storativita Objem vody v elementu kolektoru s volnou hladinou je při jednotkové horizontální ploše dán výškou volné hladiny podzemní vody (viz obr. 2.4). Obr. 2.4 Schéma pro definici storativity v kolektoru s volnou hladinou (Valentová 2007). Jestliže v důsledku proudění podzemní vody je množství vody opouštějící uvažovaný element větší než množství přitékající vody, dojde k poklesu hladiny. Zásobnost kolektoru se definuje výrazem: S= kde: ∆Vv A ⋅ ∆h (2.2) S - storativita [-] ∆V - změna objemu vody v elementu kolektoru [L3] A - horizontální plocha elementu kolektoru [L2] ∆h - pokles hladiny podzemní vody v elementu kolektoru [L] Pro hlinité písky se hodnota storativity pohybuje v rozmezí 0,05 až 0,15, pro jemnozrnné až hrubozrnné písky v rozmezí 0,19 až 0,3. Hodnota storativity kolektoru s volnou hladinou je často nahrazována efektivní pórovitostí. 2.3.3 Homogenita, heterogenita Porézní prostředí je homogenní vzhledem k dané vlastnosti (např. hydraulické vodivosti), jestliže ve všech bodech je tato vlastnost stejná. Jestliže se vlastnost mění v závislosti na poloze v oblasti, jedná se o prostředí nehomogenní (heterogenní) (obr. 2.5). 5 Rozbor literatury 2.3.4 Izotropie, anizotropie Prostředí je izotropní vzhledem k nějaké vlastnosti, jestliže je tato vlastnost v daném bodě nezávislá na směru v uvažovaném prostředí. V opačném případě je prostředí neizotropní (anizotropní) (obr. 2.5). Anizotropie vzhledem k hydraulické vodivosti je vyvolána strukturou porézního materiálu a způsobuje vyšší propustnost pro vodu v některém směru. Obr. 2.5 Možné kombinace homogenity a izotropie (Valentová 2007). 2.4 Proudění podzemní vody Řídícími silami, které ovlivňují pohyb vody v nasycené zóně, je gravitace a tlakový gradient. V hydraulice podzemní vody se pracuje s hydraulickou výškou. H =z+ kde: p ρg (2.3) H - hydraulická výška [L] z - geodetická výška [L] p - tlak vody v daném bodě pod hladinou podzemní vody [L-1.M.T-2] ρ - hustota vody [M.L-3] g - tíhové zrychlení [L.T-2] p = h p ρg kde: hp (2.4) - tlaková výška neboli hloubka daného bodu pod hladinou podzemní vody [L] 6 Rozbor literatury Obr. 2.6 Schematický nákres piezometru (přístroj k určování hydraulické výšky) (Valentová 2007). 2.4.1 Darcyho zákon Jako pohybová rovnice se v hydraulice podzemní vody běžně aplikuje empirický Darcyho zákon (aparatura, pomocí níž byl odvozen, je znázorněna na obr. 2.7): Q = KS (H 1 − H 2 ) L kde: (2.5) Q - průtok [L3.T-1] K - nasycená hydraulická vodivost [L.T-1] S - průřezová plocha sloupce [L2] (H1-H2) - ztráta hydraulické výšky při průtoku vody sloupcem zeminy [L] L - délka sloupce [L] Obr. 2.7 Aparatura Darcyho experimentu (Valentová 2007). Jeho diferenciální forma pro jednorozměrné proudění vody v homogenním prostředí vypadá takto: 7 Rozbor literatury v = −K kde: v dH dl (2.6) - Darcyovská rychlost proudění vody [L.T-1] dH/dl - gradient hydraulické výšky – hydraulický gradient [-] Koeficientem úměrnosti je nasycená hydraulická vodivost, základní hydraulická charakteristika daného porézního materiálu, která má rozměr rychlosti. Nasycená hydraulická vodivost je v případě neizotropního prostředí popsána pomocí tenzoru: K x x , K xy , K xz K = K xy , K y y , K yz K xz , K zy , K z z kde: Kii (2.7) - složky tenzoru nasycené hydraulické vodivosti [L.T-1] Zobecněný tvar Darcyho zákona pro trojrozměrné proudění vody v anizotropním prostředí vyjadřují rovnice: v x = − K xx v y = − K yx v z = − K zx ∂H ∂H ∂H − K xy − K xz ∂x ∂y ∂z (2.8) ∂H ∂H ∂H − K yy − K yz ∂x ∂y ∂z (2.9) ∂H ∂H ∂H − K zy − K zz ∂x ∂y ∂z (2.10) 2.4.2 Meze platnosti Darcyho zákona Darcyho zákon je lineární zákon, vyjadřující lineární závislost makroskopické neboli zdánlivé rzchlosti na hydraulickém gradientu. Tato lineární závislost neplatí pro celé rozmezí hodnot gradientu hydraulické výšky mezi nulou a ∞, je omezena dolní i horní limitní hodnotou gradientu (obr. 2.8). Při průsaku velmi jemnozrnným materiálem s nízkou propustností existuje limitní hodnota hydraulického gradientu, při které ustává pohyb kapaliny. Druhé omezení použitelnosti Darcyno zákona je při průsaku velmi hrubozrnným materiálem, při kterém dochází k nelineární závislosti mezi růstem gradientu potenciálu a růstem rychlosti. 8 Rozbor literatury Obr. 2.8 Závislost rychlosti proudění na gradientu potenciálu (Valentová 2007). Horní limit platnosti Darcyho zákona může být překročen při proudění v krasových vápencích a dolomitech a ve vulkanických horninách s kavernami. Proudění podzemní vody se děje většinou tak, že je Darcyho zákon aplikovatelný (Valentová 2007). 2.4.3 Nasycená hydraulická vodivost Velikost nasycené hydraulické vodivosti závisí na vlastnostech porézního prostředí i na vlastnostech proudící kapaliny. Tabulka 2.2 a tabulka 2.3 uvádí orientační hodnoty nasycené hydraulické vodivosti při proudění vody v různých druzích zeminy. Tab. 2.2 Orientační hodnoty hydraulické vodivosti (Valentová 2007). druh zeminy jíl písčitá hlína hlinitý písek ulehlý písek s příměsí jílu hlinitý a jemný písek hrubozrnný písek štěrkopísek štěrk Koeficient nasycené hydraulické vodivosti [m/s] -8 <1.10 -6 <1.10 -6 (1 - 5).10 -6 (1 - 2).10 -5 (1 - 5).10 -4 (1 - 5).10 -4 (2 - 10).10 -3 (1 - 5).10 9 Rozbor literatury Tab. 2.3 Informativní hodnoty hydraulické vodivosti podle hrubé závislosti na zrnitosti (Drbal 1984). půda koeficient hydraulické vodivosti [m/s] rašeliny jíly písky (1 - 1000).10 -7 (1 - 100).10 -5 (1 - 60).10 -7 poznámka K klesá s růstem rozložení -7 obvykle < 10.10 -5 obvykle > 3,5.10 Drbal (1984) uvádí klasifikaci propustnosti půd (tab. 2.4). Tab. 2.4 Klasifikace propustnosti půd (Drbal 1984). Klasifikace propustnosti velmi nízká nízká středně nízká střední středně vysoká vysoká velmi vysoká koeficient hydraulické vodivosti [inch/hour] [m/s] < 0,05 0,05 - 0,2 0,2 - 0,8 0,8 - 2,5 2,5 - 5 5,0 - 10 > 10 < 3,5.10-7 -7 -6 3,5.10 - 1,4.10 -6 -6 1,4.10 - 5,6.10 -6 -5 5,6.10 - 1,8.10 -5 -5 1,8.10 - 3,5.10 -5 -5 3,5.10 - 7,0.10 -5 > 7,0.10 2.4.4 Počáteční podmínky Počáteční podmínky charakterizují stav proudění v celé řešené oblasti v počátečním čase (t=0) sledovaného procesu: H = f (x,y,z,t) kde: (2.11) f - známá funkce x,y,z - souřadnice libovolného bodu [L] t - čas [T] Vztah (2.11) vyjadřuje, že pro libovolný bod o souřadnicích x,y,z známe v čase t=0 hydraulickou výšku. Počáteční podmínky se uplatní při řešení nestacionární úlohy, kde se průběh hydraulické výšky s časem mění. 10 Rozbor literatury Obr. 2.9 Příklad proudění mezi dvěma řekami (Valentová 2007). 2.4.5 Okrajové podmínky Přehled jednotlivých typů okrajových podmínek uvádí Valentová (2007): a) Hranice s předepsanou hodnotou hydraulické výšky (okrajová podmínka prvního typu, nazývaná také Dirichletova). Ve všech bodech hranice řešené oblasti nebo na její části známe hodnotu hydraulické výšky po celou dobu zkoumaného procesu: H = f (x,y,z) nebo H = f (x,y,z,t) (2.12) První případ vyjadřuje stacionární okrajovou podmínku, zatímco ve druhém případě je okrajová podmínka závislá na čase. Okrajové podmínky tohoto typu se vyskytuj vždy tam, kde je oblast proudění ve styku s otevřenou vodní hladinou: řekou, jezerem apod. V případě na obrázku 2.9 jsou úseky AB a EF úseky hranice s předepsanou hydraulickou výškou. b) Hranice s předepsaným tokem (okrajová podmínka druhého typu, nebo také Neumanova). Ve všech bodech hranice je známá hodnota toku ve směru kolmém na hranici: vn = f (x,y,z,t) kde: vn (2.13) - složka rychlosti kolmá k hranici oblasti [L.T-1] Speciálním případem této okrajové podmínky je nepropustná hranice, kdy vn = 0. V obrázku 2.9 je úsek AF hranicí s předepsaným tokem. c) Polopropustná hranice (smíšená okrajová podmínka, nebo Newtonova (někdy také Cauchyho) okrajová podmínka). Tento typ okrajové podmínky se vyskytuje tam, kde je oblast proudění v kontaktu s otevřeným vodním zdrojem (nebo jiným porézním prostředím), ale je od něj oddělena polopropustnou vrstvou. 11 Rozbor literatury d) Volná hladina. V obr. 2.9 se jedná o úseky BC, CD a DE. Protože hodnota tlaku na hladině podzemní vody je rovna nule, je hydraulická výška rovna výšce geodetické: H (x,y,z,t) = z nebo H (x,y,z,t) – z = 0 e) (2.14) Výronová plocha. Jde o součást volné hladiny podzemní vody, v obr. 2.9 se jedná o úseky BC a DE. Výronovou plochou voda vystupuje na hranici porézního prostředí a volně po ní stéká. Pro výronovou plochu opět platí, že tlaková výška je rovna nule: H (x,y,z,t) = z (2.15) 2.4.6 Hydraulický přístup Hydraulický přístup představuje zjednodušený postup řešení proudění podzemní vody. U většiny zvodní je jejich výška relativně malá ve srovnání s horizontálními rozměry. Na základě toho se předpokládá, že proudění má převážně vodorovný směr a jeho vertikální složky se zanedbávají. Tento přístup se používá také při řešení zvodní s volnou hladinou. 2.4.7 Dupuitovy postuláty Hodnota hydraulické výšky a rychlosti proudění v libovolném bodě zvodně je funkcí prostorových souřadnic a času a jejich hodnoty je teoreticky možné získat řešením platných diferenciálních rovnic. Na obr. 2.10a je vykreslen úsek zvodně s volnou hladinou. V případě stacionárního proudění je volná hladina proudnicí a v každém bodě hladiny má vektor hustoty toku směr tečny k této hladině. Velikost hustoty toku je možné vyjádřit pomocí Darcyho zákona jako: vs = − K kde: dH dz = −K = − K sin θ ds ds vs - vektor hustoty toku ve směru osy x [L.T-1] θ - úhel, který svírá tečna k hladině s vodorovným směrem [-] (2.16) Ekvipotenciály jsou křivky kolmé na proudnice. V roce 1863 publikoval Dupuit řešení proudění ve zvodni s volnou hladinou založené na zjednodušujících postulátech. Sklon hladiny podzemní vody je většinou velmi malý: 12 Rozbor literatury 1/1000 až 10/1000, a proto je možné směr proudění pokládat za horizontální. Dupuitovy postuláty je možné vyjádřit následujícím způsobem: a) Hydraulická výška H(x,y,z) je rovna výšce hladiny podzemní vody h(x,y), proudnice jsou vodorovné přímky a ekvipotenciály svislice. b) Gradient potenciálu je dán sklonem volné hladiny a je po svislici konstantní: dH (x, y, z ) = dh (x, y ) dx dx kde: h (2.17) - výška hladiny podzemní vody nad nepropustným podložím [L] Obr. 2.10 Dupuitovy postuláty (Valentová 2007). Je-li úhel θ velmi malý, je možné nahradit sin θ =dh/ds sklonem hladiny tg θ = dh/dx. Ekvipotenciály jsou svislice a hydraulická výška není funkcí vertikální souřadnice z (tzn. H=h(x) místo H=h(x,z)), viz obr. 2.10b. Darcyovskou rychlost lze pomocí Dupuitových postulátů vyjádřit jako: vx = −K dh dx , h=h(x) (2.18) Průtok vztažený na jeden metr šířky zvodně (specifický průtok): qx = h(x ) ∫ v (x )dz x (2.19) 0 kde: qx - specifický průtok ve směru osy x [L2.T-1] Integrací rovnice (2.19) při zavedení vztahu (2.18) dostáváme rovnici pro výpočet specifického průtoku ve směru osy x pro homogenní prostředí: 13 Rozbor literatury qx = −K dh h( x ) dx (2.20) 2.4.8 Boussinesqova rovnice Protože podle Dupuitových postulátů je hydraulická výška na svislici konstantní, je také rychlost proudění po svislici konstantní. Je-li h výška hladiny v bodě kolektoru X, můžeme složky specifického průtoku vyjádřit jako qx=vx.h a qy=vy.h. Obr. 2.11 Bilanční elementární objem kolektoru s volnou hladinou (Valentová 2007). Provedeme-li bilanci množství vody v objemu, viz obr. 2.11, dostáváme rovnici kontinuity ve tvaru: − kde: ∂q y ∂q x ∂h ⋅ ∆x ⋅ ∆y ⋅ ∆t − ⋅ ∆x ⋅ ∆y ⋅ ∆t + R ⋅ ∆x ⋅ ∆y ⋅ ∆t = S ⋅ ⋅ ∆x ⋅ ∆y ⋅ ∆t ∂x ∂y ∂t R (2.21) - přítok na hladinu podzemní vody [L.T-1] Vertikální přítok či odtok R (na obr. 2.11 značeno N) má kladnou hodnotu, představuje-li infiltrované množství srážek, může být funkcí polohy a času (Valentová 2007). Rovnice kontinuity vyjadřuje zákon zachování hmoty, neboli algebraický součet hmotnosti vstupující do určitého objemu a hmotnosti z něho vystupující se rovná změně hmotnosti v tomto objemu (Drbal 1984). Po úpravě rovnice kontinuity (2.21) a po dosazení rovnice (2.20) dostaneme rovnici proudění v homogenním neizotropním prostředí: 14 Rozbor literatury ∂ ∂h ∂ ∂h ∂h K x h + K y h + R = S ∂x ∂x ∂y ∂y ∂t (2.22) Pro proudění v homogenním izotropním prostředí, které je dotováno vertikálním přítokem dostáváme rovnici známou jako Boussinesqova rovnice. Tato rovnice je nelineární: ∂ ∂h ∂ ∂h R S ∂h h + h + = ∂x ∂x ∂y ∂y K K ∂t (2.23) Při odvození uvedených rovnic se zavádí další zjednodušující postulát: Darcyho zákon platí i při nestacionárním proudění. Chyby, kterou se použitím tohoto postulátu dopouštíme, je tím větší, čím rychleji se proudění mění s časem. Zanedbáváme vliv setrvačných sil (Valentová 2007). Koopmans (2000) uvádí Boussinsqovu rovnici ve tvaru: Kx kde: µ ∂ ∂h ∂ ∂h ∂ ∂h ∂h h + K y h + K z h + R = µ ∂x ∂x ∂y ∂y ∂z ∂z ∂t (2.24) drenážní pórovitost [-] 2.4.9 Boussinesqova první a druhá aproximace Pro řešení proudění podzemní vody na nakloněném nepropustném podloží se převážně používá Boussinesqových aproximací, které byly odvozeny pro řešení drenážní soustavy na svahu. Tyto aproximace vycházejí z dvou různých verzí Dupuitova postulátu aplikovaného na nakloněné nepropustné podloží: a) Ve své první publikaci v roce 1877 vycházel Boussinesq z předpokladu, že hladina podzemní vody a proudnice jsou skoro rovnoběžné s nakloněným nepropustným podložím, a proto je hydraulický potenciál konstantní v rovině kolmé na nepropustné podloží. Tento předpoklad použili také Henderson a Wooding (1964) a Childs (1971). b) V druhé publikaci v roce 1904 uvedl Boussinesq teorii, že proudnice jsou horizontální, což je základní Dupuitův předpoklad. Tento postup je určen pro mírnější svahy a dále ho použili Schmid a Luthin (1964). Rozdíl v koordinačních systémech při řešení proudění podzemní vody na svahu je znázorněn na obr. 2.12. 15 Rozbor literatury z + z* qx N M qx + h N* hM + H xM H* + x N* θ x a θ x* + b Obr. 2.12 Koordinační systémy při řešení proudění podzemní vody na svahu a) Boussinesqova první aproximace (BPA). b) Boussinesqova druhá aproximace (BDA). Diferenciální rovnici pro ustálené proudění podzemní vody na svahu v homogenním prostředí odvozenou pomocí Boussinesqovy první aproximace (BPA) uvádí Lesaffre (1987) ve tvaru: d dx + kde: + dh + R R − sh + 1 − + = 0 h + K K dx (2.25) x+ - osa koordinačního systému pro BPA [L] h+ - výška hladiny podzemní vody nad nepropustným podložím pro BPA [L] s - sklon nepropustného podloží (tan θ) [-] Lesaffre (1987) uvádí také tvar diferenciální rovnice pro Boussinesqovu druhou aproximaci (BDA): R d * dh* h − sh* + = 0 * * dx dx K kde: x* h * (2.26) - osa koordinačního systému pro BDA [L] - výška hladiny podzemní vody nad nepropustným podložím pro BDA [L] Výchozí vztahy pro odvození diferenciální rovnice (2.26) jsou: rovnice (2.27) vyjadřující hydraulický potenciál, pohybová rovnice (2.28) odvozená z Darcyho zákona s ohledem na Boussinesqovu druhou aproximaci a rovnice kontinuity (2.29). ϕ ( x* ) = h* − x* tan θ (2.27) 16 Rozbor literatury kde: ϕ(x+) - hydraulický potenciál [-] θ - sklon nepropustného podloží [l] q x ( x * ) = − K (h * )h * dh + sh * K (h * ) dx dqx ( x * ) = Rdx* (2.28) (2.29) Obě aproximace musejí vést ke stejným výsledkům, jestliže je nepropustné podloží horizontální (v tomto případě zaniká rozdíl v koordinačních systémech) a při malých sklonech se liší minimálně (Wooding a Chapman, 1966). Po zavedení parametru σ upravil Lesaffre (1987) diferenciální rovnice (2.25) a (2.26) pro Boussinesqovu první i druhou aproximaci do shodného tvaru: d dh − 2σh + 1 = 0 h du du kde: u=x R K (2.30) - substituovaná proměnná pro BPA i pro BDA [L] σ= s (1 − R K ) 2 R K - pro Boussinesqovu první aproximaci [-] σ= s 2 RK - pro Boussinesqovu druhou aproximaci [-] Rovnicí (2.30) je pro další úpravu rovnic pro proudění podzemní vody na svahu vyřešen rozdíl v koordinačních systémech pro Boussinesqovu první a druhou aproximaci. Dále jsou v textu použity (mimo grafického znázornění) proměnné bez indexů „+“ a „*“ s platností pro obě aproximace. Řešení rovnic (2.25) resp. (2.26) pro drenážní systém, kdy jsou drény uložené na nepropustném podloží uvádějí Towner (1975) resp. Schmid a Luthin (1964). Tito autoři uvádějí, že hladina mění svůj tvar v kritickém bodě řešení. Tato změna nastává při hodnotě σ = 1. Při hodnotách σ < 1 je proudění rozdělené mezi oba drény. Při hodnotách σ > 1 proudí voda pouze k dolnímu drénu. Rozdíly mezi Boussinesqovou první a druhou aproximací jsou patrné ze vzorců odvozených pro jednotlivé aproximace. Obecně se uvažuje, že Boussinesqova druhá aproximace je omezena na mírnější sklony, ale dosud neexistuje detailnější popis podmínek, pro které je platná (Hartani, Lesaffre a Zimmer, 2001). 17 Rozbor literatury Boussinesqova první aproximace (BPA) byla zavedena do výpočtů pro návrh drenážních systémů Woodingem a Chapmanem (1966) a Childsem (1971). Tito autoři uvádějí rozdíly ve vypočtených hodnotách pro BPA a BDA. Towner (1975) porovnal výsledky z viskózního modelu s hodnotami vypočtenými na základě BPA a uvádí, že výsledky jsou přijatelné i pro větší sklony. Rozdíly se mírně zvyšují s rostoucím poměrem R/K. V další publikaci uvádí Marei a Towner (1975), že při porovnání BPA a BDA je správná teorie, že proudnice jsou rovnoběžné s nepropustným podložím. Na základě těchto studií použil BPA Lesaffre (1987) při odvození analytického vztahu pro návrh drenážních soustav na skloněném nepropustném podloží. Při porovnání maximální výšky hladiny odvozené pomocí Boussinesqovy druhé aproximace (BDA) a výsledků studie viskózního modelu, které provedli Guitjens a Luthin (1965), se rozdíly mezi vypočtenými hodnotami a modelem zvyšují s rostoucím sklonem a vyšším poměrem R/K. Zároveň ale uvádějí, že při sklonech do 0,3 jsou chyby relativně malé. Porovnání výsledků odvozených pomocí BDA s viskózním modelem do sklonu nepropustného podloží 0,08 provedli Ram a Chauhan (1987) a uvádějí dobrý souhlas v porovnávaných hodnotách. Pro účely návrhu drenáže dokonce doporučují pro půdy se středními sklony použít rovnice odvozené pro horizontální nepropustnou vrstvu. Z BDA vycházel také McEnroe (1994) při návrhu odvodnění skládek. U BPA se ale narozdíl od BDA obtížněji určují okrajové podmínku, a proto je BDA stále využívána při navrhování odvodňovacích soustav, které se většinou provádějí na územích s nižší sklonitostí. 18 Řešení diferenciálních rovnic 3 ŘEŠENÍ DIFERENCIÁLNÍCH ROVNIC 3.1 Ustálené proudění na nakloněné nepropustné rovině Při ustáleném proudění podzemní vody na svahu, kdy se předpokládá, že voda proudí stále pouze směrem ze svahu dolů, nastává při hodnotě σ = 1 změna ve tvaru hladiny podle obr. 3.1 (pro Boussinesqovu první aproximaci). Při hodnotách σ < 1 se na horním konci svahu vytvoří výška h0 [L]. Při hodnotách σ ≥ 1 je výška hladiny na horním konci svahu nulová. Po integraci rovnice (2.30) dostaneme tvar: h dh − 2σh + u = c1 du (3.1) kde c1 je integrační konstanta. Pro vyšetření hodnoty této konstanty musíme provést analýzu tvaru hladiny v bodě A (obr. 3.1). z h0 + z + B + A A + H B + H θ θ C x a C + x b + Obr. 3.1 Změny tvaru hladiny podzemní vody při různých hodnotách faktoru σ pro Boussinesqovu první aproximaci: a) σ < 1, b) σ ≥ 1. Sklon hladiny dh/dx v xA = 0 je za předpokladu, že voda na horním konci svahu neproudí, roven sklonu nepropustného podloží. Okrajové podmínky v bodě A jsou pro zjištění konstanty c1 následující: x = xA = 0 h = h0 u=0 dh =s dx dh = du s RK Rovnice (3.1) byla upravena pro okrajové podmínky v bodě A na tvar: s h0 − 2σ = c1 R K (3.2) 19 Řešení diferenciálních rovnic a byla řešena zvlášť pro Boussinesqovu první a druhou aproximaci. Pokud dosadíme do upravené rovnice vzorec σ z BPA, bude mít rovnice dvě různé hodnoty konstanty c1 závislé na hodnotě výšky hladiny h0. Pro hodnoty h0 > 0, což odpovídá hodnotám faktoru hladiny σ < 1, bude mít konstanta hodnotu c1 = h0 s R K . Pro nulovou hodnotu výšky hladiny na konci svahu bude mít i konstanta c1 nulovou hodnotu (h0 = 0, c1 = 0). Pokud budeme řešit konstantu pro BDA zjistíme, že první a druhý člen v závorce je totožný. Závorka má tedy nulovou hodnotu a pro libovolnou hodnotu h0 bude i hodnota konstanty c1 nulová. Poloha maximální výšky hladiny na ose x se vypočte z podmínky nulového sklonu hladiny v x = xH jako: xH = 2σH + c1 R K (3.3) Pro další úpravu rovnice (3.1) nahradíme v = u – c1 a w = h/v a rovnici upravíme na tvar: wdw dv =− w − 2σw + 1 v (3.4) 2 Pokud zjišťujeme podmínky řešení rovnice (3.4), vypočítáváme ve zlomku na levé straně kvadratickou rovnici, která má reálné kořeny v případě, že σ > 1, a nereálné pro hodnoty σ < 1. Tento fakt odpovídá změně tvaru hladiny podzemní vody v kritické hodnotě σ = 1. Pro tyto tři rozdílné hodnoty parametru σ dále řešíme rovnici (3.4) a získáme vzorce pro výpočet maximální výšky hladiny podzemní vody při ustáleném proudění. Pro hodnotu σ = 1 upravíme rovnici (3.4) na tvar: wdw dv =− 2 v (w − 1) kde (3.5) u = R K ⋅x v = u – c1 w = h/v Následnou integrací dostaneme: ln(w − 1) − 2 2 = − ln v 2 + c2 w −1 (3.6) 20 Řešení diferenciálních rovnic Konstantu c2 vypočteme pomocí okrajových podmínek v místě maximální výšky hladiny podzemní vody, kdy předpokládáme, že sklon hladiny dH/dx je nulový, h = H , v = 2 H , w =1 2. c2 = ln H 2 + 4 (3.7) Pokud dále řešíme rovnici (3.6) pro okrajové podmínky h = hL, v = vL dostaneme rovnici pro výpočet maximální výšky hladiny podzemní vody pro σ = 1 ve tvaru: 2v − 4hL 2 H 2 = (hL − vL ) ⋅ exp L hL − vL (3.8) Pro hodnotu σ > 1 řešíme rovnici (3.4) a po integraci získáme tvar: ln(w 2 − 2σw + 1) + kde σ w − σ − λ1 ln = − ln v 2 + c3 λ1 w − σ + λ1 (3.9) λ1 = σ 2 − 1 Hodnota konstanty c3 vypočtená pomocí okrajových podmínek h = H, v = 2σH, w = 1/(2σ) má hodnotu: c3 = ln H 2 + σ 1 (2σ ) − σ − λ1 ln λ1 1 (2σ ) − σ + λ1 (3.10) Dalším řešením rovnice (3.9) pro okrajové podmínky h = hL, v = vL odvodíme vzorec pro výpočet maximální výšky hladiny podzemní vody pro hodnoty σ > 1, který můžeme psát jako: ( H 2 = hL − 2σhL v L + vL 2 2 σ (hL v L − σ − λ1 ) (1 (2σ ) − σ + λ1 ) λ1 (h v − σ + λ ) (1 ( 2σ ) − σ − λ ) 1 1 L L ) (3.11) Řešením rovnice (3.4) pro hodnoty σ < 1 dostaneme po integraci následující rovnici: ( ) ln w 2 − 2σw + 1 + kde 2σ λ2 arctan w −σ λ2 = − ln v 2 + c 4 (3.12) λ2 = 1 − σ 2 Pro zvolené okrajové podmínky h = H, v = 2σH, w = 1/(2σ) má konstanta c4 hodnotu: 21 Řešení diferenciálních rovnic c4 = ln H 2 + 2σ λ2 arctan 1 (2σ ) − σ (3.13) λ2 Pokud rovnici (3.12) dále řešíme pro případ h = hL, v = vL, odvodíme rovnici pro výpočet maximální výšky hladiny podzemní vody pro hodnoty σ < 1 ve tvaru: ( ) 2σ 2 2 H 2 = hL − 2σhL vL + vL exp λ2 h v −σ 1 (2σ ) − σ arctan L L − arctan λ2 λ2 (3.14) V rovnicích (3.5) až (3.14) se vyskytuje proměnná v respektive vL, jejíž hodnoty jsou závislé na hodnotě konstanty c1. Tato konstanta má nulovou hodnotu pro σ = 1 a σ > 1. V těchto případech lze dosadit do rovnic hodnoty v = x R K respektive v L = L R K . Pokud řešíme rovnice pro σ < 1 je hodnota konstanty c1 závislá na postupu zvoleného řešení. Pokud se rovnice řeší pomocí Boussinesqovy druhé aproximace je hodnota konstanty také nulová a platí výše uvedená substituce. Při použití Boussinesqovy první aproximace je hodnota konstanty vyjádřená vzorcem c1 = h0 s R K a tudíž v = x R K − h0 s R K a v L = L R K − h0 s R K . Hodnotu výšky hladiny na horním konci svahu, h0, lze získat řešením rovnice (3.12) pro okrajové podmínky h = hL, v = vL a následným dosazením x = 0, h = h0, v0 = − h0 s R K . Po úpravě získáme implicitní vztah: h0 = vL 2 2 ( 1 + 2σs R K + s R K ) 2 2σ exp 1 − σ 2 − 1 (s R K ) − σ arctan − σ − arctan 1−σ 2 1−σ 2 (3.15) Tato rovnice může být řešena iteracemi, kdy počáteční hodnotu h0 pro výpočet vL zvolíme rovnu nule. Počet iterací potřebných k výpočtu hodnoty h0 jsou čtyři až deset. Tvar hladiny podzemní vody můžeme získat řešením rovnice (3.1) metodou Runge-Kutta čtvrtého řádu (Rektorys, 2000). Jako počáteční hodnoty pro řešení zvolíme hodnoty maximální výšky hladiny podzemní vody pomocí rovnic (3.8), (3.11) a (3.14) a její polohy na ose x (3.3). 22 Řešení diferenciálních rovnic 3.2 Neustálené proudění na nakloněné nepropustné rovině V této kapitole je opět použit symbol „*“ pro Boussinesqovu druhou aproximaci. Při odvození vztahů pro neustálené proudění na nakloněné nepropustné rovině v hydraulickém systému, znázorněném na obr. 3.2, budeme předpokládat tyto charakteristiky hydraulického systému: a) Hydraulický potenciál ϕ je konstantní v rovině kolmé na nepropustné podloží a je závislý pouze na výšce hladiny podzemní vody: ϕ ( x, z , t ) = h ( x , t ) b) (3.16) Tvar hladiny podzemní vody je konstantní pro definovanou maximální výšku hladiny podzemní vody. Lze tedy provést následující separaci proměnných: h( x, t ) = H (t )W ( X , H ) (3.17) c) Půdní materiál lze považovat za homogenní. d) Voda proudí pouze směrem ze svahu, tzn. že na horním konci svahu voda neproudí (není zde žádný recipient) Podobný postup při úpravě rovnice kontinuity uvádí Lesaffre a Zimmer (1988). Rovnici kontinuity můžeme napsat ve tvaru: ∂q x ( x, t ) ∂h( x, t ) = R (t ) − µ ∂x ∂t (3.18) z* * h 0 (t1 ) * h 0 (t2 ) * H (t1 ) * H (t2 ) x* θ hL * * L Obr. 3.2 Hydraulický systém pro odvození rovnic neustáleného proudění na svahu pro Boussinesqovu druhou aproximaci. 23 Řešení diferenciálních rovnic Rovnici kontinuity (3.18) můžeme upravit, za předpokladu 2 na následující tvar: dq x ( x) = R(t )dx − µ dH (t ) dW ( X , H ) L W ( X , H ) + H (t ) dX dt dH (3.19) Při integraci rovnice (3.19) od x = 0 do x = x1 získáme tvar: X q x ( x1 ) = R (t ) x1 − µ dH (t ) 1 dW ( X , H ) L ∫ W ( X , H ) + H (t ) dX dt dH 0 (3.20) Úpravou této rovnice pro podmínku x1 = L získáme rovnici pro průtok na jednotku plochy hydraulického systému, kterou můžeme psát: Q (t ) = R (t ) − µ kde: dH (t ) B( H ) dt (3.21) Q - průtok na jednotku plochy Q = qx/L [L.T-1] B(H) - první faktor tvaru hladiny [-] 1 dW ( X , H ) B ( H ) = ∫ W ( X , H ) + H (t ) dX dH 0 (3.22) Druhou integrací rovnice kontinuity - integrací rovnice (3.20) od x = 0 do x = L získáme tuto rovnici: L ∫ q x ( x)dx = R(t ) 0 kde: C(H) L2 dH (t ) L2 −µ C (H ) 2 dt 2 (3.23) - druhý faktor tvaru hladiny [-] 1 dW ( X , H ) C ( H ) = 2 ∫ (1 − X )W ( X , H ) + H (t ) dX dH 0 (3.24) Integrací pohybové rovnice (2.28) v mezích od x = 0 do x = L obdržíme: hL − h0 L ∫0 q x ( x)dx = sKH (t ) 2 P( H ) − K 2 2 L kde: P(H) 2 (3.25) - třetí faktor tvaru hladiny [-] 1 P ( H ) = 2∫ W ( X , H )dX (3.26) 0 24 Řešení diferenciálních rovnic Dosazením rovnice (3.25) do rovnice (3.23) obdržíme rovnici neustáleného proudění podzemní vody na svahu pro Boussinesqovu druhou aproximaci ve tvaru: ( ) sKLH (t ) P ( H ) − K hL − h0 = R (t ) L2 − µ 2 2 dH (t ) 2 L C(H ) dt (3.27) Hodnoty faktorů tvaru hladiny, B(H), C(H), P(H), a případně výšky hladiny h0 pro známé hodnoty maximální výšky hladiny, H, a výšky hladiny hL vypočteme z rovnic pro ustálené proudění na svahu. Tyto výpočty se musí opakovaně provádět pro každou novou hodnotu H. Kombinací rovnice kontinuity s upravenou pohybovou rovnicí (2.28) dostaneme diferenciální rovnici pro proudění podzemní vody na svahu pro Boussinesqovu druhou aproximaci ve tvaru: µ dh* ( x* , t ) d dh* ( x* , t ) dh* ( x* , t ) = R(t ) + K * h* ( x* , t ) − sK dx* dx* dt dx (3.28) Rovnice pro výpočet pohybu maximální hladiny podzemní vody pro Boussinesqovu druhou aproximaci má tvar: ( 2 2 dH * (t ) R (t ) L* − sKL* H * (t ) P ( H ) + K hL* − h0* = 2 dt µL* C ( H ) 2 ) (3.29) Průtok na jednotku plochy drenážní soustavy se vypočte podle rovnice: ( 2 2 B ( H ) R (t ) L* − sKL* H * (t ) P ( H ) + K hL* − h0* Q(t ) = R (t ) − 2 C(H ) L* 2 ) (3.30) Rovnici (3.29) lze vypočítat pomocí metody Runge-Kutta čtvrtého řádu (Rektorys, 2000). 25 Model odtoku podzemní vody 4 MODEL ODTOKU PODZEMNÍ VODY Na základě uvedených rovnic (3.1), (3.3), (3.8), (3.11), (3.14), (3.22), (3.24), (3.26), (3.29) a (3.30) (v modelu je tedy použita Boussinesqova druhá aproximace) byl sestaven model neustáleného proudění podzemní vody na nakloněné nepropustné rovině. Model z velké části řeší ustálené proudění, které je nutné pro odvození tvarů hladiny podzemní vody, a z části řeší neustálené proudění podzemní vody na svahu. Pro výpočty byl použit program Scilab-3.1.1. Model je sestaven za předpokladů uvedených v kapitole 3.2.2: • půdní prostření je homogenní • nepropustné podloží není zakřivené • recipienty leží na nepropustném podloží • hladina podzemní vody je volná Vstupní parametry modelu pro řešení proudění na svahu jsou: • délka svahu L = 600 m • sklon nepropustného podloží s = 0,23 • rozloha povodí A = 163000 m2 • časové rozložení odtoku Q [l.s-1] z povodí • časové rozložení srážek R [mm] na povodí • koeficient ztráty deště koef (různý pro různé roky) • výška hladiny na konci svahu hL = 0 m • počet výpočtových bodů na ose x n = 100 • časový krok výpočtu fluktuace hladiny dt = 3600 s Parametry modelu, které jsou pro dané povodí kalibrovány: • hodnota nasycené hydraulické vodivosti K pro rychlou odezvu (dolní mez: K = 0,0001 m.s-1; horní mez: K = 0,0021 m.s-1) • hodnota nasycené hydraulické vodivosti K pro pomalou odezvu (dolní mez: K = 0,000001 m.s-1; horní mez: K = 0,000021 m.s-1) 26 Model odtoku podzemní vody • drenážní pórovitost µ pro rychlou odezvu (dolní mez: µ = 0,01; horní mez: µ = 0,026) • drenážní pórovitost µ pro pomalou odezvu (dolní mez: µ = 0,01; horní mez: µ = 0,035) Rovnice (3.1) a (3.29) jsou řešeny metodou Runge-Kutta čtvrtého řádu (Rektorys, 2000): 1 y n +1 = y n + h (k1 + 2 k 2 + 2 k 3 + k 4 ) 6 k 1 = f (x n , y n ) 1 1 k 2 = f x n + h, y n + h k1 2 2 1 1 k 3 = f x n + h, y n + h k 2 2 2 k 4 = f (x n + h, y n + h k 3 ) kde: (4.1) xn - nezávislá proměnná v kroku n [L] yn - proměnná závislá na proměnné xn v kroku n [L] kx - proměnné metody Runge-Kutta pro odhad yn+1 [L] h - krok výpočtu [L] yn+1 - proměnná závislá na proměnné xn v kroku n+1 [L] n - počet výpočtových kroků [-] Graficky je tato metoda vyjádřena na obr 4.1: Obr. 4.1 Metoda Runge-Kutta čtvrtého řádu (Rektorys, 2000). Jako výchozí hodnota výpočtu fluktuace maxima hladiny (rovnice (3.29)) byla použita hodnota vypočtená z naměřeného průtoku (rovnice (3.8) nebo (3.11) nebo (3.14)). Simulace rychlé odezvy začíná vždy od inflexního bodu výtokové křivky. V rovnici (3.30) byly parametry tvaru hladiny B(H), C(H) z důvodů stability výpočtu považovány za shodné. 27 Model odtoku podzemní vody Při kalibraci parametrů K a µ pro rychlou odezvu byl k simulovaným průtokům přičten základní odtok odhadnutý z naměřených dat, aby se tvar křivek lépe porovnával. Do výpočtu vstupovaly nulové srážky. Při kalibraci parametrů K a µ pro pomalou odezvu nebyl k simulovaným průtokům přičten základní odtok a do výpočtu vstupovaly nulové srážky. K ověření správnosti namodelovaných průtoků (rovnice (3.30)) byla použita data naměřená na povodí Modrava 2 na Šumavě (pokusné povodí Katedry vodního hospodářství a environmentálního modelování Fakulty životního prostředí ČZU Praha). Jako kriterium shody měřených a modelovaných dat byl použit koeficient determinace: n KD = 1 − ∑ (Qmer − Qsim ) i =1 n KD i ∑ (Qmer − pQmer ) i =1 kde: 2 i (4.2) 2 i - koeficient determinace [-] Qmeri - průtok měřený v čase i [L3.T-1] Qsimi - průtok simulovaný v čase i [L3.T-1] pQmer - průměrná hodnota naměřených průtoků [L3.T-1] Pro kalibraci i pro verifikaci byly vybrány různorodé úseky, aby byla zajištěna co největší objektivita. Výsledný model je rozdělen na dvě části. První část simuluje rychlou odezvu povodí, druhá část simuluje pomalou odezvu povodí. Do první části vstupují nulové srážky, do druhé části vstupují měřené srážky přenásobené koeficientem ztráty deště. Součet těchto dvou částí představuje výsledný simulovaný průtok. 28 Výsledky a diskuze 5 VÝSLEDKY A DISKUZE 5.1 Ustálené proudění na nakloněné nepropustné rovině Pro výpočet tvaru hladiny podzemní vody při ustáleném proudění byly využity vzorce (3.1), (3.3), (3.8), (3.11), (3.14), (3.22), (3.24) a (3.26). Data vzniklá při výpočtech maximální výšky hladiny podzemní vody a její polohy na ose x pro různé sklony nepropustného podloží jsou uvedena v grafu 5.1. (BPA), v grafu 5.2 (BDA), v tab. 7.1 (BPA) a v tab. 7.2 (BDA). V tab. 5.1 jsou uvedeny výsledky porovnání vypočtených hodnot s hodnotami získanými při laboratorním experimentu na viskózním modelu, který provedli Guitjens a Luthin (1965). 1,0 0,9 0,9 0,8 0,8 0,7 0,7 0,6 0,6 xH/L H/L 0,5 0,5 0,4 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0,0 0,0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 R/K H s=0,1 H s=0,2 H s=0,3 H s=0,4 H s=0,5 xH/L s=0,05 xH/L s=0,1 xH/L s=0,2 xH/L s=0,3 xH/L s=0,4 xH/L s=0,5 H s=0,05 Graf 5.1 Závislost maximální výšky hladiny podzemní vody a její polohy na ose x na poměru R/K pro Boussinesqovu první aproximaci. 29 Výsledky a diskuze 1,0 0,9 0,9 0,8 0,8 0,7 0,7 0,6 0,6 0,4 xH/L H/L 0,5 0,5 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0,0 0,0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 R/K H/L s=0,1 xH/L s=0,1 H/L s=0,2 xH/L s=0,2 H/L s=0,3 xH/L s=0,3 H/L s=0,4 xH/L s=0,4 H/L s=0,5 xH/L s=0,5 xH/L s=0,05 H/L s=0,05 Graf 5.2 Závislost maximální výšky hladiny podzemní vody a její polohy na ose x na poměru R/K pro Boussinesqovu druhou aproximaci. Z porovnání výsledků odvozených na základě Boussinsqových aproximací a výsledků z viskózního modelu (tab. 5.1) lze konstatovat, že hodnotám naměřeným při experimentu lépe odpovídá Boussinesqova první aproximace. Experiment byl uskutečněn pro podmínky drenážní soustavy na svahu, tzn. že oba okraje byly odvodněny. Model sestavený pro tuto diplomovou práci počítá s odvodněním pouze u dolního okraje svahu, u horního okraje k odvodnění nedochází. Proto lze pro srovnání použít buď minimální sklon a odvozené vzorce aplikovat pouze na jednu polovinu soustavy, a nebo vyšší sklony, kdy hodnota faktoru sigma σ > 1. V tabulce jsou pro porovnání orientačně uvedeny i hodnoty, kdy σ > 0,5. V těchto případech má výška hladiny na horním okraji svahu malou hodnotu a její vliv na výšku maximální hladiny není podstatný. Rozdíly ve výsledcích odvozených pomocí obou aproximací a hodnot z viskózního modelu se zvyšují s rostoucí hodnotou R/K. U Boussinesqovy první aproximace však rozdíly nepřesahují 16 % naměřených hodnot, ve většině případů se rozdíl pohybuje do 10 %. U Boussinesqovy druhé aproximace rozdíly rostou se zvyšujícím se sklonem nepropustného podloží a dosahují hodnot více než 40 %. Tato aproximace byla autorem určena pro mírné 30 Výsledky a diskuze svahy. Rozdíly ve vypočtených hodnotách pro BPA a BDA se také zvyšují s rostoucím sklonem nepropustného podloží. Pro sklon 0,3 jsou rozdíly v obou aproximacích podobné, což opravňuje užití BDA pro simulaci odtoku z experimentálního povodí, kde sklon svahu má hodnotu 0,23 (tedy hodnotu menší než 0,3). Tab. 5.1 Porovnání vypočtených hodnot maximální výšky hladiny s hodnotami z viskózního modelu, které uvádějí Guitjens a Luthin (1965) (hodnoty BPA jsou převedeny na souřadnicový systém BDA, který byl použitý na viskózním modelu). sklon 0,0001 0,3 0,4 0,5 0,6 0,7 R/K viskózní model H/L difference H/L BPA sigma BPA difference BPA - model H/L % H/L BDA sigma BDA BDA - model H/L % 0,70 0,0157 0,0617 0,1252 0,0004 0,0009 0,70 0,1252 0,0004 0,0009 0,0343 0,0901 0,1851 0,0003 0,0025 1,34 0,1851 0,0003 0,0025 1,34 0,0452 0,1064 0,2125 0,0002 -0,0001 -0,06 0,2125 0,0002 -0,0001 -0,06 -1,92 0,066 0,1333 0,2568 0,0002 -0,0049 -1,91 0,2568 0,0002 -0,0049 0,0864 0,1587 0,2939 0,0002 -0,0118 -4,01 0,2939 0,0002 -0,0118 -4,02 0,0277 0,0730 0,0727 0,8763 -0,0003 -0,39 0,0655 0,9013 -0,0075 -11,40 0,0446 0,0990 0,1074 0,6786 0,0084 7,83 0,0960 0,7103 -0,0030 -3,09 0,0625 0,1316 0,1405 0,5625 0,0089 6,37 0,1247 0,6000 -0,0069 -5,51 0,0885 0,1639 0,1842 0,4596 0,0202 10,98 0,1619 0,5042 -0,0021 -1,28 0,027 0,0592 0,0624 1,1843 0,0032 5,19 0,0528 1,2172 -0,0064 -12,15 0,0436 0,0971 0,0944 0,9161 -0,0027 -2,88 0,0790 0,9578 -0,0181 -22,84 0,0609 0,1266 0,1251 0,7611 -0,0015 -1,22 0,1038 0,8104 -0,0228 -21,93 0,0931 0,1818 0,1774 0,5944 -0,0044 -2,48 0,1452 0,6555 -0,0367 -25,26 0,0284 0,0595 0,0597 1,4413 0,0002 0,30 0,0467 1,4835 -0,0128 -27,39 0,0488 0,1020 0,0966 1,0765 -0,0054 -5,58 0,0747 1,1317 -0,0274 -36,63 0,0672 0,1351 0,1277 0,8996 -0,0074 -5,80 0,0977 0,9644 -0,0375 -38,34 0,0941 0,1887 0,1705 0,7383 -0,0182 -10,64 0,1286 0,8150 -0,0601 -46,71 0,0273 0,0505 0,0543 1,7661 0,0038 7,07 0,0391 1,8157 -0,0114 -29,23 0,0504 0,1010 0,0951 1,2690 -0,0059 -6,19 0,0673 1,3363 -0,0337 -50,00 0,0654 0,1282 0,1202 1,0964 -0,0080 -6,66 0,0843 1,1731 -0,0439 -52,08 0,0938 0,1786 0,1656 0,8877 -0,0130 -7,84 0,1142 0,9795 -0,0643 -56,33 0,033 0,0588 0,0627 1,8631 0,0039 6,18 0,0409 1,9267 -0,0179 -43,67 0,0456 0,0893 0,0847 1,5643 -0,0046 -5,43 0,0548 1,6390 -0,0345 -62,92 0,0638 0,1333 0,1154 1,2973 -0,0180 -15,56 0,0737 1,3857 -0,0596 -80,80 0,0927 0,1786 0,1622 1,0430 -0,0163 -10,07 0,1018 1,1496 -0,0768 -75,40 31 Výsledky a diskuze 5.2 Neustálené proudění na nakloněné nepropustné rovině Při výpočtu vzorců (3.29) a (3.30) pro neustálené proudění na svahu je nejdůležitější přesné stanovení faktorů tvaru hladiny B(H), C(H) a P(H), rovnice (3.22), (3.24) a (3.26), které se odvozují za podmínek ustáleného proudění. Průběh hodnot těchto faktorů v závislosti na maximální výšce hladiny podzemní vody je pro sklony 0,05 až 0,2 znázorněn v grafech 7.1 (graf 5.3 je totožný s grafem 7.1) až 7.5 (BPA) a v grafech 7.6 až 7.10 (BDA). V tab. 5.2 a 5.3 jsou uvedeny výsledky porovnání vypočtených hodnot s hodnotami, které uvádějí Hartani, Lesaffre a Zimmer (2001). 2 1,8 1,6 1,4 B(H) C(H) P(H) 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 5.3 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,05. 32 Výsledky a diskuze Z grafů závislostí hodnot faktorů tvaru hladiny na maximální výšce hladiny podzemní vody jsou patrné dvě části průběhu. Při nízkých hodnotách maximální výšky hladiny roste s rostoucí výškou hladiny také hodnota faktorů tvaru hladiny. Při vyšších hodnotách maximální výšky hladiny hodnoty faktorů mírně klesají a přibližují se hodnotám těchto faktorů odvozených pro ustálené proudění na horizontální nepropustné rovině, které jsou konstantní pro všechny výšky maximální hladiny. Místo, ve kterém dochází ke změně průběhu křivek, se pro větší sklony vyskytuje u vyšších hodnot maximální hladiny. Tato oblast se přibližně vyskytuje v místě, kde je hodnota faktoru hladiny podzemní vody σ = 0,7, kdy se začíná ve větší míře projevovat vliv výšky hladiny na horním okraji svahu. Tab. 5.2 Porovnání vypočtených hodnot faktorů tvaru hladiny B(H), C(H) a P(H) a maximální výšky hladiny s hodnotami, které uvádějí Hartani, Lesaffre a Zimmer (2001) (část A). sklon 0,08 0,3 R/K sigma H/L P B C článek článek článek článek Hartani Hartani Hartani Hartani H/L BPA P BPA B BPA C BPA 0,1228 0,1001 0,1753 1,5690 0,7821 0,9972 0,3022 1,6526 0,9305 0,9633 0,0308 0,2210 0,0872 1,5634 0,7979 1,1666 0,1292 1,7105 0,9791 0,9795 0,0235 0,2551 0,0756 1,5611 0,8060 0,2342 0,1083 1,7169 0,9869 0,9782 0,0127 0,3500 0,0551 1,5524 0,8356 0,4593 0,0717 1,7116 1,0064 0,9604 0,0089 0,4200 0,0454 1,5438 0,8632 1,6627 0,0558 1,6997 0,9961 0,9519 0,0056 0,5300 0,0351 1,5261 0,9043 1,9582 0,0399 1,6494 0,9862 0,9138 0,0044 0,6000 0,0304 1,5115 0,9239 2,1018 0,0331 1,6069 0,9710 0,8810 0,0024 0,8200 0,0202 1,4425 0,9026 2,0282 0,0203 1,4534 6,1971 42,3673 0,0020 0,9010 0,0174 1,3774 0,8281 1,7703 0,0174 1,4026 0,8315 0,6403 0,0016 1,0001 0,0146 1,3461 0,8095 1,6377 0,0147 1,3496 0,7707 0,5698 0,0015 1,0300 0,0139 1,3333 0,7980 1,5971 0,0140 1,3375 0,7654 0,5519 0,0001 4,0000 0,0012 1,0528 0,5470 1,1072 0,0012 1,0351 0,1170 -0,4001 0,0215 1,0001 0,0564 1,3587 0,8185 2,0727 0,0540 1,3496 0,7730 0,5704 0,0152 1,2002 0,0417 1,2842 0,7511 1,7784 0,0399 1,2754 0,7130 0,4798 0,0130 1,3000 0,0364 1,2561 0,7260 1,6739 0,0349 1,2454 0,6801 0,4534 0,0112 1,4002 0,0320 1,2324 0,7048 1,5887 0,0307 1,2215 0,6604 0,4317 0,0098 1,5004 0,0284 1,2120 0,6868 1,5180 0,0272 1,2031 0,6558 0,4152 0,0056 2,0005 0,0170 1,1436 0,6264 1,2969 0,0163 1,1338 0,6076 0,3944 0,0036 2,5001 0,0113 1,1050 0,5922 1,1843 0,0108 1,0952 0,5478 0,3169 0,0009 5,0011 0,0030 1,0376 0,5093 1,0186 0,0029 0,9889 12,1613 19,5801 33 Výsledky a diskuze Tab. 5.2 Porovnání vypočtených hodnot faktorů tvaru hladiny B(H), C(H) a P(H) a maximální výšky hladiny s hodnotami, které uvádějí Hartani, Lesaffre a Zimmer (2001) (část B). difference difference difference difference sklon BPA – článek Hartani BPA - článek Hartani BPA - článek Hartani BPA - článek Hartani H/L % P % B % C % 0,08 0,1269 42,00 0,0836 5,06 0,1484 15,95 0,4647 48,24 0,0420 32,53 0,1471 8,60 0,1812 18,51 0,3962 40,45 0,0327 30,20 0,1558 9,07 0,1809 18,33 0,8611 88,03 0,0166 23,16 0,1592 9,30 0,1708 16,97 0,7308 76,09 0,0104 18,58 0,1559 9,17 0,1329 13,34 0,1206 12,67 0,0048 11,95 0,1233 7,48 0,0819 8,31 -0,0653 -7,15 0,0027 8,18 0,0954 5,94 0,0471 4,85 -0,1699 -19,29 0,0001 0,62 0,0109 0,75 5,2945 85,44 41,3532 97,61 0,0000 0,27 0,0252 1,80 0,0034 0,40 -0,2448 -38,24 0,0001 0,61 0,0035 0,26 -0,0388 -5,04 -0,2490 -43,70 0,0001 0,61 0,0042 0,31 -0,0326 -4,26 -0,2466 -44,68 0,3 0,0000 -1,10 -0,0177 -1,71 -0,4300 -367,45 -0,9537 238,36 -0,0024 -4,48 -0,0091 -0,67 -0,0455 -5,89 -0,4660 -81,70 -0,0018 -4,46 -0,0088 -0,69 -0,0381 -5,34 -0,4094 -85,33 -0,0015 -4,42 -0,0107 -0,86 -0,0459 -6,75 -0,3835 -84,58 -0,0013 -4,29 -0,0109 -0,89 -0,0444 -6,73 -0,3626 -83,99 -0,0012 -4,37 -0,0089 -0,74 -0,0310 -4,72 -0,3438 -82,82 -0,0007 -4,33 -0,0098 -0,87 -0,0188 -3,09 -0,2541 -64,43 -0,0005 -4,47 -0,0098 -0,90 -0,0444 -8,11 -0,2753 -86,87 -0,0001 -3,91 -0,0487 -4,93 11,6520 95,81 19,0708 97,40 Tab. 5.3 Porovnání vypočtených hodnot maximální výšky hladiny s hodnotami, které uvádějí Hartani, Lesaffre a Zimmer (2001). sklon 0,08 R/K (mm/h) H/L sigma článek difference H/L BPA Hartani BPA - článek Hartani H/L % 39 0,0100 0,4415 0,8695 0,4280 49,23 5 0,1138 0,1576 0,2676 0,1100 41,11 1,593 0,2170 0,0883 0,1322 0,0439 33,19 1,172 0,2551 0,0754 0,1083 0,0329 30,36 0,636 0,3502 0,0547 0,0717 0,0170 23,67 0,444 0,4207 0,0451 0,0556 0,0105 18,93 0,281 0,5306 0,0349 0,0398 0,0049 12,31 0,108 0,8588 0,0188 0,0189 0,0001 0,34 0,074 1,0382 0,0138 0,0138 0,0000 0,01 0,05 1,2636 0,0099 0,0099 0,0000 -0,18 34 Výsledky a diskuze Po porovnání výsledků odvozených na základě BPA a výsledků, které uvádějí Hartani, Lesaffre a Zimmer (2001), také odvozených na základě BPA je vidět, že rozdíly v hodnotách maximální výšky hladiny a faktoru tvaru hladiny P(H) se opět zvyšují s rostoucí hodnotou R/K a také s rostoucím svahem, přičemž největší shody dosahují pro sklon 0,08 (u parametru P(H) také sklon pro 0,3) a σ > 0,8, kdy diference téměř nepřesahuje 1% V těchto případech má výška hladiny na horním okraji malou hodnotu a její vliv na výšku maximální hladiny není podstatný (výsledků, které uvádějí Hartani, Lesaffre a Zimmer (2001), bylo dosaženo za předpokladu odvodnění horního i dolního okraje výpočtové oblasti, lze proto pro srovnání použít buď minimální sklon a odvozené vzorce aplikovat pouze na jednu polovinu soustavy, a nebo vyšší sklony, kdy hodnota faktoru sigma σ > 1). Uspokojivá je též shoda maxima hladiny a parametru B(H) pro svah 0,3, kdy se diference pohybuje kolem 5%. Největší rozdíly vykazuje parametr C(H): 80 až 90% 35 Výsledky a diskuze 5.3 Kalibrace a verifikace modelu Parametry modelu (který pro modelování odtoku vody z povodí používá Boussinqovu druhou aproximaci) K a µ pro rychlou odezvu byly kalibrovány na datech z let 2000, 2002 a 2006 a verifikovány na datech z let 1998, 1999 a 2004. Pro pomalou odezvu byly kalibrovány na datech z let 2001, 2002, 2004 a 2006 a verifikovány na datech z let 1999, 2000 a 2003. Výsledky kalibrací jsou znázorněny v grafech 7.11 až 7.26 a výsledky verifikací v grafech 7.27 až 7.32. Kalibrace parametrů K a µ se neřídila koeficientem determinace ale výsledky znázorněnými v grafech 7.11 až 7.26. Při rychlé i pomalé odezvě je odtoková křivka s klesajícím µ strmější a s klesajícím K pozvolnější. Po kalibraci byly vybrány tyto parametry: • nasycená hydraulická vodivost pro rychlou odezvu: K = 0,001 m.s-1 • nasycená hydraulická vodivost pro pomalou odezvu: K = 0,00001 m.s-1 • drenážní pórovitost pro rychlou odezvu: µ = 0,02 • drenážní pórovitost pro pomalou odezvu: µ = 0,015 Parametr K = 0,00001 m.s-1 svědčí pro druh zeminy: hlinitý a jemný písek (tab. 2.2), nebo písek (tab. 2.3) se střední propustností (tab.2.4). Parametr K = 0,001 m.s-1 svědčí pro druh zeminy: štěrk (tab. 2.2), nebo hrubší písek (tab. 2.3) s velmi vysokou propustností (tab.2.4). Parametr µ = 0,015 i µ = 0,02 svědčí pro velikost zrna = 10-4 mm a menší (obr. 2.3), která spadá do zrnitostní kategorie: koloidní jíl (tab.2.1). Verifikace těchto parametrů se zdařila: • KD pro pomalou odezvu se pohybuje v rozmezí 0,53 až 0,77 • KD pro rychlou odezvu se pohybuje v rozmezí 0,98 až 0,998 Nízké hodnoty KD pro pomalou odezvu jsou zapříčiněny srážkami a dotací vláhy ze sněhové pokrývky, které vedou k rozkolísanému průběhu měřených průtoků. Občasné „zuby“ ve výtokových křivkách jsou způsobeny nedokonalým výpočtem hladiny podzemní vody pro ustálené proudění, tato nedokonalost se promítá do výpočtu parametrů tvaru hladiny B(H), C(H) a P(H) a nakonec do výpočtu průtoku. 36 Výsledky a diskuze 5.4 Simulace Výsledný model spojující simulaci pomalé i rychlé odezvy povodí byl vyzkoušen na datech z let 1999, 2002 a 2006, kde byla prokázána schopnost modelu modelovat odtok vody z povodí. Při simulaci průtoků z roku 1999 (graf 5.4) byla použita jedna rychlá odezva (Q=12,5 l/s) a jedna pomalá odezva (Q=3,1 l/s). Při simulaci průtoků z roku 2002 (graf 5.5) byla použita jedna rychlá odezva (Q=15,5 l/s) a jedna pomalá odezva (Q=3,5 l/s). Při simulaci průtoků z roku 2006 (graf 5.6) byla použita jedna rychlá odezva (Q=16,3 l/s) a jedna pomalá odezva (Q=6,1 l/s). Zdánlivý neúspěch simulace roku 2006 (KD = 0,24) byl způsoben tím, že do výpočtu byla zahrnuta pouze jedna povodňová vlna (pro simulaci by bylo vhodné požít také další dvě výrazné povodňové vlny: Q=14,9 l/s a Q=27,7 l/s) a že v první polovině uvedeného časového úseku se na měřeném odtoku významně podílí dotace vláhy z tajícího sněhu, jejíž hodnoty pro výpočet nebyly k 20 0 18 5 16 10 14 15 12 20 10 25 Qmer 8 30 Qsim1 + Qsim2 6 35 R 4 40 2 45 0 3800 50 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 referenční čas (hod) Graf 5.4 Simulace průtoků z roku 1999, koeficient ztráty deště = 0,05 (KD = 0,84). 37 R (mm) Q (l/s) dispozici. 20 0 18 5 16 10 14 15 12 20 10 25 Qmer 8 30 Qsim1 + Qsim2 6 35 R 4 40 2 45 0 50 3800 4000 4200 4400 4600 4800 5000 5200 referenční čas (hod) 20 0 18 5 16 10 14 15 12 20 Qmer 10 25 Qsim1 + Qsim2 8 R (mm) Q (l/s) Graf 5.5 Simulace průtoků z roku 2002, koeficient ztráty deště = 0,1 (KD = 0,81). 30 R 6 35 4 40 2 45 0 3600 50 3900 4200 4500 4800 5100 5400 5700 6000 6300 referenční čas (hod) Graf 5.6 Simulace průtoků z roku 2006, koeficient ztráty deště = 0,06 (KD = 0,24). 38 R (mm) Q (l/s) Výsledky a diskuze Závěr 6 ZÁVĚR Pomocí rozšířené metody separace časových a prostorových proměnných byly upraveny rovnice pro proudění podzemní vody na horizontálním i nakloněném nepropustném podloží. Tato metoda je založena na předpokladu, že tvar hladiny je konstantní pro danou výšku hladiny v určitém bodě na ose x. Tento tvar hladiny se stanoví pomocí rovnic ustáleného proudění. Při odvození rovnic ustáleného proudění se vycházelo ze vztahů, které slouží pro výpočet tvaru hladiny v drenážní soustavě. Tyto rovnice jsou založeny na Boussinesqových aproximacích, které byly odvozeny pro různé koordinační systémy. Hodnoty odvozené na základě těchto dvou aproximací byly porovnány s výsledky viskózního modelu, na základě čehož bylo rozhodnuto o vhodnosti jejich použití pro podmínku proudění na svahu. Z porovnání je patrné, že Boussinesqova druhá aproximace je vhodná pro řešení proudění u sklonu nepropustného podloží do 0,3, zatímco Boussinesqova první aproximace je vhodná i pro řešení při větších sklonech. Hodnoty odvozené na základě Boussinesqovy první aproximace byly porovnány také s výsledky, které uvádějí Hartani, Lesaffre a Zimmer (2001). Z porovnání je patrné, že lepší shodě dochází při vyšších sklonech. Platnost modelu pro výpočet odtoku pozemní vody z povodí pro nakloněné nepropustné podloží sestaveného na základě rovnic odvozených z Boussinesqovy rovnice byla ověřena na datech naměřených v povodí Modrava 2 na Šumavě (pokusné povodí Katedry vodního hospodářství a environmentálního modelování Fakulty životního prostředí ČZU Praha). Model je schopen simulovat odtok základní i odtok přímý. Pro zlepšení modelu by se dalo udělat několik opatření. Mezi první patří zdokonalení výpočtu tvaru hladiny podzemní vody, které by vedlo k odstranění mnohých chyb ve výpočtu. Bylo by vhodné zahrnout do vstupních dat modelu data představující dotaci vláhy z tajícího sněhu. Dále by bylo třeba upravit srážky tak, aby byly při vstupu do modelu ukráceny o počáteční a konstantní ztráty, obdobně i tající sníh. A také rychlá odezva by měla být počítána pro celé výpočtové období stejně jako pomalá odezva, případně podle potřeby by se vytvořila třetí složka odtoku („středně“ rychlá odezva). Celkový výsledný odtok by se počítal jako součet těchto tří složek. 39 Přílohy 7 PŘÍLOHY 7.1 Ustálené proudění na nakloněné nepropustné rovině Tab. 7.1 Výsledky aplikace rovnic pro ustálené proudění podzemní vody na svahu odvozeních na základě Boussinesqovy první aproximace (část A). sklon 0,05 0,1 0,2 R/K xH/L H/L sigma xH/L H/L sigma xH/L H/L sigma 0,0002 0,854 0,0034 1,767 0,940 0,0019 3,535 0,978 0,0010 7,070 0,0004 0,787 0,0063 1,250 0,905 0,0036 2,499 0,964 0,0019 4,998 0,0006 0,741 0,0089 1,020 0,877 0,0053 2,040 0,951 0,0029 4,080 0,0008 0,704 0,0113 0,883 0,854 0,0068 1,766 0,940 0,0038 3,533 0,001 0,675 0,0135 0,790 0,835 0,0084 1,580 0,930 0,0047 3,159 0,002 0,578 0,0232 0,558 0,762 0,0153 1,116 0,890 0,0089 2,232 0,004 0,478 0,0384 0,394 0,674 0,0271 0,787 0,834 0,0167 1,575 0,006 0,421 0,0508 0,321 0,618 0,0373 0,642 0,793 0,0239 1,283 0,008 0,382 0,0616 0,277 0,576 0,0465 0,555 0,761 0,0307 1,109 0,01 0,353 0,0714 0,248 0,543 0,0549 0,495 0,733 0,0370 0,990 0,02 0,271 0,1106 0,173 0,442 0,0902 0,346 0,639 0,0652 0,693 0,04 0,201 0,1678 0,120 0,346 0,1440 0,240 0,535 0,1114 0,480 0,06 0,166 0,2125 0,096 0,293 0,1871 0,192 0,471 0,1502 0,384 0,08 0,144 0,2505 0,081 0,258 0,2243 0,163 0,425 0,1847 0,325 0,1 0,128 0,2841 0,071 0,232 0,2575 0,142 0,389 0,2161 0,285 0,2 0,084 0,4177 0,045 0,157 0,3915 0,089 0,278 0,3473 0,179 0,4 0,046 0,6097 0,024 0,088 0,5883 0,047 0,165 0,5495 0,095 0,6 0,025 0,7592 0,013 0,050 0,7443 0,026 0,095 0,7161 0,052 0,8 0,011 0,8866 0,006 0,022 0,8790 0,011 0,043 0,8640 0,022 40 Přílohy Tab. 7.1 Výsledky aplikace rovnic pro ustálené proudění podzemní vody na svahu odvozeních na základě Boussinesqovy první aproximace (část B). sklon 0,3 0,4 0,5 R/K xH/L H/L sigma xH/L H/L sigma xH/L H/L sigma 0,0002 0,989 0,0007 10,604 0,993 0,0005 14,139 0,995 0,0004 17,674 0,0004 0,980 0,0013 7,497 0,988 0,0010 9,996 0,991 0,0008 12,495 0,0006 0,973 0,0019 6,120 0,983 0,0015 8,160 0,988 0,0012 10,200 0,0008 0,967 0,0026 5,299 0,978 0,0020 7,065 0,985 0,0016 8,832 0,001 0,961 0,0032 4,739 0,974 0,0024 6,318 0,982 0,0020 7,898 0,002 0,935 0,0062 3,347 0,957 0,0048 4,463 0,969 0,0039 5,579 0,004 0,898 0,0120 2,362 0,930 0,0093 3,150 0,948 0,0076 3,937 0,006 0,868 0,0175 1,925 0,908 0,0137 2,566 0,932 0,0112 3,208 0,008 0,844 0,0227 1,664 0,889 0,0179 2,218 0,917 0,0148 2,773 0,01 0,823 0,0277 1,485 0,873 0,0220 1,980 0,904 0,0183 2,475 0,02 0,745 0,0507 1,039 0,809 0,0413 1,386 0,851 0,0347 1,732 0,04 0,650 0,0902 0,720 0,726 0,0756 0,960 0,778 0,0649 1,200 0,06 0,587 0,1248 0,576 0,667 0,1065 0,768 0,725 0,0926 0,959 0,08 0,539 0,1563 0,488 0,622 0,1351 0,651 0,683 0,1187 0,813 0,1 0,501 0,1855 0,427 0,584 0,1621 0,569 0,647 0,1437 0,712 0,2 0,374 0,3114 0,268 0,451 0,2819 0,358 0,514 0,2571 0,447 0,4 0,232 0,5151 0,142 0,291 0,4844 0,190 0,343 0,4570 0,237 0,6 0,138 0,6897 0,077 0,177 0,6651 0,103 0,214 0,6421 0,129 0,8 0,064 0,8495 0,034 0,084 0,8354 0,045 0,103 0,8217 0,056 41 Přílohy Tab. 7.2 Výsledky aplikace rovnic pro ustálené proudění podzemní vody na svahu odvozeních na základě Boussinesqovy druhé aproximace (část A). sklon 0,05 0,1 0,2 R/K xH/L H/L sigma xH/L H/L sigma xH/L H/L sigma 0,0002 0,854 0,0034 1,768 0,940 0,0019 3,536 0,978 0,0010 7,071 0,0004 0,787 0,0063 1,250 0,905 0,0036 2,500 0,964 0,0019 5,000 0,0006 0,741 0,0089 1,021 0,877 0,0053 2,041 0,951 0,0029 4,082 0,0008 0,705 0,0113 0,884 0,854 0,0068 1,768 0,940 0,0038 3,536 0,001 0,675 0,0135 0,791 0,835 0,0083 1,581 0,930 0,0047 3,162 0,002 0,578 0,0231 0,559 0,762 0,0152 1,118 0,890 0,0089 2,236 0,004 0,479 0,0383 0,395 0,675 0,0270 0,791 0,835 0,0167 1,581 0,006 0,423 0,0507 0,323 0,619 0,0372 0,645 0,794 0,0238 1,291 0,008 0,384 0,0615 0,280 0,578 0,0463 0,559 0,762 0,0305 1,118 0,01 0,356 0,0712 0,250 0,546 0,0546 0,500 0,736 0,0368 1,000 0,02 0,275 0,1101 0,177 0,448 0,0895 0,354 0,645 0,0645 0,707 0,04 0,208 0,1667 0,125 0,356 0,1423 0,250 0,546 0,1093 0,500 0,06 0,176 0,2107 0,102 0,307 0,1843 0,204 0,488 0,1464 0,408 0,08 0,155 0,2480 0,088 0,275 0,2202 0,177 0,448 0,1791 0,354 0,1 0,140 0,2809 0,079 0,252 0,2522 0,158 0,417 0,2085 0,316 0,2 0,103 0,4108 0,056 0,190 0,3795 0,112 0,328 0,3285 0,224 0,4 0,074 0,5953 0,040 0,140 0,5619 0,079 0,252 0,5045 0,158 0,6 0,061 0,7371 0,032 0,117 0,7027 0,065 0,214 0,6421 0,129 0,8 0,054 0,8567 0,028 0,103 0,8217 0,056 0,190 0,7590 0,112 42 Přílohy Tab. 7.2 Výsledky aplikace rovnic pro ustálené proudění podzemní vody na svahu odvozeních na základě Boussinesqovy druhé aproximace (část B). sklon 0,3 0,4 0,5 R/K xH/L H/L sigma xH/L H/L sigma xH/L H/L sigma 0,0002 0,989 0,0007 10,607 0,993 0,0005 14,142 0,995 0,0004 17,678 0,0004 0,980 0,0013 7,500 0,988 0,0010 10,000 0,991 0,0008 12,500 0,0006 0,973 0,0019 6,124 0,983 0,0015 8,165 0,988 0,0012 10,206 0,0008 0,967 0,0026 5,303 0,978 0,0020 7,071 0,985 0,0016 8,839 0,001 0,961 0,0032 4,743 0,974 0,0024 6,325 0,982 0,0020 7,906 0,002 0,936 0,0062 3,354 0,957 0,0048 4,472 0,969 0,0039 5,590 0,004 0,898 0,0120 2,372 0,930 0,0093 3,162 0,949 0,0076 3,953 0,006 0,869 0,0174 1,936 0,909 0,0136 2,582 0,932 0,0112 3,227 0,008 0,845 0,0225 1,677 0,890 0,0178 2,236 0,918 0,0147 2,795 0,01 0,825 0,0275 1,500 0,874 0,0219 2,000 0,905 0,0181 2,500 0,02 0,750 0,0500 1,061 0,813 0,0407 1,414 0,854 0,0342 1,768 0,04 0,661 0,0881 0,750 0,736 0,0736 1,000 0,787 0,0630 1,250 0,06 0,604 0,1209 0,612 0,684 0,1026 0,816 0,741 0,0889 1,021 0,08 0,563 0,1502 0,530 0,645 0,1290 0,707 0,705 0,1127 0,884 0,1 0,531 0,1770 0,474 0,614 0,1534 0,632 0,675 0,1350 0,791 0,2 0,433 0,2887 0,335 0,514 0,2571 0,447 0,578 0,2314 0,559 0,4 0,343 0,4570 0,237 0,417 0,4171 0,316 0,479 0,3832 0,395 0,6 0,295 0,5904 0,194 0,364 0,5458 0,258 0,423 0,5071 0,323 0,8 0,264 0,7046 0,168 0,328 0,6569 0,224 0,384 0,6148 0,280 43 Přílohy 7.2 Neustálené proudění na nakloněné nepropustné rovině 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.1 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,05. 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.2 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,1. 44 Přílohy 2 1,8 1,6 1,4 B(H) C(H) P(H) 1,2 1 0,8 B(H) 0,6 C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.3 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,15. 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.4 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,18. 45 Přílohy 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.5 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,2. 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 H/L 0,6 0,7 0,8 0,9 1 Graf 7.6 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu druhou aproximaci a sklon nepropustného podloží 0,05. 46 Přílohy 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.7 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu druhou aproximaci a sklon nepropustného podloží 0,1. 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) 0,4 C(H) P(H) 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.8 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu druhou aproximaci a sklon nepropustného podloží 0,15. 47 Přílohy 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.9 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu druhou aproximaci a sklon nepropustného podloží 0,18. 2 1,8 1,6 B(H) C(H) P(H) 1,4 1,2 1 0,8 0,6 B(H) C(H) P(H) 0,4 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 H/L Graf 7.10 Závislost faktorů tvaru hladiny B(H), C(H) a P(H) na výšce hladiny podzemní vody H/L pro Boussinesqovu první aproximaci a sklon nepropustného podloží 0,2. 48 Přílohy 7.3 Kalibrace modelu 4 0 3,5 5 Q (l/s) 2,5 Qmer mi 0,01 mi 0,015 mi 0,02 mi 0,025 mi 0,03 mi 0,035 R 10 15 2 20 1,5 25 1 30 0,5 35 0 6100 R (mm) 3 40 6300 6500 6700 6900 7100 7300 7500 referenční čas (hod) Graf 7.11 Kalibrace parametru drenážní pórovitost µ (mi) pro pomalou odezvu na datech z roku 2001. 4 0 3,5 5 10 Q (l/s) 2,5 Qmer mi 0,01 mi 0,015 mi 0,02 mi 0,025 mi 0,03 mi 0,035 R 15 2 20 1,5 25 1 30 0,5 35 0 3800 R (mm) 3 40 4000 4200 4400 4600 4800 5000 5200 referenční čas (hod) Graf 7.12 Kalibrace parametru drenážní pórovitost µ (mi) pro pomalou odezvu na datech z roku 2002. 49 Přílohy 4 0 3,5 5 10 Q (l/s) 2,5 Qmer mi 0,01 mi 0,015 mi 0,02 mi 0,025 mi 0,03 mi 0,035 R 2 15 20 1,5 25 1 30 0,5 35 0 4100 R (mm) 3 40 4300 4500 4700 4900 5100 5300 5500 5700 5900 6100 6300 referenční čas (hod) Graf 7.13 Kalibrace parametru drenážní pórovitost µ (mi) pro pomalou odezvu na datech z roku 2004. 7 0 6 10 Q (l/s) 4 Qmer mi 0,01 mi 0,015 mi 0,02 mi 0,025 mi 0,03 mi 0,035 R 20 30 R (mm) 5 3 40 2 50 1 60 0 3600 70 3900 4200 4500 4800 5100 5400 5700 6000 6300 referenční čas (hod) Graf 7.14 Kalibrace parametru drenážní pórovitost µ (mi) pro pomalou odezvu na datech z roku 2006. 50 Přílohy 4 0 3,5 5 Qmer K 0,000006 K 0,000016 R Q (l/s) 2,5 10 15 2 20 1,5 25 1 30 0,5 35 0 6100 R (mm) 3 K 0,000001 K 0,000011 K 0,000021 40 6300 6500 6700 6900 7100 7300 7500 referenční čas (hod) Graf 7.15 Kalibrace parametru nasycená hydraulická vodivost K pro pomalou odezvu na datech z roku 2001. 4 0 3,5 5 3 10 Q (l/s) 2,5 2 K 0,000001 K 0,000011 K 0,000021 15 20 1,5 25 1 30 0,5 35 0 3800 40 4000 4200 4400 4600 4800 5000 referenční čas (hod) Graf 7.16 Kalibrace parametru nasycená hydraulická vodivost K pro pomalou odezvu na datech z roku 2002. 51 5200 R (mm) Qmer K 0,000006 K 0,000016 R Přílohy 4 0 5 3,5 Qmer K 0,000006 K 0,000016 R Q (l/s) 2,5 10 15 2 20 1,5 25 1 30 0,5 35 0 4100 R (mm) 3 K 0,000001 K 0,000011 K 0,000021 40 4300 4500 4700 4900 5100 5300 5500 5700 5900 6100 6300 referenční čas (hod) Graf 7.17 Kalibrace parametru nasycená hydraulická vodivost K pro pomalou odezvu na datech z roku 2004. 7 0 6 10 Qmer K 0,000006 K 0,000016 R 5 K 0,000001 K 0,000011 K 0,000021 20 30 3 40 2 50 1 60 Q (l/s) R (mm) 4 0 3600 70 3900 4200 4500 4800 5100 5400 5700 6000 referenční čas (hod) Graf 7.18 Kalibrace parametru nasycená hydraulická vodivost K pro pomalou odezvu na datech z roku 2006. 52 6300 Přílohy 22 0 20 5 18 10 16 Qmer mi 0,01 12 mi 0,014 mi 0,018 10 mi 0,022 mi 0,026 15 20 R 8 R (mm) Q (l/s) 14 25 6 30 4 35 2 0 5030 40 5040 5050 5060 5070 5080 5090 5100 5110 referenční čas (hod) Graf 7.19 Kalibrace parametru drenážní pórovitost µ (mi) pro rychlou odezvu na datech z roku 2000. 22 0 20 5 18 10 Q (l/s) 14 Qmer mi 0,01 12 mi 0,014 mi 0,018 10 mi 0,022 mi 0,026 R 8 15 20 R (mm) 16 25 6 30 4 35 2 0 4420 40 4430 4440 4450 4460 4470 4480 4490 4500 referenční čas (hod) Graf 7.20 Kalibrace parametru drenážní pórovitost µ (mi) pro rychlou odezvu na datech z roku 2002. 53 Přílohy 140 0 130 5 120 110 10 100 Q (l/s) 80 70 60 Qmer mi 0,01 mi 0,014 mi 0,018 mi 0,022 mi 0,026 15 20 R R (mm) 90 25 50 40 30 30 20 35 10 0 3530 40 3540 3550 3560 3570 3580 3590 3600 3610 3620 referenční čas (hod) Graf 7.21 Kalibrace parametru drenážní pórovitost µ (mi) pro rychlou odezvu na datech z roku 2006 (událost 1). 22 0 20 5 18 10 Q (l/s) 14 Qmer mi 0,01 12 mi 0,014 mi 0,018 10 mi 0,022 mi 0,026 R 8 15 20 R (mm) 16 25 6 30 4 35 2 0 5240 40 5250 5260 5270 5280 5290 5300 5310 5320 referenční čas (hod) Graf 7.22 Kalibrace parametru drenážní pórovitost µ (mi) pro rychlou odezvu na datech z roku 2006 (událost 2). 54 Přílohy 22 0 20 5 18 Q (l/s) 14 K 0,0001 K 0,0011 K 0,0021 10 15 12 20 10 R (mm) Qmer K 0,0006 K 0,0016 R 16 25 8 6 30 4 35 2 0 5030 40 5040 5050 5060 5070 5080 5090 5100 5110 referenční čas (hod) Graf 7.23 Kalibrace parametru nasycená hydraulická vodivost K pro rychlou odezvu na datech z roku 2000. 22 0 20 5 18 Q (l/s) 14 K 0,0001 K 0,0011 K 0,0021 10 15 12 20 10 25 8 6 30 4 35 2 0 4420 40 4430 4440 4450 4460 4470 4480 4490 referenční čas (hod) Graf 7.24 Kalibrace parametru nasycená hydraulická vodivost K pro rychlou odezvu na datech z roku 2002. 55 4500 R (mm) Qmer K 0,0006 K 0,0016 R 16 Přílohy 140 0 130 5 120 Qmer K 0,0006 K 0,0016 R 100 90 Q (l/s) 80 K 0,0001 K 0,0011 K 0,0021 10 15 20 70 R (mm) 110 60 25 50 40 30 30 20 35 10 0 3530 40 3540 3550 3560 3570 3580 3590 3600 3610 3620 referenční čas (hod) Graf 7.25 Kalibrace parametru nasycená hydraulická vodivost K pro rychlou odezvu na datech z roku 2006 (událost 1). 22 0 20 5 18 Q (l/s) 14 K 0,0001 K 0,0011 K 0,0021 10 15 12 20 10 25 8 6 30 4 35 2 0 5240 40 5250 5260 5270 5280 5290 5300 5310 referenční čas (hod) Graf 7.26 Kalibrace parametru nasycená hydraulická vodivost K pro rychlou odezvu na datech z roku 2006 (událost 2). 56 5320 R (mm) Qmer K 0,0006 K 0,0016 R 16 Přílohy 7.4 Verifikace modelu 4 0 3,5 5 Qmer 3 10 K 0,00001; mi 0,015 R 15 2 20 1,5 25 1 30 0,5 35 0 3800 R (mm) Q (l/s) 2,5 40 4100 4400 4700 5000 5300 5600 5900 referenční čas (hod) Graf 7.27 Verifikace parametrů K a µ (mi) pro pomalou odezvu na datech z roku 1999 (KD = 0,53). 4 0 3,5 5 3 10 Qmer 2,5 15 R 2 20 1,5 25 1 30 0,5 35 0 3800 R (mm) Q (l/s) K 0,00001; mi 0,015 40 4000 4200 4400 4600 referenční čas (hod) Graf 7.28 Verifikace parametrů K a µ (mi) pro pomalou odezvu na datech z roku 2000 (KD = 0,66). 57 Přílohy 4 0 3,5 5 Qmer 3 10 K 0,00001; mi 0,015 R 15 2 20 1,5 25 1 30 0,5 35 0 R (mm) Q (l/s) 2,5 40 6800 7000 7200 7400 referenční čas (hod) Graf 7.29 Verifikace parametrů K a µ (mi) pro pomalou odezvu na datech z roku 2003 (KD = 0,77). 35 0 5 30 10 25 Qmer 15 Q (l/s) K 0,001; mi 0,02 20 R 15 25 10 30 5 35 0 6230 40 6240 6250 6260 6270 6280 6290 6300 6310 6320 referenční čas (hod) Graf 7.30 Verifikace parametrů K a µ (mi) pro rychlou odezvu na datech z roku 1998 (KD = 0,998). 58 R (mm) 20 Přílohy 14 0 5 12 10 10 Qmer 15 Q (l/s) R 20 R (mm) K 0,001; mi 0,02 8 6 25 4 30 2 35 0 4570 40 4580 4590 4600 4610 4620 4630 4640 4650 referenční čas (hod) Graf 7.31 Verifikace parametrů K a µ (mi) pro rychlou odezvu na datech z roku 1999 (KD = 0,98). 60 0 5 50 10 40 15 K 0,001; mi 0,02 30 20 R (mm) Q (l/s) Qmer R 25 20 30 10 35 0 6400 40 6410 6420 6430 6440 6450 6460 6470 6480 referenční čas (hod) Graf 7.32 Verifikace parametrů K a µ (mi) pro rychlou odezvu na datech z roku 2004 (KD = 0,99). 59 Seznam použitých symbolů Seznam použitých symbolů A bod v kartézském koordinačním systému A horizontální plocha elementu kolektoru B bod v kartézském koordinačním systému B(H) první faktor tvaru hladiny C bod v kartézském koordinačním systému C(H) druhý faktor tvaru hladiny cx integrační konstanty f známá funkce g tíhové zrychlení [L.T-2] H hydraulická výška [L] H maximální výška hladiny podzemní vody [L] [L2] [-] [-] (H1-H2) ztráta hydraulické výšky při průtoku vody sloupcem zeminy [L] dH/dl gradient hydraulické výšky – hydraulický gradient [-] h výška hladiny podzemní vody nad nepropustným podložím [L] h krok výpočtu [L] + výška hladiny podzemní vody nad nepropustným podložím pro BPA [L] h* výška hladiny podzemní vody nad nepropustným podložím pro BDA [L] hp tlaková výška neboli hloubka daného bodu pod hladinou podzemní vody [L] hL výška hladiny podzemní vody nad nepropustným podložím v x = L- [L] h0 výška hladiny podzemní vody nad nepropustným podložím v x = 0- [L ∆h pokles hladiny podzemní vody v elementu kolektoru [L] K nasycená hydraulická vodivost [L.T-1] Kii složky tenzoru nasycené hydraulické vodivosti [L.T-1] KD koeficient determinace [-] kx proměnné metody Runge-Kutta pro odhad yn+1 [L] L délka sloupce [L] L délka svahu [L] M bod v kartézském koordinačním systému N bod v kartézském koordinačním systému n pórovitost [-] n počet výpočtových kroků [-] P(H) třetí faktor tvaru hladiny h p [-] tlak vody v daném bodě pod hladinou podzemní vody 60 -1 [L .M.T-2] Seznam použitých symbolů pQmer průměrná hodnota naměřených průtoků [L3.T-1] Q průtok [L3.T-1] Q průtok na jednotku plochy [L.T-1] Qmeri průtok měřený v čase i [L3.T-1] Qsimi průtok simulovaný v čase i [L3.T-1] qx specifický průtok ve směru osy x [L2.T-1] R přítok na hladinu podzemní vody [L.T-1] S průřezová plocha sloupce [L2] S storativita [-] s sklon nepropustného podloží (tanθ) [-] t čas [T] u substituovaná proměnná při řešení Boussinesqových rovnic [L] V celkový objem zeminy [L3] Vp objem pórů [L3] ∆V změna objemu vody v elementu kolektoru [L3] v Darcyovská rychlost proudění vody [L.T-1] vn složka rychlosti kolmá k hranici oblasti [L.T-1] vs vektor hustoty toku ve směru osy x [L.T-1] v substituovaná proměnná při řešení Boussinesqových rovnic [L] w substituovaná proměnná při řešení Boussinesqových rovnic [-] W funkce tvaru hladiny [-] X bezrozměrná osa x [-] x,y,z souřadnice libovolného bodu [L] x+ osa koordinačního systému pro BPA [L] x* osa koordinačního systému pro BDA [L] xH poloha maximální výšky hladiny podzemní vody [L] xn nezávislá proměnná v kroku n [L] yn proměnná závislá na proměnné xn v kroku n [L] yn+1 proměnná závislá na proměnné xn v kroku n+1 [L] z geodetická výška [L] + osa koordinačního systému pro BPA [L] z* osa koordinačního systému pro BDA [L] ρ hustota [M.L-3] θ úhel, který svírá tečna k hladině s vodorovným směrem [-] θ sklon nepropustného podloží [l] λx substituovaná proměnná při řešení Boussinesqových rovnic [-] z 61 Seznam použitých symbolů µ drenážní pórovitost [-] σ bezrozměrný faktor tvaru HPV pro proudění na svahu [-] ϕ hydraulický potenciál [-] 62 Seznam literatury Seznam literatury Drbal, J. 1984: Geologie a Půdoznalství III.b. (půdoznalství), VŠZ, Praha, 175 s. Guitjens, J. C., Luthin, J. N. 1965: Viscous Model Study of Drain Spacing on Sloping Land and Comparison with Mathematical Solution. Water Resources Research. Vol. 1, No 4, p. 523-530. Hartani, T., Zimmer, D., Lesaffre, B. 2001: Drainage of Sloping Lands with Variable Recharge: Analytical Formulas and Model Development. Journal of Irrigation and Drainage engineering, Vol. 127, No. 1, p. 8-15. Henderson, F. M., Wooding, R. A., 1964: Overland flow and groundwater flow from steady rainfall of finite duration. Journal of Geophysical Research, Vol. 69, No. 8, p. 1531-1540. Childs, E. C., 1971: Drainage of Groundwater Resting on Sloping Bed. Water Resources Research, Vol. 7, No. 5, p. 1256-1263. Koopmans, R. W. R., 2000: Fluidmechanics and groundwater flow, Department of Water Resources, Wageningen University, p. 234. Lesaffre, B., 1987: Analytical formulae for traverse drainage of sloping lands with constant rainfall. Irrigation and Drainage System, Vol. 1, No. 1, p. 105-121. Marei, S. M., Towner, G. D., 1975: A Hele-Shaw Analog Study of the Seepage of Groundwater Resting on Sloping Bed. Water Resources Research, Vol. 11, No. 4, p. 589-594. McEnroe, B. M., 1994: Hydraulics of Leachate Collection and Cover Drainage. In Landfilling of Waste Bariers, Chapman and Hall, London, UK, p. 531-541. Novák, V., Rieger, F. 2000: Hydraulické pochody, ČVUT, Praha, 318 s., ISBN 80-01-02153-X Ram, S., Chauhan, H. S. 1987: Analytical and Experimental Solution for Drainage of Sloping Lands With Time-Varying Recharge. Water Resources Research, Vol. 23, No. 6, p. 1090-1096. Rektorys, K. 2000: Přehled užité matematiky II, sedmé vydání. Prometheus, Praha, ISBN 81-7196-181-7. Schmid, P. and Luthin, J. 1964: The drainage of sloping lands, Journal of Geophysical Research, Vol. 69, No. 8, p. 1525-1529. 63 Seznam literatury Šilar, J. 1996: Hydrologie v životním prostředí, MŽP, Praha, 136 s., ISBN 80-7078-361-3 Tourková, J. 2004: Hydrogeologie. ČVUT, Praha, 165 s., ISBN 80-01-03101-2 Towner, G. D. 1975: Drainage of groundwater resting on a sloping bed with uniform rainfall, Water Resources Research, Vol. 11, No. 1, p. 144-147. Valentová, J. 2007: Hydraulika podzemní vody. ČVUT, Praha, 174 s., ISBN 978-80-01-03625-9 Wooding, R. A., Chapman, T. G. 1966: Groundwater flow over a sloping impermeable layer, 1. Applications of the Dupuit-Forchheimer assumption. Journal of Geophysical Research, Vol. 71, No. 12, p. 2895-2902. 64
Podobné dokumenty
Diplomová práce
3.1.1 Příprava matematického modelu
Ačkoliv je každý model pouhým zjednodušením hydrologického či jiného
procesu a jeho výsledné simulace budou vždy zatíženy nějakou chybou, je
nepostradatelným nás...
Přehled ULAF+ ke stažení zde
kvalitu zpracování dat. Časování je přenášeno
pomocí RTP nebo podobných protokolů. Je
podporováno jak adaptivní , tak diferenciální
odvozovací schéma hodinového signálu. Zákazník
si může zvolit to,...
Aplikace matematického modelu NASIM pro simulaci srážko
rozvíjejícím odvětvím hydrologie a vodního hospodářství. Je to dáno především stále trvajícím
rozvojem počítačové techniky a informačních technologií, který dal nové možnosti k uspokojení
odvěké po...
Soukup – Schweigstillová – Válek – Sedláčková – Mayo 2012
Všechny geomechanické parametry vykazují výraznou prostorovou proměnlivost ve vertikálním i horizontálním
směru (Hauser et al., 1965). Zóny křehkého pískovce ve vrtných jádrech byly decimetry až ně...
Výzkum a činnost katedry vodního hospodářství a
oboru jsou také zahraniční členové Dr. hab. Renata Romanowicz (Institute
of Geophysics, Polish Academy of Sciences, Warszawa, Polsko) a Drs. Paul
J. J. F. Torfs (Wageningen University, Nizozemí), k...
Volitelné předměty 2015/2016 - České vysoké učení technické v Praze
Předměty jsou uváděny v rámci toho ústavu, který jeho výuku garantuje. Je-li ústav rozčleněn na odbory, jsou
předměty uváděny pod příslušnými odbory tohoto ústavu. Předměty jsou setříděny podle kód...
diplomová práce
algoritmů. V našem případě si pomůžeme dnes již velmi často používaným softwarem Fluent,
pomocí nejž provedeme vetšinu potřebných výpočtů.
Nyní je třeba si uvědomit, že z hlediska praktického model...