Pe^aKTopH: Khib o 2003
Transkript
Pe^aKTopH: Khib o 2003
Hav^ionajihHa AnadeMiH iHcmumym BUJIMB nayn MameMamuKU HAVKOBOrO r. HA VKpamu AOPOBKV B O P O H o r o CVHA CHV HA VKV Pe^aKTopH: F. Cuma, A. tOpauKiecbKuH Incmumym Khib MameuamuKu o 2003 .. MameMamuKa FoAoeHUu A . M . -ma CaMOHJieHKO MameMamuKu Ha%ioHaji'bHOi ripaixi aacmocyeauHn pedaKmop iHcmumym Ku'ie, vi AKadeMii nayn VKpamu VKpai'ua iHCTHTyTy HauioHajibHoi MaxeMaTHKH AKa;],eMii nayK YKpaYHH T o m 48 K O H r p y E H u ; ! ! rany B O P O H o r o HHCEJI BEPHyJIJII jiJi^ IIlTe4)aH nopy6cKi ' y 1890 poi;i r.O.BopoHHH y C B O I H nepmiii, me CTyAenTCbKift, po6oTi AOBIB, mo AJiH 2m-ro Miicjia BepnyjiJii B2m = P2m/Q2 HO npOCTHMH P2m i Q2m > 0, AOsijIbHOrO MOflyJIH N i KOMCHOrO 6, BsaeMHO npocToro 3 A'^, Mae Micu,e KOHrpyenmH »=i N (mod N). U,H KOHrpyenmH i pisHOManiTHi MOAH^JiKauii xa ysarajibHenHJi i i B H HBJiHioTb {JjyHAaMCHTajibHi apH^JMCTHMHi BJiacTHBOCTi HHceji BepHyjiJii. y nponoHOBanift CTaTTi ^ano O F J I H A pisHHx 4)opM, S K H X H E 6yBajio ACBefleHHH xeopeMH Boponoro, i HaMiHeHO AeJiKi nanpjiMH 'ii sacTocyBaHb. 1. B c T y n CKpisb HHJKHe nepes Bmix), mm 6 Z*, ^ nosHanaexbCH m-ft MHoroHjieH BepnyjiJii, ^ mo BHsnanaexbCH posKnaAOM y XBipHHH pap, exp(z) - 1 ' ml m=0 ' ^ocjii^lHceHHH npoBo;iHJiHCH 3a ni,iiTpHMKH ArcHTCTBa cy6cHjiiH HecbKoi Pecny6jiiKH, FpaHT # 201/97/0433. ^ N, Z*,Z 03HaMaiOTb BiAnoBJAHO MHO»cHHy AOflaxHHx, HeBifl'eMHHx i Bcix U I J I H X HHceji, a Q, R, C - Bi/jnoBi/jHO MHO>KHHy paiiioHajibiiHx, A I H C K H X i KOMnneKCHHx M H C B J I . ^ 111 MHOroHJieHH noxoAHTb Bia 5lKo6a Bepnyjuii, H K H H me nepefl 1695 poKOM SHaftmoB (j^opMyjiy ;uia cyMH (m — l)-x cxeneiuB nepuiHx k HaxypajibHHx HHceji. lien pesyjibTax M O >KHa SHaflTH B Ars conjectandi [4] (c.94-99), ony6jiiKOBaHOMy nocMepxHO. Hacnpaafli 5IKO6 BepnyjiJii poarjiaflaB jiHuie MHoroH.ieHH BepnyjiJii 3 itijiHMH 3HaHeHHHMH apryMCHxy. HaneBHC Ejijiep [19] 6yB HepuiHM, xxo CKopncxaBca H H M H aiin A I H C H H X SHaneHb apryMenxy. SaysaacHMO, mo nasBy MHOroMJieini BepnyjiJii, 3 BHKOpHCxaHHHM inmnx nosHaneHb, yBiB [75] flosecj) JliOflBir Paa6e (1801 - 1859) (AHB. xaKO« [78]). Paa6e 3BHHattH0 3apaxoByK)Xb flo mBeiiuapcbKHx MaxeMaTHKis, 6o ain npo>KHB xaM 6i.nbmy nacxHHy CBOro H<Hxxa. OflHaK B I H HapoflHBCH B Bpoflax, HKi na MOMenx iioro HapoflaceHHH E X O A H J I H ^ O yropcbKOi H B X I T H H H ABCxpo-yropcbKoi iMnepil, a H H H I HaJie>Kaxb yKpaini. 48 KoHzpyemijit muny Boponoeo dAsi hucca BepnyAAi a Bm = BmiO), m 6 Z*, e m-xe M H C J I O BepnyjiJii * y S B H M H H X K H H I napHHX cy4)iKCHHx nosHaMeHHHx ^. Ueft posKjia^ HerattHO npHBOAHTb jxo H B H O I 4>opMyjiH (2) = ^ r /fc=0 ^ x-'^^fc. ^ I3 (1) BHHJIHBae piBHiCTb (3) Bm(x + I) - Bmix) mx"'-'^, meZ*,xeR, HKa Aae o^ny 3 HaftcljyHAaMeHTajibHimHx BJiacTHBOCTeli MHoroMJieHiB BepnyjiJii (4) y ^m-i ^ BmiN) - Bm^ m,iV = 2 , 3 , . . . Ufl Ba>KJiHBa TOTO>KHicTb Bi^irpae KJiiOMOBy pojib y noHBi MHoroMJieniB BepHyjiJii B 6ijibmocTi HacxynnHX pesyjibxaxiB. I3 (3) BHnjiHBae, mo Bmi^) — BmiO) AJiH m > 2. IIosaHK Bq = 1,5] = - 1 / 2 , xo 3 (2) EHnjiHsae peKypenxHa dpopuyna pjia M H C C J I BepnyjiJii, HKy CHMBOJiiMHO MOHcna sanncaxH y BHrjiH^i iB + 1)^" = S"^, m > 2. SBIACH BHnjiHBae pauiionajibHicxb MHCSJI BepnyjiJii ^. BopoHHfi TBepAJKeHHH 1. ^Kw,o B2m = P2mlQ2m, de P^m i Q2m ^ AOBIB [112] ** > 0 - esacMno npocmi hucau, mo^ (5) (62--l)P2„ = 2m6^-ig2™X;«'""' s=l ^ (mod N) dAJi doeiAbHozo ModyAH N i b, eaacMHO npocmoeo 3 N. KoHrpyeHijiH B xaKOMy BHrjiH^i HaBe^eHa, HanpHKJiaA, y KHHrax YcneHcbKoro i Xicjiexa [99] (po3A- 9, c. 261) M H AftpjieH^a i Poysena [33] (po3A- 15). ^ Ilro HasBy aanponoHysaB ae Myanp y 1730 p. ^ 3ayBa>KHM0, mo HanpiiKiHui XIX - nonaxKy XX ex. nm HHCJiaMH BepnyjiJii posyinijiH HHCJia hm = (-l)"'"'"^B2m, m = 1,2, IIpH o6roBopeHHi aeaKHx BJKHBanHX noaHaneHb A J I H HHceji BepnyjiJii ne yHHKnyxH nocHJianb na [2]. € He oyTKe. spynna 4)opMyjia 3,jin ix o6HHCJieHHa. Eftjiep [19] O 6 H H C J I H B HHCJia BepnyjiJii AJisi m < 30. Bin riHaiimoB, HanpHKJiaA, mo B30 = 8 615 841 276 005/14 322. V 1842 p. SHaneHHa HHce.n BepHyjini Sy.nH BiaoMi ^ J I H m < 62 [71]. Haraaaeino, mo B2m+i = 0 ansi m > 1. BejiHKi xafijiHui iHceJi BepnyjiJii CKJiajiajiHCb 3BaacaiOHH na HHCjieHHi i'x aacxocyBanHa. riocHJiaHHH na inmi panni pe3y.iibxaxH B u,iH o6jiacxi A H B . y [55[, a npo o6MHCJiK)BajibHi MexoAH i po3uiHpeHHa nonepe/inix Ta6.nHHb - [47|. Po3KJiafl na M H O » C H H K H HHcejibHHKia B-im AJia m < 30 Mowcna 3HaHXH B (114). ' ^ H B . 3anHCH B ftoro mofleHHHKy [113] noMHHaiOHH 3 4 rpyflna 1888. " 3ayBaMCHM0, mo opHrinajibHefloaeaeHHaBoponoro CHHpajiocb na npaBHJibHe xBepfl»eHH H P-zmN = Qzm 13^=1 (mod N'^), o6rpyHxoBaHe, oflnaK, X H S H H M H MipKyBaHHHMH. Jlexajii AHB. B [111]. [xj osHaHae Haft6i.ibuie uijie H H C J I O , H K B ne nepeBHmye x. 49 RlmeipaH UopyScbKi KijibKicTb ny6.iiKauiH. s'HBjiHiOTbCH HHCjia a6o MHoroHJieHH BepnyjiJii, npoC T O riraHTCbKa. JXna. yxoHHenHH BiACHJiaeMO HHTana [14]. 3 Hamoi T O H K H 3opy noHBa i'x y U M X ny6jiiKauiMX BUKJUdKaua 'ix rjiH6oKHM 3 B ' H 3 K O M 3 xeopieio KpyroBHx U O J I I B . I3 pisHOMauiTTH sacTocyBaub Muceji BepuyjiJii B ubOMy uanpHMi, mum B H H H K me no Boponoro, sra^aiiMO Jiuuie Hacxynui, pasoM is fleHKHMH BH6paHHMH pesyjibxaxaMH uoAajibuioro 'ix posBuxKy. MyjibTHnjiiKaTHBHa cJjopMyjia PaaSe. IXm, Bi^KpHxy PaaSe [75], Ba>KJiHBy B.xacxHBicxb MHoroHJieHiB BepHv.ijii MO»<Ha BUBecxu 3 (3): JJasi doeiAbHozo diucHozo nucna x i VjIaux m > 0, N > 1 N-l t=o • . ^ N MojKHa noKaaaxH 3a X H X >Ke npHnymeub, mo (6) : Bm{{x})=N^-'J2Brn[\^\ fle {•} - APo6oBa Macxnua nucjia. BuHBjiHexbCH, mo u,e Ay^Ke cJjyHAaMeHxajibHa BJiacxHBicxb MHoroHJieniB BepuyjiJii. SnaneHHa ^3exa-4)yHKLi,ii PiiviaHa. Eiijiep [19] suaHuioB, mo P) « ^ ™ ) - E ; ^ ^ l i i t " n=l ^ ' BHKopHCxoByiOHH 4)yHKu;ioHajibHe piBUJiHHH pjiH A3exa-(|)yHKiiii'i, MO>KHa cxH BajKjiHBy 4)opMyjiy (8) ^ C(-m) = - ^ ^ , m = 0,1,2,... B H B B - rn + I OcxauHift pesyjibxax ysarajibuioexbCH uacxyuHHM H H H O M . 5lKmo g{n) - Busnanena na Z KOMnjieKCHOsnaHHa nepioAUHua cJjyHKuiji 3 nepioAOM / , xo BiAuosiAua L-(J)yHKU,iH AaexbCH (4)opMajibHHM) cxeneueBUM P H A O M a ysarajibiieni (B L(,,.,) = f ; ? M , n=l posyMiHui .neoiKx-ibAxa [58]) HHCia BepuyjiJii g(a.).?exp(az) _ h ~ P H A O M r> -»'^-)-' O A H C 3 HaHBa>KAHBimHx sacxocyBaHb L-cJjyHKuiii L{s,g) - BHuaAOK, K O JXH 9 = X e xapaKxep. 5lKmo x npHMixMBHuii xapaKxep ffipixjie no MOAyjno n 3 KOHAyKxopo.M . / ' Y , xo L-c})yHKuiH Jlipixne L{s,x) BHSHanae roAOMopcJJHy 10 SavBajKMMo, mo Pi.MaH, xo'ia 1 HC 4aii i i H B H O , BHOHcaB KijibKa OKpeMHx i'i BMna^KiB. 50 KoHspyeHv/ii m/uny Boponozo Sah hucca BepnyAAi (jDVHKuiio B I A s 3 K(s) > 1. H K U I O % 7 ^ £ - rojiOBHHH xapaKxep, TO Lis^x) MO»CHa aHaJliTHHHO npOflOBJKHTH A O rOJIOMOp(J)HO'l 4)yHKUii AJIH Bcix s € C. L{s,e) = C(s) Mae eAUHHH nojiioc nopHAKy 1 npH s = 1 3 J T H I U K O M 1. Po3KJiaA Eftjiepa -1 > 1, pS Aep npo6irae Bci npocTi MHCJia, noKasye, mo L{s, x) 7^ 0 pna. ^{s) > 1. Bijibiiie Toro, [58], [35] (c. 11), npn m < 0 (9) L{-rn.x) = - Bm+l,x m+ 1 Ba»cjiHBHMH e SHaHGHHH L ( l , x ) - BHnaAOK rojiOBHoro xapaKxepa e yjKe po3rjiHHyxo. RjiH nerojiOBHOro xapaKxepa x MaeMO Hacxynne 3o6pa>KeHHa B C K I H nennoMy BnrjiHAi, OAep>KaHe F O J I O B H H M H H H O M /Jipixjie [13]: fx L{1,X) = -^f;x(a)log(l-^7;) a=l1 h - ^ Z x { o . ) l o g \ l - m a=l • fx = ^^¥^i-x. «Kmo x ( - l ) = - 1 , Ae G{x) - raj'ccoBa cyMa, x " KOMnjieKCHO cnpH^ena A O X 4>yHKi;iH i exp(27ri/m) jxna m S N. = HKHIO X " rOJIOBHHH XapaKXep [f^ = 1). xo Bn,x 3B0AHXbCa A O 3BHHaHHHx HHceji Bepnj'jiJii (3a B K H J I X K O M Bi,^ = —B\ 1/2), a flKm,o x ~ neroJ I O B H H H xapaKxep (mod 4) (y u,bOMy nnnaAKy = 4), Bn,x S B O A H T B C J I A O — (n + l)£J„+i/2, Ae Ek e fc-xe M H C X O Enjiepa, BHsnaneHe, nanpHKJiaA, C H I B BiAHOmeHHHM (£; + l)'= + ( ^ - l ) ^ ' = 0, npHA;>0, Eq = 1. Inmi apHcJiMexHnni B.aacxHBO('xi ysarajibHCHHx MHceji BepnyjiJii MO>Kna snaH X H B [9], [21], ^1 [35] xomo. PeryjiJipHi npocxi MHCjia. Y sB'HSKy 3i C B O I ' M BiAOMHM BnecKOM y AOBeAenna BejiHKoi" xeopeMH OepMa (BT<D) KyMMep osnanHB peryjiapni npocxi HHCJia p HK xaKi, m,o ne Ai-^axb nnaio KJiaciB hir^^^) p-ro KpyroBoro nojia Q(^p). V cynpoxHBHOMy pasi npocxe H H C J I O nasHBaexbCH Heperj'UHpnHM. KpiM xoro Bin 3ayBa>KHM0, mo CuaByxcbKHii ]87l (c.65) BKaaye na nporajiHHH y (JjopMyjuosaHHi xeopeMH 7 13 [9],flaiTOi'6e3 aoBeaenHsi. lie cxocyexbCH i xBepfljKeHHa 3 3 [21] (c.292), a xaKOJK, srijiHO 3 [90] (c.64), i XBepji>Keiib 3 i 4 3 [20]. 51 lUmeipaH UopyScbKi [50], mo npocxe p perj'jiapne xo^i n xijibKH xofli, HHcejibHHK >KOflHoro 3 nnceji Bepnyjijii AOBIB (10) flijinxb KOJIH p ue = 0 (mod p). B2.a.i....,Bp_3, inaKuie Ka»cyHH, (11) Pl^Q(^p) TOfli H xijibKH xofli, KOJIH KoHrpyeHu;ii IIIxay/i,Ta-KyMMepa. nacxynny BHsnanny Konrpyenniio: JJ[ KyMMep [52] (c. 371) xaKO>K Hexau p - nenapne npocm,e hucjio i m EN mane, ui,o {p—\) k = 0,l,2,... (12) ^ ' B g ^ ^ B2^+fc(p-i) 2m 2m + k{p - 1) \ Todi AOBIB Oaji ( ^ ^ ^ ^_ 11,51 KonrpyenuiiH bimrpae Ba>KJiHBy pojib y Bcix B I A O M H X AOBeflennHx necKinnennocxi neperyjiapHnx npocxnx HHceji. ITosnanHMO _ / 5,„/m, [ {Bm + p~^ — l)/m, HKiu;o (p — 1) I m y npoxHBHOMy pasi. ^JKOHCOH [38] (c. 255) AOBiB, mo p2m = hm+p~i (mod p) npn p > 5. OaKXHHHO KyMMep AOBiB 6ijibme: Hkui,o P - nenapne npocw.e hucao, a m , n G N maKi, ui,o (p — 1) | 2m, dAH Xi = P2m+iij,-\) mo i 2m > n (13) A"x, = 0 (modp"), ;: de A " noananae n-my pi3Huv,H). a6o, B CHMBOJiinnnx nosnaMennHX i B xpoXH sarajibnimiH 4)opMi. fi'"-{l3^~^ - 1)" = 0 (mod p") sa yMOBH m > n, (p-l)tm,. UloAO BnecKy 4)on UIxayAxa, xo Bin y 1845 p. AoniB Konrpyenniio, HKa ne MicxHXb BKasannx BHme o6Me/KeHb na noKasnnKn cxenenin i B CHMBOJiinnnx nosnanennHX sanncyexbCH xaK: ^ n + m ( p - l ) ( ^ p - l _ -^y ^ Q (^^^^J ^^^-1^^ p > i / + 2,1/ > 2, n > i^, m > 0. KyMMep xaKO>K Z I O B I D , mo njioc LO ' I H C J T O aiJiHXb H H C J I O KJiaciB J I H U I K I B p-ro KpyroBoro nain xoMHO B nepiuoMy CTeHeiii xo/u ii xijibKH xofli, K O J I H piBHO oflHC 3 H H C C J I BepnyjiJii (10) ^ijHiTbOi nap. y 3B'a3Ky 3 U H M sapTO Bra^axH I I O H S X T H indcKcy HepesyAJipnocmi [65]. ^•^ y BCJibMH iH4)opMaxHBHiH po6oTi [93] I.III. CjiaByxcbKHH HaB0;iHXb AeaKi ne flywe BiziOMi pesyjibxaxH (|)OH UIxay.Tia 3 noro MsAvKe HeflocxynHoi po6oxH [96[, nifl B H J I H B O M HKoi Bin npononye BJKHBaxn H A S B H meopeMa Ulmaydma-KAayaena npo 3HaMeHHUKU HUc BepnyAAi. meopeMa Ulmaydma npo huccjiimuku i KompyeHV,ii LUmaydma-KyMMepa. peKo.MeHflauiil M H HaMaracMOCb jioxpuMyuaxHCb Haaajii. 52 Kompyenv^ii muny Boponozo dAsi hucca BepnyAAi KyMMep [52] TaKO>K A O B I B cxo>Ky KOHrpyenuiio A J I H H H C C J I Eftjiepa E'^{E^~^ — 1)" = 0 (mod p"), 3a yMOBH, m,o m > n i p > 2. Cnijibne ysarajibHeHHH H H X pesyjibxaTiB f\jisi H H C B J I BepnyjiJii i EiiJiepa M0>KHa snaHTH B [10]. JXenvl Aajibmi ysarajibHenna KOHrpyenriiH IIlTayATa-KyMMepa 6yAe Aano HH>KHe. Is sacTocyBaHb KOHrpyeHuiii IIlTayATa-KyMMepa sraAaflMO, mo IsacaBa [34] (c. 782) AOBiB, mo HKvuo Kpyzoeuu ineapianm fip dodamnuu, mo —— = 0 ( m o d p ) t —— = ~—-(modp) 2m ^ ^' 2m 2m + p - 1 ^ ^ dAJi deMKOzo m, muKozo, 'mo 2 < 2m < p - 3 - pesyjibTaT, H K H H 6yB B H K O pHcxaHHii y HHCJiennHx nepcBipKax Horo rinoxesH, nepm hitk i"i A O B C J I H . I l i Konrpyennii xaKOJK BHAaroxbCH K O P H C H H M H y sb'asKy s inbapianxaMH Ap. A caMe, KO>KHiH neperyjinpniH napi (p, 2m) siAnoBiAae AOAaxna KOMnonenxa Ap i UH KOMnonenxa > 1 xoAi n xijibKH xoAi, K O J I H cnpaBA>KyioxbCH Asi BKasani BHine KOHrpyeHi;ii. Y Bcix BiAOMHX npnKJiaAax n,i KOMnonenxn AopisHioioxb 1 (nanpHKAaA, [62] a6o [63]). Hacxynni ABi Ba>KjrHBi AOAaxKOBi BJiacxHBOcxi H H C C A a6o MHoroHJieniB BepnyjiJii 6yjio AOBCAeno m,e A O Boponoro. Ilepma s nnx onncye snaMennnKH nnceji BepnyjiJii ([11] [95], [96] (naparpacj) 8)). HoBCAenHH u;iei 4)ynAaMeHxajibnoi B.nacxHB0Cxi nnceji Bepnynjii MO>KHa snanxH B 6araxbox po6oxax Po6oxa Boponoro ne B H H H X O K . Bin AaB nesajiOKHC AOBeAennn pesyjibxaxy IIIxayAxaKjiaysena i BHKopncxaB iioro, n;o6 A O B B C X H naneAeny nnacHe rinoxesy AAaMca npo HHcejibHHKH HHceji BepnyjiJii. TeopeMa m x a y A x a - K j i a y s e n a npo SHaMennHKH. flKUj,o m > 1, mo B2m = - . ^ , X] " (p-l)|2m^ . de cyua 6epem,t>csi no ecix mamx npocmux. uucAax p, uip (p — 1) | 2m. HH>i<:neHaBeAena Konrpyennin KapjiiAa [7] niAirpae ponb cnojiynnoi JianKH 3 HacxynHOK) rpynoio BJiacxiiBOCxen nnceji BepnyjiJii: Hkuj,o p'^ip — l)|27n, mo p " diAumb nuceAwuK uucAa B2m + p^^ — 1Konrpyenuiio Kapjiina neAaBHO noKpamnB CAaByxcbKHH (me ne ony6jiiKOBaHo): Hexau p nenapne npocm.e hucao i n = k[p — l ) p ' ^ ~ \ k,u e N. Todi p 5 „ = p - l + A;p'^y (modp'^+i) a6o pBn^p-l + kp^ujp (modp''+^), ^'^ HacnpaBjii KjiayaeH xaK i H P ony6jiiKyBaB aHOncoBaHoro flOBefleHHH. SraflKH npo panimi po6oTH MO>KHa 3HaHxn B [70] (c. 245). 53 UlmecfkM UopyScbKi de ujp = {{p — 1)! + \)/p TeopeMa IIlTayA;Ta no'd'Hauae euibcoHoey Hacmny. ^ J I H m/iKe, lufi {p — 1) \ i p'^\2rn. HHcejibHiiKiB. ([96]): Hkiju,o p - npocme hucjio, mo i?2m = 0 (mod p''). H K ni-ime CjiaByxcbKHH y [93] (c. 71) "Ue TBepA>KeHHH ne npHBepnyjio ysaTH. OKpeMi BHnaflKH Li,iei xeopeMi-i A O B O ^ H J ™ JItk. CnjibBecxep, ZL>K. AaaMC, JlyKac xa in. A.A. MapKOB i H O F O ynenb T.Q>. BopoHHH ne snajiH mei' xeopeMH. SoKpeMa BopoHHii, H K H H OAep>KaB i;eii pesyjibxax H K HacjiiflOK CBoe'i BiflOMo'i KOHxpyeHmi juin H H C C J I Bepnyjijii, BBa>KaB, mo Bin yaarajibHioe xeope.Niy AflaMca." A caMe, B [1] A^aMC cxBepA;>KyBaB (ne naBOAHHH AOBeAeHHn), mo BiH AOBiB xaKe: Hkiu,o p > 3 - npocme hucao i (p — 1) j" rn, mo Bm/'iTi c p " n'ijie HUCAO. y xiii >Ke po6oTi A^aMC B H C J I O B H B SAoraji,, mo K O J I H npocxe HHCJIO p mJraxb m, ajie ne m-xnxb :3naMenHHK 2m-ro nncjia BepnyjiJii B-im^ TO p flijiHXb HHcejibHHK HHCvia B-^nf BopoHHii o/i;ep>KaB HK nacxiflOK si CBoei K0Hrp3'ennri nosHXHBny sarajibnimy BiflnoBizib: HacjiiAOK 1.1. Hkuj,o k = Pi^p^' •••Pr'' dijiumb m, ajie dAH dtcodnoso i — 1..... r Pi — 1 ne dijiunib 2rn. m,o HuccAbHUK Hucjia B^m diAumbcn na k. H K y>Ke sasnananocH. npiopnxex Bi^KpHXXH uboro pesyjibxaxy cjii^, Bi^Aaxn 4)on IIIxayATy, H K H H A O B I B |96] nefi pesyjibxax B CKBiBajienxniii 4)opMi A J I H r = 1. lien pesyjibxax nisiiiuie ,a,y>Ke nacxo nepeBiflKpHBajiH, nanpHK^ia^, CnjibBecxep [97], .Jlinmiim |61|. I nabixb (I>po6eniyc nepeAoniB [23] (c. 827) 6es >K0AHHX nocHJiaiib pesy.nb'rdT IIIxayAxa y xaKiii 4)opMi: SnaJueHHUK hucjiu Bm/m, He Micmunib npocm/ux hucc/i, eidjuinnux eid 3Haju,eHHUKa cua/iozo Bm 16 H K nacxynnnii naciiiAOK cBoei Konrpyennii Boponnn OAepjKan xaKe ysarajibiieniiH KOHrpyeHii,i'i UIxayAxa-KyMMepa ^': HacTii^OK 1.2. Hexaii. N = P^^po^ • • -pf'' m ~ m,aKi Hamypujibui Hucjia, uifl 2m HC dijiumb otcodne a hucca p, — \. i — \.... 2m — 1. Todi dAH kookhozo n = rn (mod ip{N)) m.Q2mP2n nQ2nP2m .r, i m a x { a i , a 2 , . . . ,ar} < , - 2 : 3 — " - 2 J 3ayBa>KHM0, mo B [99] (c. 266) sarajibnimi KonrpyeHn,i'i lUxayATa-KyMMepa (13) BHBOAHXbCH 3 KonrpycHuiV Boponoro. ZIoxennnM sacxocynannHM noro KOHrpyennii AJia m = 1 6y.;io I'aKe cnocxepoKennH Boponoro ^*: Hacjii^noK 1.3. Hucaa N-l x = U'l, a-12Y^t 1=1 ^ N (mod N) Iiijuc ysaraJibneHHfl MO>Kna :iBaHTn B [25]. '' He •!rajt\'io'4H B poGoxi IHxayjia ' I H KyMMepa. .Jlepx |60] (c. 483) 3po6nB xaKnii >Ke B H C H O B O K is HesaJieHcnoro aoBeaeHUH oKpcMoro BHriaflKV KOHrpyenuiV BopoHoro J I J I H iipocxoi'o M0jj,y,iia (nop. i3 noAajibiuH.M). KoHzpyeHV,ii muny Boponozo dnji hucca BepnyAAi CKAadammh unooKuny {a,N) = l. poae'mKie KonzpyeHv,ii ax = 1 (mod N) Sah 2. B T O , HHCJia KJiaciB i MHoroHJieHH B e p n y j i J i i mo6 sposyMiTH rjiH6HHy KOHrpyeHu;ii Boponoro, naBeaeMO KijibKa O C H O B O nojio>KHHx (|3aKTiB, HKi noKa3yK)Tb, m;o sraaani BHin;e pesyjibTaxH ne isojibOBani OAHH Bifl OAHoro. 5IK y>Ke sra^yBaJiocH, SHanenHH L-4)yHKLiii Biflirparoxb snmny pojib y xeopii' HHceji. O A H H M is xaKHX npHKJiaAiB e Bi^oMa dpopuyna A J I H HHCJia KjiaciB ( A H B . Hanp. [69] (c. 372) a6o [30] (c. 7)). Y C B O ' I H aHajiixHHHiii 4>opMi Bona SBynnxb HaK: TBepAJKeHHH 2. Hexaii K/Q e cninnenne aScAcee poamupennn Q i nexau Qi^m) - Kpyzoee noAC, uj,o Micmumt K. Todi Bam HUCAa KAacie hx noAJi K MaCMO >^hK= n ^(1'^')' x\h=^ dee - zoAoenuH xapanmep, n = 2''^'^'^'^tt^'^Rk/[wk\/\dK\) ~ "cmaAU JJipixAc", a X npo6izae eci xapaKmepu (mod m ) , mpueiaAtni na nidzpyni H zpynu FaAya G poamupenuH Q(.^m)/Q, 'UJ,o eidnoeidae K azidno 3 meopieto FaAya, a x! nosnanae npuMimuenuU xapanmep, indyKoeanuu x- UloAO apH4)MeTHHHoro ra^rpyHXH cJiopMyjm A J I H HHCJia K^aciB, xo B ; « e KyMMep noMixHB, m,o H H C J I O KJiaciB /iQ(5p) p-ro KpyroBoro H O J I H MOJKna no^axH y BHXJiHfli Ao6yxKy A B O X ^OAaxHHX ^ J I H X H H C C J I ^i,((j(ep)^2,((}{fp)) flfi ^2,Q[^p) = ^Q(Cp+€"')' ^ sarajibHOMy BiinaAKy nenpaEHJibno ( A H B . [69] (c. 410)), m,o Bi^,HomeHHH /iQ(^„,) AO ^^''^^ '^'^^ AObiAbHoro m G N. Facce [30] AaB xaKy MOAH^'iKau.iro: Hkuj,o po3mupenHH K/Q a6eAeee, i hkuj^o no3naHae MaKcuMUAbHe diUcne nidnoAC 3 K, a h'^ e Hozo hucao KAacie, mo h'^ diAumb hfc. HacxKy Tenep H K Bin nasHBae "BiAHOCHHM H H C J I O M KAaciB posmnpeHKH xaK i nijii i K/K^". 3riAHo s ([30] (c. 13) a6o [69] (c. 410)) / i " ^ ^ ) = "^Kmu)^ ^^^^^o m 7^ p'', i ^Q(im) ~ ^^Mim) m — p". He AOSBOJine sGeperxn sa H H M H iM'n KyMMepa i y BHnaAKy p'^-ro KpyroBoro H O J I H . Facce [30] (c. 12) AOBiB, m,o K O J I H K/Q e X ' H B H C a6ejieBe posmnpennn, xo / (14) h], = QKwll \ ^ \i axiia) / TaK SBani nepiuHH i flpyrHfi M H O / K H H K H ai^noBi^iHO. 55 UJme(paH FIopydcbKi Qk nosHanae I H A G K C O A H H H U I posiunpeHHH K/K^, w e H H C J I O KopeniB 3 OAHHHui B a x i npo6irae Henapiii xapaxTepn K ( T O 6 T O X I ( —1) = — !)• BHpa3 y Kpyr.iHx Ay>KKax e ne m,o iimie. H K - ^Bi^y.^, xoMy OAep>KaHa 4)opMyj[a He MiCTMTb TpaHCUeHAeilTHUX B C J I H H H H . flKiu,o K — Q(\/d) -- yHBHe KBaApaxHHHe posninpenHH Q 3 AHCKpHMinaHXCM d < 0, XO 3 (14) 0Aep»cyeM0 Ao6pe snany 4)opMyjiy Ae 0<a<\J\ Ae (d/a) e CHMBax KponeKepa, a 6, a npo6iraioxb xi ejieMenxH SBeAenoi CHcxeMH HaliMeHiuHX AOAaxHHx JiHiuKis no MOAyJiio \d\, ajih H K H X (d/a) = 1 i (d/b) = —1 BiAHOBiAHO. 3ayBa>KHMO, mo u; = 4 A - J I J I Q(-\/—1), w = 6 A J I H Q(\/—3) i w — 2 AJin Bcix iniuHX yHBnnx KBaApaxninnx posiunpeHb Q. KoHrpyennii, B H K H X hucjio KJiaciB KBaApaxHHHoro nojin BHpa>KaexbCH B xepMinax H H C C A BepnyjiJii, Bepxaioxb nac A O Komi, H K H A AOBiB mo Rp - Np _ ( W(^jj^]y2^ HKmo p = 3 2 ~ \: HKmop = 7 ( m o d s ) , (mods) Ae Rn e HHCJIO KBaApaxKHnnx AnmKiB, a Nn - T H X neAHmKis sa MOAyJieM n, HKi > 0 i < n/2. OaKTHHHo Komi AOBiB, mo K O J I H n BiAbne siA KsaApaTiB i Mae BHrjiHA n = 3 (mod 4), T O / f2\ Rn-Nn = 2n Ae a, b TaKi nncjia > 0 i < n, mo (a/n) = 1 i [b/n) = —1. Bijibme nocHJianb i AeiBJieft HHTan snaftAe B [69) (c. 409). Hexaii p - Henapne npocxe H H C J I O , a Q(^p) - p-Kpyrose nojie. ToAi QQ(fp) = l,w; = 2p i 3 (14) OAep^yeMO, mo nepmnfi M H O > K H H K ^ KpyroBoro H O J I H Q(^p) MO»cHa AaTH (|)opM3'jioio l<s<p--2 ^ a=l AC X e TBipnHH xapaKTep mod p. BaHAiBep [102], [31] AOBis. mo h-^^^^ = {-\)^v~'yH-^^'---'y-'p JI S,p.+i l<,s<p-2 (modp'') A-iH Bcix 1/ G N (npocTe AOBCAeHHH A H B . y [86]). UK) KonrpyeHuiK) MOSKna posnHAaxH HK ysarajibnenHH (11). y BHnaAKy p-ro KpyroBoro ncrin Q(Cp) MaeMO j = Q(Cp + ip^)- KyMMep [53] (c. 479) AOBiB, mo m'o6xiAHOio i Aocxaxiiboio yMOBOio noAiJiBHOCTi 20 Dicksorrs History HI. c. i02. 56 KompyeHV,ii muny Boponozo Sah hucca BepnyAAi y nepmoro Mno^nni-ca Mncjia KJiacin KpyroBoro nojiH Q(^p), na p e noAiJitnicTb na p OAHoro 3 nnceji Bepnj'JiJii (10). InaKme Ka>KyMH, Heo6xiAHO i AOCxaTHbO, mo6 na p AlnnJiocb / I Q ( ^ ^ ) . OanaK A J I H noAiJibHOCTi na p Apyroro MHO>KHHKa / J Q ^ ^ ^ noAiJibnicTb na p nepmoro MHOJKHHKa e neoSxiAHOio, ajie ne AocTaxnbOK) yMOBOio [51] (c. 486) (nop. 3 Zahlbericht rijib6epTa, c. 377). BaHAiBep [102], BHKopncTaBmH uett pesyjibxax i KOHrpyeHuiio lUxayATaKyMMepa (12), nepeAOBiB sraAany BHme KyMMepoBy Heo5xiAHy i AOCxaxnK) yMOBy noAiJibHOCxi nepmoro MHO>KHHKa na npocxe M H C J I O p. no.nHHeK [72] AOBiB, mo HKmo npocxe H H C J I O p > 2 AiJiHTb X O H H O i> 3 nnceji BepnyjiJii (10), xo ^<!J(fpn+l) —r = 0 . , ly^ (mod p ). • • Bijibme xoro, neoBxiAnoio i Aoctxaxnboio yMOBOio BHKonaHHH ocxanHbOi K O H rpyenuii e icnyBannH xaKoro rn. mo 2m < p - 1 i ^ 0 (mod p) i f'^r''-^ ^ ^ (mod / ) . 2rn + p - 1 2m Tyx p"+^-{i nepBicHHH Kopinb ^^..+1 BH6HpaexbCH xaK, mo6 ajih K O K H O X O n 63'.xo {^pn+iY = ^pn. ysarajiBHenHH MO>KHa snaftxH y [81] i [63]. lUipaxani [82] xaK nomnpnB Konrpyenniio BaHAJBepa na BiAnocni HHCJia KJiacin: '^m „+i) ^ ( - i ) ( ' ' - ^ ^ / ' ^ 2 i - ^ " ( ' ' - ^ ) / V ^ ^ n 5^P-"+i,xi ^^od pn ^ l<s<p-2,(s.2) = l, XI AJIH KO>Knoro 1/ G N, AG X\: p" xapaKxepin xaK SBanoro Apyroro xnny, BHsnanenHX no M O A J ' J U O p " + ' . Ilpo Ha6AH>KeHHH L{\,x) Y xepMinax H H C B A Bepnj'JiJii A H B . [49]. MipiManoB [66] (c. 54) BWBiB is Kpiixepiio KyMMepa [53] nacxynne: hkuj^o BT'P ne cnpaedoicyemhCH dAH eunadKy I , mo (16) Bp_3 = Bp_5 = Bp^7 = Bp-g = 0 (mod p). Ueft pesyjibxax y3arajibmoBa,aH pisni aBxopH. HanpHKJiaA, MopimiMa [68] posiuHpHB MOKi inABKciB A O Bp-\\ 3a yMOBH 20 579 903.75 571 ^ 0 (modp) Hasixb AO Bp-13. JXajihiue npocyBannn B ubOMy nanpHMi MO^na snaftxH B [40]. IIoxiM BanAinep [101] A O B I B . mo, hk'uj,o BT0 ne cnpaedotcyem-bCH dAH eunadKy I, mo (17) = 0 (mod p^) AJI5I m = {p - 2i)p + 1, Ae i = 2,3,4,5, mo nicjiH SBCAenHH no MOAyjno p Aae (16). 3aB^aKn BiiiOMHM (HaHpHi<.nai;. ii [77]) o6HHCJiiOBa7ibHHM Me>KaM, o6Me>KeHHH na p y BHrjiHjii KOHrpyeHuifi xyx MO/Kua BnnycriiTii. 57 nime(paH UopySchKi PeayjibTaTH i^boro Tnny nepe^SaHaiOTb KonrpyeHitii ajih HHCeji BepnyjiJii no MOflyjiK) p^. TaKi Konrpyennii o^ep^ajia JleMep [56]. Bona AOBejia, 111,0 hkiho ( p - l ) t { 2 m - 2 ) , mo (18) ( 2 2 - _ i ) | ^ ^ Y {p-2a)2-i 0<o<p/2 (mod/), 0<o<p/3 (22m _ 1) (22'"-! + 1) (20) ^ = = Y (P-4a)'"^~' 0<a<p/4 (g2m-l ^ 32m-l + 22"^"! _ l ) (21) (22) = , = Y (P-6a)"""' 0<a<p/6 2 2 - | ^ p ^ ^ (modp2), (modp2), 5 ; (p-2a)20<a<p/2 p > 7, (mod/). BaHAiBep [103], [108] (c. 572) AOBin Hacxynne: sikui,o (1) dpy?.uu MHootcHUK J HUCAa KAacie noAH Q(^p) e npocme hucao p i (2) 'Jtcodne 3 HuceA BepnyAAi Banp '^•^•« " = l5 2 , . . . , (p — 3)/2 ne diAumbca nap^, mo BT0 cnpaedotcyemhCH (dAH o6ox eunadme I i II). MopimiMa B H C J I O B H B Hacxynnnft 3AoraA: hkui,o Bn = 0 (mod p) dAH n < p — 1, mo HUCAO BepnyAAi B^np ne diAumhCH na p2. Fyx [29] AOBiB, mo p\h<s^(^^^) n XOAI fl X I A B K H TOAI, K O A H (S2m£?2m)=0 (mod p). AnajiorinHHii peayAbxax A J I « nncAa KAacin 6/-ro KpyroBoro H O J I H OAepjKaB K A C 6ox [46]. yaarajibHeHHH pesyAbxaxin uboro xnny na nonni KOMnjieKcni a6ejieBi posmnpeKHH MOJKHa anaflxH y [87], [88]. JleonoAbAx [59] Aonis: H K H I O nenapne npocxe H H C A O p AJJmTb M H C J I O KAaciB AiiiCHoro a6eAeBoro H O J I H , ajie ne AiJiHTb cxeninb nOAH, xo AGHKHfi Ao6yTOK ysarajibneHHx MHceji BepnyjiJii nepexBopioexbCH B nyAb no mod p. noAJJitnicxb MHceji BepnyjiJii i cnopiAnennx M H C C A saninae TaK0» piani M O AHc^iKami BT<1> ( A H B . [12] i x.n.). 58 Kompyewnii muny Boponozo Saji hucca BepnyAAi MipiiwaHOB [67] sacTOcyeae MHoroHjienH EiiJiepa npn o6HHCJieHHi cyMH p-2_2P-2^3P-2 ±yP~^ y KopoTKOMy AOBeaeHHi /ionoMi>KHOi KOHrpyenuii, BHKopHCTaHOi Bic{)epixoM AJif! ;iOBeAeHHH ftoro KpHxepiK) 2^'^ = 1 (modp^). BaHAiBep [106] A O B I B , mo y BTO neMae pimenHH y BHnaAKy I , HKmo M H C J I O EiiJiepa Eps ne A I J I H T B C H na p. Fyx [28] A O B I B xBepAJKennn. noAi6ne pesyjibxaxosi MipiManoBa, a caMe: TBepflHceHHH 3. Hkuj,o p - npocme hucao t zona 6 odne 3 hucca Ep-3, Ep^^, Ep-7, Ep-(j, Ep-n diAumhCH na p, mo x^^ + y^P = z"^^ ne Mae po3e'ji3Kie y v,iAux HUCAUX x,y,z, esacMHo npocm,ux 13 p. Lti pesyjibxaxn BanAinepa i Fyxa c])aKXHMno AaJin H O U I X O B X Kapjiiuy [8] jiflu oanaMennfl H O H H X X H peryjinpnocxi B I A H O C H O M H C B A Eftjiepa: Ilpocme hucao p E-pezyAHpne, HKWp eono ne dijiumb oicodnozo 3 hucca E2, E/i, • • •, Ep—3, — i Bin AOBiB, mo e necKinMenno 5araxo ne £^-peryjiHpHHX npocxnx nnceji. 3a AeHKHMH pesyjibxaxaMH C X O C O B H O innapianxiB iBacaBH A, ^ 4p-ro KpyroBoro no.xH i ix : 3 B ' H 3 K V 3 ^E-peryjinpnicxK) niACHAaeMO MHxana, nanpHKJiaA, AO [17]. EpHBOJi [15] no6yAyBaB saxcuibny xeopiK) neperyjinpnocxi npocxnx MHceji y xepMinax ysarajibnennx MMc:eji Bepnyji.ii. J J I H npHMixHBHoro xapaKxepa x Bin osnannn H O H H X X H x~pery„aHpnocxi npocxoro MHCJia p B xepMinax 3'3arajibnenHx M H C C J I BepnyjiJii Biy.B2,^ Bin AOBiB, mo ajih A S H K H X nerojiOBHHX xapaKxepiB (nanpiiKAaA AJia nenapnHx) e HecKinnenno Saraxo ne X-peryAHpnnx npocxnx Mnceji. Ocxannboio 3a nacoM, ajie ne Menm Ba>KAHBOio, e AHBOBH^na "napiaana" 4)opMa Kpnxepiio KyMMepa (11), Aana Ep6panoM [32] (oGepnene A O nei xnepA»ceHHH AOBiB Pi6ex [76]). ^oBeAennn xeopeMH Ep6pana sa AonoMororo K O H rpyenu,ii Boponoro A H B . B [33] (rjiaBa 15, §3). EpnBaji [16] AOBiB ysaraAbnennn xeopeMH Ep6pana, BHKopncxoByiOMM (cepcA inuioro) AoneAeny y [87] Konrpyenniio Boponoro A J I H ysarajibnennx M H C C J I Bepnyjijii i CBoe BJiacne H O H H X X H ne X^peryjiHpHHX npocxnx M H C C J I . 3. p-'dfl^uHui L-4)yHKLi,ii CniBBiAHomennH (12) MO>KHa ysaraJibnnxH ( A H B . nanp. [33]) xaKHM M H H O M : Hkw,o p - npocme hucao i 'in € N muKC, w,o (p — 1) \ mo dAH m = n (mod v?(p'')) ( l - / " ' - M f ^ ^ ( l - / " - ^ ) f ^ im in (modp''). Ocxanne cniBBiAnomenHH MO>KHa B S H X H sa ocnony p-aAHMnoi' nenepepBHOCxi snaMenb 4)ynKn,ii (1-p~*)C(.s) npn BiAnoniAnnx BiA'eMnnx mjinx snaMennnx s. HaflBnicxb eflAepoBoro MnoKHHKa ( l - p " " ) BiAo6pa>Kae 3araAbHHH npHHi^nn: y p-aAHMHHX anajiorax KOMnjiCKcnnx (JiyKHnin xpe6a no36aBJiHXHCb p-MacxHnn. KySoxa i .JleonojibAX [49] snaHinjin p-aAHMni anajiorn KJiacHMHHX L-4)yHKmH. 3naMeHHH L(—A;,x) AJIH k = 0 . 1 , 2 , . . . e: uijii ajire6pHMHi nncjia, i xoMy ix LUme^xm UopyScbKi MO^Ha posrjiHAaTH H K ejieMeirni anre6pnMHoro saMHKaHHH Qp nojia pauiOHaJIbHHX p-aAHMHHX MHCeJI. OCHOBHOIO Iipo6jieMOIO, 3 HKOK) BOHH 3yCTpijIHCH, 6yjia Heo6xiflHicTL xpoxii SMiniiTH sitaHeuHH L(k, x)- Ue 6yjio 3po6.JieHO nacxyHHHM HHHOM. ^ j i H AaHoro npocToro HHcna/J HOKjia^eMO _ _ ~ ' HKIUO p > 1 HKmo p = 2. Hexaii u - xapaKxep TarixMio./i.'iei)a nopHjiKy (p{q} 3 KOHflyKXopoM q. npHHOMy u}{n) = n (mod q) A J I H G Z i (rt,p) = 1. H K I U O x " xapaKxep ilipix.ne. xo p-a^HHHa L-cJjyHKuiH Lp(.s, x) osHanaexbCH H K HeiiepepBHa (JiyHKuin Bin s € Zp, AJIH s ^ I, HKmo X = HKa 3a.aoBOJibHHe yMOBy M l - ^'^.X) = - (1 - Xaj-(p)p-i) flJiH KOKHoro HaxypajibHoro HHCJia rn. 3ayBa>KHM0, mo L,{l-m.,x) HKmo rn = 0 , ' = (modp—1), , , „. (mod 2), {l-x{p)p'''-')L{\-rn.x). AJiH p > 2 „ A-ia P = 2. Bijibine xoro, anajiorinHo KOMixneKcnoMy BHua^KOBi, He BAaiOHHCb y ;ieTa.'ii, 3ayBa>KiiMO ri.nbKii. mo MynbXHnjiiKaxHBiiy B.JiacTHBic'i'b Paa6e (6) MHoroH.neHiu B(:'piiy.;i.rii .\io>KHa iiepec^JopMyjiioBaxH xaKHM H H H O M : HKmo JXJia X 6 "LINIj HOKJiacxH i4f'w^iv»-'i/^„(G)). Ae {x) [losHanae HaHMcriiiie iKMiiji'KMiie ;iiMCHe H H C ; I O B : • K.'iaci JiHiHKiB(mod Z ) , xo ciM^H {Era''} yxi5opioe xaK iBaiii (BcpnynjiieBi) posno/iijiH na {Z/NZ}. npHBO/mi'b /lo BimiOBiAHoro iiOHHirH .\iipH, sanaHoi cniBBimiomeHHHM (23) .ic c. lie i?|,f::'(:r) . . / • ! , f ) ( . r ) - r " ' j E | , f ' ( c - ' : ; ; ) , 1 pauioiiaTbHc ' I I I C ( ; . ! I I > H I I K i siiaMeHHHK H K O C O BsaeMi-io npocxi 3 .viipii npHBe.no }io xeopii inxerpyBannn, y paMKax HKOi p-aAHMHi X-cjDynKuiY Mo>Kiia inxepnpexyBaxH H K nepexBopennH Mejijiina, Bi.iiOMe 3 KOMn„'ieKcnoro Buiia.uv>'. 3a AexariHMH Bi;icH.xaeMO nnxana A O [54|. Mn .JiHuie BHKopHCxae.Mo (l^opM'i'ii'i-M Eiii.,- J..;IH AeMoncxpauii xoro, H K .vio>KHa liiiBecxn Konrpyenniio Boponoici i ,],eHKi Yi M0,aH45iKani! 3 My./ibTHnAiKaxHBHOi B.nacTHBOcxi MHoro^uieniB B('))n\'.M.ii. N. y CBOio nepry ne HHCJIO. HOHJIXTH 60 KompyRHV,n rnuny Boponozo dAH hucra BepnyAAi 4. y a a r a j i b i i e H H H KOi-rrpyeHuii B o p o H o r o ' ' Xona KOHrpyenniji Boponoro BiAo6pa>Kae Ba>KJiHBi apucJjMeTHMHi BJiacxnBocxi 4Hce.n BepHy.iiJii, aarajn^ne BH3HaHHH i"i noxpeSyBajio xpriBajioro nacy. PiBHO Hepe3 15 poKiB, HanpHKJiaA- y po5oxi .Jlepxa [60] 6yjio AOBeAeno OKpeMHii BHnaAOK Konrpyennii Boponoro A J I H naexKH OepMa q[a) = . P1 nenapne npocxe P MHCHO. p Jlepx cepeA innioro AOBiB )60| (c. 47.3. 4:)opMy.ia (8)), in,o (24) q{a) (mod p). = L V B H K O P H C X O B V I O H H BHpas AJIH nncna KJiacin /iQ(yq5)bu 4%-i)/2^=-E(!; Aepe npocxe M H C ; I O BHAy p = 1 (mod 4), /; a (ly/p) osHanae C H M B O J I ,ne>Kai mpa. .Hepx raicojK A O B O A H X B SHanmoB (c. 482). mo (mod p), KBaApaTHHHHii He.JiHmoK (mod p), na c. 483 (He3ajie>KH0 BiA BnmesraAanoro), mo p-i (/=! - P J u B I H -1 126 . p. (modp), p\b. i i5iA3ua4ae iJ>Ke sraAaiie laciocvBaniiH uie'i Konrpyenu,iV A O posB'HsyBannn jiiniilnnx Konrpyennin. IHo >K A O ysara.'ibHCiHiiM (24) na AOBijibni MOAyJii, xo Bin AOBOAHXb anaJioriMHHH pe3\-.;ibraT Jiiimc A J I H BijibHux BiA KBaApaxiB MOAyJiiB m, AJIH HKHX (c. 487): III-] ua. (mod rn). va L m J .IlepxoBi AOBCAenHH nboro pe:iy.:ibrary rp>'iixyiorbCH XOXO>KHOCXi ua q{ua) = q{c) I'OJIOBHHM H H H O M na (mod p). ua L P jie 0 < c < p i i/a = a (mod p). i BJiacxiiBocxi qiua.) = q{u) 4- q{a). BaHAiBep nepeAOBin Konrpyenuiio Boponoro y KijibKOx pisnnx napianxax. CxaxxH [100] Micxiixb Ana i'i Bapianxn (6e3 H S O A H H X nocnjianb na Boponoro). DepmHii 3 nnx na crop. 112 rjiacnxb (nisnimi cxaxxi na uio X C M V - [107[ i [110]): ()l KompyeHV,ii muny Boponozo dnsi hucca BepnyAAi H K niAKpecjiHB J ^ J K O H C O H [38] (c. 258), "KOHrpyenuiH siAirpaBajia Ba»:jiHBy pojib B MHuyjiOMy niBCTOJiiTxi B o6HHCJiK)BajibHiii po6oTi BaufliBepa xa iumux uaA rinoxeaoK) OepMa [36], [39], [48], [57], [79], [80], [94], [104], [105], [109]. L[i pisui aBxopH BHKopHCxoByBajiH aauy KourpyeHuiK) jinn CKJiaAauuH xa6jiHUb ueperyjiHpuHX npocxux Huceji. KpiM xoro, B O H H npoAOB^cyBajiu uepeBipKy npaBHJibHOcxi B T O AJIH Bcix uoKasHUKiB, MeuuiHX 3a xi MH inmi Bepxni Me«i, 3a AOuoMoroK) po3po6jieHoro Bau^iBepoM nsBHoro KpHxepiro." Baruixac[) [114] caM i cnijibHO 3 TaunepoM [115] upocyHyB ui oSMHCJieHHH suaMHO Aajii, B H K O pHCX0ByK)MH KOHrpyeHi^ii, noAi5Hi A O (25). HeAaBHi o6MHCJieHHH, cxocoBui U H X UHxaub, 6yjiH BHKOHaui ByxjiepoM, KpaHAOJioM, EpuBOAOM i MexcauKijia [5], OAHaK BOHH CHHpajIHCb Ha iHIUHii MexoAFprau [27] nepeBiAKpuB KonrpyeuuiK) Boponoro y BurjiHAi TBepA,>KeHH5i 7. Hexaii, p > 2 - npocme hucao, a - mane u,iAe hucao, w,o p\a, i m > l - napne hucao. Todi p-i ak (26) (mod p). LP J BHKopHcxoByroMH KOHrpyenniio (26), FpioH uepexBopHB Ao6pe 3HaHHft Kpnxepift KyMMepa '^^ pna BunaAKy I : [Hkui,o (pi{t) = E n = i ^ • ^ • ^ * ~ l , . . . , p — 1 , i t = —y/x, mo (/Pj(i)5p_i_i = 0 (modp)] - A O eKBiBajienxHOro BHrAHAy p-i fc = l , . . . , p - l . E n niACxaBHBmn m = p — 1, Fpiou OAepmaB BHAOSMiueHy cJjopMy xoxo>KHOcxi Jlepxa (24), 6e3 > K O A H H X uocHJianb ua Jlepxa. Ty caMy K0HrpyeHu;iio, mo B Fpwna, Jinme sa AOAaxKOBoro npHnymeuHH (p - 1) I m, AOBiB xaKOJK 4 > K O H C O H [38] (xeopeMa 5) p-aAHMUHMH MexoAaMH. ^ J K O H C O H SBepxae yBary, mo (17) i (26) nacupaBAi piBHOCHJibHi. fljKOHCOH [38] (c. 257) 3ayBa>KHB, mo hkui,o p = 3 (mod 4), mo (26) dae f 2- (2\ \P) (p-l)/2 . B (modp), (P + l ) / 2 ^ \PJ Po6oTa [38] BHHuiJia B 1975 poui. 3ayBaH<HM0, mo pe4)epeHT FpioHa B Zentralblatt cxBepA»<yBaB, mo npHnymeHHH npo napHicxb m saftBe. IIpocTHH npHKJiaji p = 3,m = 3,o = 2 a6o nopiBHHHHH 3 HaBe/ienHM HHJKHe peayjibxaxoM noKaayioxb, mo ne ne xaK. noAi6HHM H H H O M , xona y cxaxxi nePt B K H E W O K He BHKJiKDHeHO, apryMenxauifl FpiOHa xH6Ha A J I H p = 2, H K 3ayBa>KeHo B ]64] a6o H K u,e huvkhb BHOjiHBEie 3flOBeflSHoipaHiuie ^opuynu (27). 2"* C T O C O B H O aHajiorinHoro KpHxepiio, oxonjiK)K)Horo HHCJia Eftjiepa, A H B . [28]. 63 Ulnu.'cfxm nopy6("bKt de (ajp) odHUHae cuMCioJi. •Jleotciindpa. 3 B I A C H BHruiHBae, HanpHKJiafl, mo B(p+\.)i2 ^ 0 (modp) aoo mo • % v ^ ^ i = ~25(p+i,/2 (modp), - TBepA>i'ceHHji, Bi,aoMe me Komi i nepeaoBeaeHe Opi^ManoM i TaMapKiHofl [22] (c. 154). CjiaByxcbKHfl [85] ,aoniB ysaranbHennH KOHrpyeHuii' Boponoro y xaKifl 4)opMi: 2''' TBepflJKeHHH 8. Hkwp N > I i a esucMHO npocme 3 N, HamypaAbni uucjia, a u^'uie hucao a mo „m _ 1 (27) ak 2- B„,=2T{aky"-' ^ in iV + {1 -a)Bm-iN (modiV). Hacxynui naauAKH BHn.;iiu5aioxb is nonepennboro TBepA>KeHHH: HacjiiAOK 8.1. flKvip X > O.m > 2. N > I i dAH v,iAO?.o nucna a {a,N) TOO mp (x\ p ^o_Bm[J__Um m A'-l ^ 2j2i^,k + xr-' ak + X N + il-a)Bm-iN = 1, (modiV). BH6iipaiOMH a = Kon/ivKiop Hero.xoBHoro xapaKxepa X- CjiaByxcbKHPi BHBOAHXb is nonepcAiiboro nac.;n;u\ HacniAOK 8.2. flnwp KondyK'nwp cmuu 3 N > I i ni > 2, mo h nczoAocmozo xapaKViepa x 03aeMH0 npo- .v-i (mod N). 2 ^ - f E x ( - ) E ( . / x ^ ^ N ,r=l k^O 3 o< rannboV KonrpyenuiV ;vva uixxroro MOAynH N — p BHnjiHBae, mo K O J I H ( p . / ) = 1 i / > 1, XO Biii,y p ui.:ic. Bliibine xoro, sa xnx caMHX yMOB MaeMO, mo KOJiH p''||7n., xo B„i,^/p'' raKO/K p ui.ne (5es o6Me>KeHHh na rn y Buna^Ky SBHHafiHHX MHceji BepHyj[.;ii). 3 ocxannboV Konrpyenuiy imo/K HuirnnBaK ]85] (c. 124), mo koau Q(\/d) c y,Hemi.M KaadparnuHHUM n.oACM 3 ducKpuMmaHmoM d, < —4, a N > 1 mane, Z[nB. <;. 50 uie'i CTarxi. 2'' Ha >Ka.7ib, y cxaxri e fiaraxo Kajx I . K H X I I O M H J I O K . 5IK CKa^aHO B Kinui cxaxri, Kompycuuii uiei crarxi MicxHXb y:5ara;ihHeHH5i KoiirpyeHui'i Boponoro, DoneptviHbo AOHe;i,eni B [loooiax |41] [44] i [84]. Y [45[ Konrpyeimi>i Aaexbcji 6(!3 Aone.ac'UHH, Jiiimo 3 nocM.)iaHiiJiM. repcji iiiiiioio. na [83j. OanaK KOHrpyeHuiio (:fl)Oi)My.ribOBano B |45] (.neMa 2) y uHr.!inji. o< raiiui.M iiiipa3o.M iipaBoi nacxHHM e (1 — a"')B,„Ar saMicxb (1 -a"')B,„_,iV. • 2** riepiiiHH 3 UHX xaKOyK 3ra;i>'<"ibcsi n ]45], a ao xoro B [44] JiJia Aoaijibnoro x. B o6ox BHna,-y<ax 6e3 AOBeAenna i iiisi .\io,iy.;isi A' = p - Henapne npocxe H H C J I O . KompyenVjii muny Boponozo djiH hucca BepnyAAi mo cuMBOA Kponenepa x{p) = (d/p) = — 1 dAJi Kootcnozo npocmozo diAbnuna p HUCAa N, mo HapeinTi 3 ocTanHbOi Koi-irpyeimii 6yjio oriep>KaHO pnA BHpasiB A J I H Bm,x/''^ npH m = ^-^p'"'^ + I. a6o (p - a6o [p - I'jp"-^ + 1 i xapaKxepa xi^) = ( x ( — i i ; o B nosAHaHHi 3 xBepaxeHHHMH, p.OBejxeHHMH B [43] i [45], MO>KHa BHKOpMCXaXIl JXJIil BHpaxeHHH aeHKHX BJiaCXHBOCXeii noAinbHOCxi HHCJia KJiaciB KBaApaxnHHHX no.niB y xepMinax nijioi" nacxKHH [-J. IHoAO po3UiHpeHb KOiirpyenuin IlIxayAxa-KyMMepa, CjiaByxcbKHii y [85] AOBiB HacjiiA;oK 8.3. Hexau N > I - namypaAbne hucao, N = p^'p"^ . . . p"*^ iiozo podKAud y do6ymoK pisnux npocmux hucca, a m i n ~ mam napni na- mypaAbni hucau, uj,o rn = n (mod (p{N)) i m a x { a i , a 2 , . . . Or} < m i n { m , n } . Todi dAH KooiCHOZo esacMHO npocmozo 3 N nenyAbeozo u,iAozo hucau a MacMO ajn _ 1 2 Hkui,o do m,ozo ok: N p\N, (jn _ 1 B,„ = 2 Bn (mod N). rn n nenapne i (p — 1) f m dAH Kootcnozo npocmozo diAbnuna mo J , m n ,• -• HacxynHHfl nacjiiAOK 6yjio AOBeAeno B [6] 3 BHKopHCxaHHHM inmnx 3aco6iB: HacAiA,OK 8.4. Hexaii, p" e cmeriiub nenapnozo npocmozo nucAa, a m,n maKi dea namypuAbni HucAa, wp rn = n (mod <p(p'')) i v < m i n { m , n } . Todi dAH KOOICHOZO p-VflAOZO HUCAU b = rn (modp). n HacaiAOK 8.5. Hexau N > 1 ~ namypaAbne hucao, N = p^'p"^ • • -Pr"^ - uozo po3KAad y doSymoK pianux npocmux, a m i n - mam dea napni namypaAbni HUCAa, uj,o rn = n (mod ^[N]) i m a x j a i , a 2 , . . . Or} < m i n { m , n } . Todi dAH KO'jtcHOZO eaacMHO npocmozo 3 N nezoAoenozo xapaKmcpa x 3 KondyKmopoM f^>0 MUCMO EllhK = Elhx m n (modiV). CAaByXCbKHH [87] AOBiB TBepA:»ceHHH 9. Hexaii x - xapaKmep is KondyKmopoM. ^, P ^ npocme HUCAO i a - muKC u;iAe hucao, ujp [a, }\p) = 1. Hexaii daAi s = ordp{f^) i v neeid'euni 'niAi hucmm, Bah hkux max{;y, . S } > 1. Todi dAH Kooicnozo m G N 65 LLImecpuH TIopydchKi ak = 2 E (mod p''+'). X{ak){akr-' k=l Sonpeua, jikiho p > 2 i x("~l) — ( - I ) ' " , "lo ak ( X ( a ) a - - 1) ^ ^ (mod p^^^). E III Hapemmi, siKXii,o p \ fy^ > l,p > 2 i u > 1, mo , /xP" Br (mod p"). m Hkw,o p ~2, IP'] k=l mo ocmauHH KompyeHii,iji cnpaedotcyemtcji no ModyAW 2" ^. y [74] KOHrpyeHi],iio Boponoro 6yjio BHBeAeHO 3 MyjibTHnjiiKaTHBHOi BJiacxHBOCTi Paa6e (6). ^OBefleKHH cnnpaeTbCH na anajior Ao6pe BiAOMOi 3 anajiisy 4)opMyjiH AH4)epeHii;iK)BaHHH x"'- : (28) mD{m)E^J^^Hx) = mD{m)x'''-^E[^P{x) (mod M ) , a6o 1 c, c M mD{m) Ae c 7^ 1 - B3aeMHo npocxe 3 panionajibne M H C J I O i D{m) - naftMenme cnijibne Kpaxne snaMennnKiB Koe4>ii;ienxiB MnoroMJiena BepnyjiJii Bm{x). Topi 4)opMyjia Paa6e (6) Aae Nd-l (29) Ae N-l E < ' ^ = E--"''<^(--) x=0 .x=0 = npiivP"'''''''"'^^"'''- OcKijIbKH c + c- 1 2 ' xo npaBa MacxHna (29) naGyaae BiuvmAy N-l , iV-1 2 „tt OAnaK AiBy Macxnny M0>KHa nepexBopnxH A O BHrASAY . , : (l_c'"):?i!i m 29 OKpeMHii BHnaAOK uieT KOHrpyenuii G V A O AOBeAeno y 66 [18] (xBepAiKeHHa 3). KompyeHUflt muny Boponozo dAsi huccm. BepnyAAi jinme TOAI. KOJIH pauionajibHe HHCJIO Mae C BHFJIHA c = 1/b, m b ^ I ~ nijie Lie BHiipaBJiHe noMHJiKy y TBepA^KeHHi O C H O B H O I xeopeMH 3 [74], mo KOHrpyeHuiio Boponoro MO>KHa ysarajibHHXH xaKHM H H H O M , mo 6 e AOBijibHHM pauioHajibHHM H H C J I O M ^ 1, B3aeMH0 npocxHM 3 A''. H a HenpaBHJibHicxb xaKoro ysarajibHeHHH BKasajiH MexcanKijia [64] i CjiaByxcbKHM [90], [91], [92]. HaBeAeni BHme cniBBiAHomeHHH pasoM is HHCJIO. 7V-1 _ Ya'--'=NBm-i a=l - + ^^N^Bm-2 ^ - (modN) AJIH m > liA'^ > 1 HepeAOBOAHXb BHmesraAanHH peayjibxax CjianyxcbKoro, HKHii y [74] HaBCAeno B "napnoMy" Bapianxi (BHnpaBAeHOMy B A,yci nonepeAHboro 3ayBa>KeHHH) iV-l ab (mod A^), N a=l i B "HenapHOMy" 6-1 B2kN = E 2k ab N a=l ( m o d N) AJIH BsaeMHO npocxoro s A^ nncjia 6 i A; G N . IJe npHBOAnxb is BHKopncxanHHM iABH /^JKoncona [38] ao "napnoro" i "nenapnoro" BapianxiB M0AH4)iKau;ii BanAisepa Konrpyennii Boponoro pjia. N > I i 6 > 1, BsaeMHO npocxoro s N: 6-1 [vN/b\ (1_62'=)^^262'^-^E E (mod AT); ^' v=l a=l HKmo KO>KeH npocxHH AiJu^nHK p HHC-xa A'' saAOBOJibHHe yMOBy (p — 1) | 2A;, xo 6-1 [vN/b\ E v=l E a=l = ° H K 6yA0 BKasano, "nanKpamiiM napmiM" ysarajibnennHM Konrpyenuii Boponoro e Bo, ( 6 - - l ) ^ + N-l 62'= - 62'=-! 2k - 1 a=l 0.6 N (mod N). HncejibHHK 62'= — 62'="^ MO>KHa saMinnxn na 6 — 1, BHKopHCxaBmn B AOBeAenni Konrpyenmio Yla=i = E ^ / ( ^ ' ^ ) ^ ' ^ ~ ^ ( m o d A'') (n;eH cnpomennn Bapianx AOBeAeno B [90], A H B . HH>KHe). y [89] CxaByxcbKHH sanncan ne y cj^opMi 67 LUme(pa.H UopydchKi N ab rn-l l-b +• N m m — 1 NBm-2 N (mod N), fle m,b,N G N saAOBOJibamoTb V M O B H m > 1,6 > 1,A'' > 1 i {b,N) — 1. H K sacTOcyBaHHH Bin OAepjKaB nocHJieHHH xeopeMH JTinuiHUH-CHJibBecxepaHijibcena ( A H B . HH>KHe) i BHnpaBJieHHH Bapianx AOBeAenoro YexapoK) XBepA>KeHHH [98]. CjiaByxcbKHH [90] xaK0>K AOBiB HacxynHHii pesyjibxax: TBepA>KeHHSi 10. HKwp m, b,N - uamypaAhHi hucaq. b i N - esaeMHO npocmi i ^ - nepeicHuu Kopiwu b-ao cmencHH 3 oduHuv,i, mo (30) m c=l a=l ^ OKpeMi BHnaAKH uie'i KonrpyeHtiii MO>KHa 3HaHXH B>Ke y [23], a jx^a N = p^, Ae p npocxe nncjio, i i A O B I B Yexapa [98] CnaByxcbKHH BHBiB is nonepeAHboro pesyjibxaxy nocnjiennji '^raAanoi BHiii,e Konrpyennii Boponoro y c|)opMi BaiiAiBepa. II,eii pe3y./ibxax AoniB xaKO>K i Vexapa. OAnaK is nporajinnaMn, CnpHHHHeHHMH sra/jaHHMH Binne noMHJiKaMn: TBepA,JKeHHH 1 1 . Hexau rn > I, b > 1, N > I - v,iAi uucAa, {b,N) = 1 i u,iAe HUCAO g{a) ausHanacm/bCH yMoeauu a = g{a)N (mod b) i I < g{a) < b. Todi Bm ^ (31) rn = - E Oi^^h""' + a=l ^-^N ^ (Bm-i V + '^^NBm-2) ^ J (mod N). ' SoKpcMa, HKUi^o HC 2\\N i odnoHacrio 6 = 1 (mod 4 ) , mo Oah A2/C (32) _ A''-l 1 —B,, 2k 6 N = - E (mod N). Bin SBepnvB yBary. mo U H K()Hr))yeHniH c{)aKXHHHO e H O B O K ) cJ^opMOio (ysarajibnennHM) K.xacHHHoi KOHrpyenuii Boponoro. Bin noKasaB, mo sepxaiOHHCb AO ui,Jioi HacTHHH y cniBBiAiiomoiiiii (31), A J I H rn > 1 OAep>KyeMo: ^ -JjrB'n = iV-l 1 ab + = (-i)'"6'"-i E « ' " " ^ a=l N 2 Bm-l V 30 Moxviia 'iBipHTH :s BHiipaB.ieiiiiii.Mii 11 [911. 68 + '^^^Bm-2N] (mod A^). KoH2pyeHV,ii muny Boponozo dAR hucca BepnyAAi JXjir m xaKoro, mo 2!m i m > 2. ue ^ae iV-l b"" - 1 Bm = m E a=l m-l ab + N ^-^-'^Bm-2N' (modiV). JXjih m TaKoro, m,o 2 f m i m > 1, is (31) OAepjKveMO 6-1 N-l BmN = 6'"-^ a6 (mod AT), E m mo BunpaBjiHe uacniAOK 1 is [74]. Hapemxi, HKmo ue 2||A'' i OAHonacHO 6 = — 1 (mod 4), xo 3 (31)mcxaeM0 jxjih 2\in N-l b"' - 1 Bm = b""-' m ab E (mod N 0-1 N). Hijibcen [70] (c. 250) A O B O A H X B , ysarajiburoroHH pesyjibxaxu CujibBecxepa i .JIinmHu;a, mo b''~^^{b'^^ - l)B2k/2k - nine H H C J I O npn 6 G Z i A; G Z . CjiaByxcbKHH [90] BHBOAHXb is KOHrpyeHuii Boponoro uaiiKpame M O X J I H B C ysarajibneuHH pesyjibxaxy Hi^ibceua, a caMc: Oasi 6 G Z i m G N nauMcnmuM uamypaAhHUM hucaom h. Bar hkozo hucao b^{b"^ — l)Bm/'m - u,iAe, e h = [log2 m] -I- 1. A r o [3] noMixHB, mo, d^iKcyiOHH B KOurpyeHmnx Boponoro m i SNiinioionH n , 0Aep>KHM0 nacxynne uiACHjiennH (Q2m ^ snaMenuHK B2m)' TBep/i;>KeHHfl 12. Hexau m,n,w - doeiAbui namypaAbni HUCAa maKi, uj,o Iw. p\n Hkw,o a - uarnypaji'bHe hucao i {a.w) = 1, mo ka l<k<w-l {k,n) = l p\n w (mod n). Is imoro pesyjibxaxy Bin B J I B I B nacxynne ysarajibneuHH Konrpyenniii IIIxayAxa-KvMMepa, AOBCAene Opo5eHiycoM [23] (c. 842) A J I H n , HKe e cxeneneM neiiapHoro npocxoro HHCJia: H a c j i i ^ O K 1 2 . 1 . Hexau n > 3, u. 'tn, a - namypaAbni nucAa i (a, w) — I . Hkuj,o <p{n) - cfjyHK'niM EuAcpa, mo y ( _ l ) ' c f ^ ^ TTn k—l . 2m-l+/c^(n)w^2m+fc^(n)_^) ^ 2 m + M n ) p\n SonpcMa, HKiu,o p — l \ Sah ecix p\n, mo k=l ^ ' Pin 69 ^ Q ^^^^ UlmeifiaH UopyScbKi 5IK y>Ke 3iaAyBa„iocb, ,ueHKi peayjibxaxH cnHpaioxbCJi na icHyBanHH KonrpyeHLi;iH no MOAyjiio cxenena npocxoro nHc:.Jia nn, aarajibnime, no MOAyjno cxenenH naxypcuibnoro nncxa. H a nepmnn norviHA s^aexbCH, mo xana cnpo6a noKpnBaexbCJi XHM. mo KOinpyennia Boponoro sanncyexbca no AOsijibHOMy MOAyjno A'', H a >Kajib, npaea nacxHna Konrpyenmi' ne Mae Ha.xe»cnoi cxpyKxypn. y 1974 p. /^jKoncon [37] BnBiB Konrpyennii (18) - (22) is nacxynnoro ysara.ibnennn Konrpyenuii Boponoro: T s e p f l ^ e H H H 13. Hkiho ( p - 1 ) \m — 2) i b - i^iyie hucao maKc, uj,o 2 < b < p - l , rno (33) {b""-l)B2ra ba 2m- 1 = p-i p 6 2 — 2 ^ a ^ 2m-2 LP J ba (mod p^) LP J a=l FaHAi, cni.ibHO s Kecy6e i CypanapHna [24] Aonejin nacxynne niACHJiennH KOHrpyenuii Boponoro. TBep/^>KeHHH 14. Hexau p nenapne npocm,e hucao, rn > 2 - u^Iac hucao mane, uj,o (p — 1) | (2m - 2), a 6 - eaaeuno npocme 3 p u^iac hucao. Todi (34) {b^- - 1) Urn + -(^^^)p62—2|^a2'"-2 ''-^^^^^B2m-2P') 6o — B O H H p-l 2 /2m\ .p . BiATaK ^ 2m62-i £ ba ^2m-3 V 3 ; - (mod p^). Ip} BHBejiH s HCi KOHrpj'eHmK) (xeopeMa 1.1): Hacjii/i;OK 1 4 . 1 . Hexaii p - nenapne npocme hucao, a m > 2 - maKC v,iAe HUCAO, uj,o (p — 1) I (2771 - 2). Todi 2 ^52.mPH = E ±!2m-2P j = (P - 2a)^'-" + m(2'm - l)p2 0<a<p/2 HK ^ {p - ^a)^""'^ (mod p^). 0<a<p/2 spasoK M0H<jiHB0CxeH posmnpenb KonrpyenuiH .JleMep B O H H AOBCJIH Hacjii;];OK 1 4 . 2 . Hexaii, p nenapne npocme hucao, a m > 2 - mane u,iAc ":urAo, 111,0 [p — I) \ 2). Toch i:i^'''~^){B,m-^'^^^^^ E (p-2a)-- 0<rt<p/2 E V ^ / 0<a<p/2 ( P - 2 « ) - - + M / ^ ' 70 E 0<a<p/2 (p-2a)^'"-^ (mod/). KoHzpyeHv^ii muny Boponozo Sah hucca BepnyAAi y [73] iaeio posno^iJiy BepnyjiJii Syjio TaKO>K EHKopHCxaHO ajir noniHpeHHH /l^HCOHCOHOBoro pesyjibTaTy na BHnaAOK AOBijibHoro TV saMicTb npocToro p . TaM AOBeAeno, mo "KBaApaTHHHHM" anajioroM cniBBiAHomeHHH (28) e D{m)mEZH^) = D{rn)m Urn - l)x"'-'^E^^'^Hx) = - (m - l)!""'^e[^\x)\d ToAi npaBa nacTHHa (29) Ha6yBae BHrjiHAy M^). . B2{l-c^)-2Bic'z-Boc^z' E + x=0 N-l + Y x ^ - ' [ - c z + Bi{l-c)], x-O flfi z = —[c~^x/N\. Mo>KHa 0Aep>KaTH poamnpeHHa KOHrpyenmi BopoHoro, BHKOpHCTOByroHH U,IO TOTOXCHiCTb 3a yMOBH, mO SHOBJ' C = , t £ 7j,b ^ 1 i 6 BsaeMHO npocTC 3 N. TaKHM H H H O M , H K nacjiiAOK, MO>KHa OAep^Kara (cepeA inmoro) 6e3nocepeAHe ysarajibHeHHH peayjibTaTy /^jKOHCona (floro 6yjio AOBeAeno sa AOAaTKOBoro npHnymeHHH k > 4, HKe, H K BiA3HaHeH0 B [64], e SaHBHM). TBepA»ceHH5i 15. JJkuj,o (p — 1) { (2m — 2) dAH Kooicnozo p HUCAa N > 1 i u,iAe hucao b esaeuno npocme 3 N, mo N-l 2m - 1 ba N-l Nb :2m- N 2m-2 npocmozo ba diAbuuna (mod N^) N a-1 H O T I M , is BnKopncTaHHHM iAeii /Imoncona ysarajibneHHH Konrpyennift JleMep (18) - (22), Moacna AOBecra, nanpHKJiaA, H E C A I A O K KOJKnozo 15.1. Hkui,o N - m,aKe u,iAe hucao, iu,o (p — 1) f (2m — 2) dAH npocmozo (2 2m diAbnuKa • B2m 11 2m p = hucau N , mo {N-2a) 2m-1 E (mod N'). 0<a<N/2 y [64] MexcanKijia npononye npocTimnn i ejieraHTnimHH, onepraH na (4), MexoA snaxoA^KennH ysarajibnenb Konrpyennii Boponoro no MOAyjno AonijibHoro CTencHH A^". Bin nonnnae s ba ba = N + ra, 0 < r a < N - l , N I, niAHiMaiOHHCb noTiM AO m,-ro cxenenn, 31 OAepjKye (socepeA»yK)HHCb rojiOBHHM HHHOM Ha BHHaAKy napHoro m) '^^ Ila i f l e a n p n c y x H a x a K O K y n e p a i c H O M y AoaefleHHi BopoHoro (nop. AOBefleHna A B M H i B AOBefleHHi O K p e M o r o B H n a A K y x s e p A i K e H H a 9, n e p e A O B e A e n o r o B [16] 71 (AeMa 1). X) UlmecfkiH TBepflJKeHHH 16. mo Hkiu,o N.b,k nopy6cbKi - Hamypajibm •! , Hucna, (N,h) = 1 i m G Z * , V (35) rn c^e T i ( i V ) = E a = Y ( ^ " ) • ' " " H V / ^ ' J ' • 5IK HacniAKH CBoro nLuxoAV. MercaHKijia ^aB HacrynHi KOHrpyeHuii no M O Ayjno N i N'^ . riepnia 3 nnx e Menin BiAOMHM BapianxoM Konrpyennii' Boponoro: HacjiiflOK 1 6 . 1 . J],jiH [h.N] — l i r n > l (pi'n _ MaoMO = 2ri(iV) ( m o d N). 771 3HizicH i\n>K i n m H M BanjinBae:, mo n p n (b.N) A' nijiHM. H a c j i i A O K 1 6 . 2 . Hmup - - e nucmdny (6-^'" - 1)B2,„ 16.1 m >2. + (b"" - 1)"'^"^ = 2wT\ - rn{2rn = 1 - l)T2iN)N HHCJIO (ft^'" — l)B2m/'rn. e mo ~ '^B2m-2N' ^ ( m o d A^'^). I l p o inmHH 3B'>t30K Mi>K .MVJibXHiiJiiKaxHBnoio xeopeMOK) Paa6e i Konrpyen- uifexo Boponoro A H B . B [26]. no;jaHK AGHKi 3 u,H'roBauiix po6i'r 5y.xH neAOCHxni pun aBxopa, A^siKi pe3y.;n>Taxn, MO>KjrHBO, npouyini'ni. M n BH6aHaeM0Cb nepcA anxopaMH. 3 inmoro 6oKy. HeMO>KJiHBO BK.?noHHXH Bci 3acxocyBannH Konrpyenm'i Boponoro nasixb x i , npo HKi HuiJiocb y BcxynnoMy po3Ai./n uie'i cxaxxi. 3a AOAaxKOBUMu AexajiHM H BiACH.iaeMO Huxana A O poSix. nepejii'^iennx y cnncKy Jiixepaxypn. Hapemxi, anxop xoxiB 5 H B H C J I O B H X H C B O I O rjra6oKy BAannicxb T . MexcauKijii, I . CjiaByTc;bKO.My i T . A r o 3a p e x e « b n e npoHnxanna nepmoro Bapianxy pyKonncy i 3a "ixni jno6'H3ni 3ayBa>KeimH. HKi AonoMorjin nojiinmnxn BHKJiaA 3 6araxbOx uorjiHAiB. .rirrKPATVPA [1| .I.e. Adams (1878), Table of the first sixty-two numbers of Bernoulli. J. reine angew. Math. 85, 269-272. (see also Coll. Papers, vol.1, Cambridge 1896, 425-451. [2| P. Adrian (1959). Die Bezeichnunysweise der BernouUischen Zahlen, M i t t . Verein. Scliweiz. Versicherungsniatli. 59. 199-206. l3i r . Agoli (1985), On the conyruences of Voronoi and Kummer for the Bernoulli numbers C. R. Math. Rep. Acad. Sci. Canada (Mathem. Reports) 7, no. 1, 15-20. |4j .1. Bernoulli (1713). Ar.s coji/ecfandi. Basileae 1713 (Die Werke von Jakob Bernoulli, vol.3, Birkhauser Verlag. Ba.sel 1975. 106 286); see also Smith,D.E.: A Source Book in Mathematics, Dover Publications, Inc.. New York, 1959, pp.85-90. [5| , ] , Buhler, R.E. Crandall, R. Ernvall, T . Metsankyla (1993), Irregular primes and cyclotomic invariants to four million. Math. Comp. 6 1 , 151-153. 72 KompyeHv^ii muny Boponozo Bah hucca BepnyAAi L. Carlitz (1952), A note on Bernoulli numbers and polynomials of higher order, Proc. Amer. Math. Soc. 3, 608-613. L. Carlitz (1953), Some congruences for the Bernoulli numbers, Amer. J. M a t h . 75. 163-172. L. Carhtz (1954), A^oie on irregular primes, Proc. Amer. M a t h . Soc. 5, 329-331. L. Carlitz (1959), Arithmetic properties of generalized Bernoulli numbers, J. reine angew. Math. 202, 174-182. L. Carlitz (1961), Criteria for Rummer's congruences. Acta A r i t h . 6, 375-391. T. Clausen (1840), Lehrsatz aus einer Abhandlung iiber die BernouUischen Zahlen, Astronom. Nachr. 17, 351-352. P. Denes (1951), Uber die Diophantische Gleichung x"? + y " " = p'^z"", Czechoslovak M a t h . J. 76; 1 (1952), 179-185. P.G.L. Dirichlet (1837), Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erster Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthalt, Abhandl. K g l . Preuss. Akad. Wiss. 1837, 45-81 (see also: Werke Vol. I , Berlin 1889, 313-342). K . Dilcher, L. Skula, I . Sh. Slavutskii(1991), Bernoulli Numbers (Bibliography (17131990)). Queen's papers in pure and applied mathematics, No.87, Queen's Univ., K i ngston, Ontario 1991. R. Ernvall (1979), Generalized Bernoulli numbers, generalized irregular primes, and class number, A n n . Univ. T u r k u . Ser. A I , No. 178. R. Ernvall (1989), A generalization of Herbrand's theorem, A n n . Univ. T u r k u . Ser. A I , No. 193. R. Ernvall, T. Metsankyla (1978). Cyclotomic invariants and E-regular primes. M a t h . Comp. 32, no. 142, 617-629. E r r a t u m ibid. 33 (1979), 433. R. Ernvall, T. Metsankyla (1987), A method for computing the Iwasawa \-invariant, Math. Comp. 49, no. 179, 281-294. L. Euler (1755), Institutiones calculi differentialis, Pt. 2, (Chapters 5 and 6), Acad. Imp. Sci. Petropolitanae, St.Petersburg, (Oper (1), Vol.10). J. Fresnel (1967), Congruence entre les nombres de Bernoulli, Semin. theor. nombres Delange-Pisot-Poitou, Fac. Sci., Paris, 6, fasc.2, N o . l 4 , 1964/65, 1-12. J. Fresnel (1968), Nombres de Bernoulli et fonctions L p-adiques, A n n . Inst. Fourier (Grenoble), 17, No.2, 281-333. " A. Friedmann, J. Tamarkine (1909), Quelques formules concemant la theorie de la fonction [x] et des nombres Bernoulli, J. reine angew. M a t h . 135, 146-156. G. Frobenius (1910)-, Uber die Bernoulli'schen Zahlen und die Euler'schen Polynome, Sitzungsber. Preuss. Akad. Wiss., 809-847. (.see also: Ges. Abhandlungen, Bd.3, Springer, Berlin e.a.(1968), 440-478). J.M. Gandhi, H . Kasube, D . Suryanaryana (1978), Congruences for Bernoulli numbers modulo p^. Boll. Unione Mat. Ital. (5) 1 5 - A . 517-525. K . Girstmair (1990), A theorem on the numerators of the Bernoulli numbers, Amer. M a t h . Monthly 97, 136-138. A. Granville, S. Shank (1990), Defining Bernoulli polynomials in Z/pZ (a generic regularity condition), Proc. Amer. Math. Soc.108, 637-640. O. Griin (1940), Eine Kongiuenz fur die Bernoullische Zahlen, Jahresber. Dtsch. M a t h . Ver. 50, 111-112. M . G u t (1950), Eulerschen Zahlen und grosser Fermat'scher Satz, Comment. M a t h . Helv. 24, 73-99. M . Gut (1951), Euler'schen Zahlen und Klassenzahl des Korpers der il-ten Einheitswurzeln, Comment. Math. Helv. 25, 43-63. H . Hasse (1952), Uber die Klassenzahl abelscher Zahlkorper, Akademie Verlag, Berlin. 73 lJ]m('4>aH riopySchKi [31] H . Hcisse (1966), Vandiver's congruence for the relative class number of the p-th cyclotomic field, J. Math. Anal. Appl. 15, 87-90. [32] J. Herbrand (1932), Sur les classes des corps circulaires, J. M a t h . Pure A p p l . (9) 11, 417-441. [33] K . Ireland, M . Rosen (1982), A Classical Introduction to Modern Number Theory, Springer Verlag, New York. [€ pociucbKHH nepeKjia/i: K . AftepjiBHfl, M . Poysen, KjiacCHHecKoe BBeaewK b coBpemeHHyio Teopmo HMcen, M . : Mnp, 1987.| [34] K . Iwasawa (1958), On some invariants of cyclotomic fields, A n n . M a t h . 80, 773-783; Erratum, ibid. 81 (1959), 280. [35] K . Iwasawa (1972), Lectures on p-adic L-functions, A n n . of M a t h . Studies, No.74, Princeton Univ. Press, Princeton. [36] W . Johnson (1973), On the vanishing of the Iwasawa invariant fip forp < 8000, M a t h . Comp. 27, 387-396. [37] W . Johnson (1974), Irregular prime divisors of the Bernoulli numbers. M a t h . Comp. 28, 653-657. [38] W . Johnson (1975), p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7, 251-265. [39] W . Johnson (1975), Irregular primes and cyclotomic invariants, M,i l i . Comp. 29, 113120. [40] W . Keller, G. Loh (1983), The criteria for Kummer and Mirimanoff extended to include 22 consecutive irregular pairs, Tokyo J. M a t h . 6, 397-402. [41] A . A . Kncejien (1948), Bupaoicenue Hucjia KAaccoe udeuAoe etvj,ecmeenHux KeadpamuHHux noAcu Hepe.1 nucaa BepnyAAu, Hayu. ceccHH JlenHnrp. roc. yn-xa, xea. A O K J I . no c e K U H H Max. HayK, 37-39. [42] A . A . K H c e j i e n (1948), Bupaofcenue nucAa KAaccoe udeaAoe Keadpamunnux noAeU nepea •HUCAa BepnyAAu, ZIOKJI. A H CCCP L X I , No. 5, 777-779. [43] A . A . KncejiCB (1949), 0 neKumopux cpaenenujix Baa hucau KAaccoe udeaAoe eevj,ecmeeuHux Keadpamuunux noACu, Y H . 3 a n . .JleHHHrp. roc. yH-xa, cep. Max. nayK, No. 16, 20-31. [44] A . A . Kncejiea, H . U I . CjianyxcKHH (1959), 0 hucac KAaccoe udeaAoe Keadpamunnozo noAA u ezo KOAev,, ^ O K J I . A H CCCP 126, No. 6, 1191-1194. [45] A . A . K H c e j i e e , H . U I . C j i a B y x C K H H (1964), npeo6pa3oeaHue ^opMyA JJupuxAC u apu^MemunecKoe euHUCACHue HUCAa KAaccoe udeaAoe KeadpamuHHUX noACu, T p . 4-ro BcecoK)3. c-besaa ( J l e H n n r p a a 1961) 2, H a v K a , .JlennHrpazi, 105-112. J. Kleboth (1955), Untersuchungen iiber Klassenzahl und Reziprozitdtgesetz im Korper der Ql-ten Einheitswurzeln und die die Diophantische Gleichung x^' + 3ly^' = z^' fur eine Primzahl I grosser als 3 Inaugural-Diss., Univ. Zurich. D.E. K n u t h , Th.J. Buckholtz (1967), Computation of Tangent, Euler, and Bernoulli numbers, M a t h . Comp. 21, 663-688. B.B. Ko6e.neB (1970), Jl^oKa:)ameji,hcmeo eeAUKoiJ, meopcMU <I>epMa dAA ecex npocmux noKaaamcAeu, Meuhmux 5500, / J O K J I . A H CCCP 190, 767-768. T . Kubota, H . - W . Leopoldt (1964), Eine p--adische Theorie der Zetawerte I.Einfiihrung der p~adischen Dirichletschen L -Funktionen, J. reine angew. M a t h . 2 1 4 / 2 1 5 , 328-339. E.E. Kummer (1847), Beweis des Fermat'schen Satzes der Unmdglichkeit von x^+y^ = fiir eine unendliche [sicj Anzahl Primzahlen A, Monatsber. Akad. Wiss. Berlin, 132141, 305-319; ( A H B TaK0>K: Kummer Coll. Pap., 274-297). E.E. Kummer (1851). Memoire sur la theorie des nombres complexes composes de racines de I'unite et de nombres entiers, J. de M a t h , pures at appl. 16, 377-498; (see also; Kummer Coll. Pap., 363-484). Max. [46] [47] [48] [49] [50] [51[ T y x i flajii B S C H s a e x b c a CKopoHeuHa; Kummer Coll. Pap. = Collected Papers, V o l . I (ed.A. Weil), Contributions to Number Theory, Springer Verlag, Berhn e.a., 1975 74 KompyeHi^ii muny Boponozo dAsi hucca BepnyAAi [52] E.E. Kummer (1851), t/ber eine allgemeine Eigenschaft der rational Entwickelungscoefficienten einer bestimmten Gattung analytischer Functionen, J. reine angew. Math. 41, 368-372; (see also: Kummer Coll. Pap., 358-362). [53] E.E. Kummer (1857), Eimge Sdtze uber die aus den Wurzeln der Gleichung = \ \ complexen Zahlen fiir den Fall, dass die Klassenzahl durch A theilbar ist, nebst Anwendung derselhen auf eiaen weiteren Beweis des letzten Fermatschen Lehrsatzes, A b h . Akad. Wiss. Berlin for 1857 (1858), 41-74 (see also: Kummer Coll. Pap, 631-638). [54[ S. Lang (1978), Cyclotomic Fields. Springer Verlag, New York. [55] D . H . Lehmer (1936), An extension of the table of Bernoulli numbers, Duke M a t h . J. 2, 460-464. [56] E. Lehmer (1938), On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, A n n . Math. 39, 350-360. [57] D . H . Lehmer, E. Lehmer, H.S. Vandiver (1954), An application of high-speed computing to Fermat's last theorem, Proc. Nat. Acad. Sci. U.S.A. 40, 25-33. [58] H . W . Leopoldt (1958), Eine Verallgememerung der BernouUischen Zahlen, A b h . M a t h . Semin. Univ. Hamb. 22, 131-140. [59] H . W . Leopoldt (1959), Uber Klassenzahlprimteiler reeller abelschen Zahlkorper als Primteiler verallgemeinerter BernouUischen Zahlen, A b h . M a t h . Semin. Univ. Hamb. 23, 36-47. [60[ M . Lerch (1905), Zur Theorie des Fermatschen Quotienten ——— = q{a), M a t h . A n n . 60, 471-490. [61[ R. Lipschitz (1884), Beitragt zu der Kentniss der BernouUischen Zahlen, J. reine angew. M a t h . 96, 1-16. [62] T . Metsankyla (1975), On the cyclotomic invariants of Iwasawa, M a t h . Scandinav. 37, 61-75. [63] T. Metsankyla (1978), Iwasawa invariants and Kummer congruences, J. Number Theory 10, 510-522. [64] T. Metsankyla (1978), The Voronoi congruence for Bernoulli numbers, The Very Knowledge of Coding. Studies in honour of Aimo Tietavainen, T u r u n yliopiston offsetpaino, T u r k u , 112-119. [65] T . Metsankyla (1987), The index of irregularity of primes, Exposit. M a t h . 5, 143-156. [66] D . Mirimanoff (1905), L'equation mdeterminee x' + y' + z' = 0 et le criterium de Kummer, J. reine angew. M a t h . 128, 45-68. [67] D. Mirimanoff (1909), Sur le dernier theoreme de Fermat et le criterium de M.A. Wieferich, L'enseignement Math. 1 1 , 455-459. [68] T . Morishima (1932), Uber die Fermatsche Vermutung VII, Proc. Japan Acad. 8, 63-66. [69] W . Narkiewicz (1974), Elementary- and Analytic Theory of Algebraic Integers. Monografie Matematyczne, V o l . 57, PWN-Polish Sci. Publ., Warsaw. [70] N . Nielsen (1923), Traite elementaire des nombres de Bernoulli. Gauthier-Villars, Paris. [71] M . Ohm (1840), Etwas iiber die BernouUischen Zahlen - {Table computed by Rothe), J. reine angew. M a t h . 20, 11-12. [72] F. Pollaczek (1924), Uber die irregulare Kreiskorper der l-ten und l^-ten Einheitswurzeln, Math. Zeitschrift 2 1 , 1-38. [73] §. Porubsky (1983), Further congruences involving Bernoulli numbers, J. Number Theory 16, 87-94. [74] §. Porubsky (1984), Voronoi's congruence via Bernoulli distributions, Czechoslovak M a t h . J. (109)34, 1-5. [75] J.L. Raabe (1848), Die Jacob Bernoulli'sche Function, Verlag von Orell, Fiissli and Comp., Zurich, p.23-28. [76] K . Ribet (1976), A modular construction of unramified p-extensions ofQ{fj,p), Invent. M a t h . 34, 151-162. 75 LUmecpaH UopyScbm [77] B. Rosser (1940), A new lower bound for the exponent in the first case of Fermat's last theorem. Bull. Amer. Math. Soc. 46, 299-304. [78] L . Saalschiitz (1897), Studien zu Raabe's Monographie iiber die Jacob Bernoullische Funktion, Zeit. fiir Math, und Phys. 42,1-13. [79] J . Selfridge, C A . Nicol, H.S. Vandiver (1955), Proof of Fermat's last theorem for all exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A. 41, n o . l l , 970-973. [80] J . Selfridge, B.W. Pollack (1964), Fermat's last theorem is true for any exponent up to 25,000, Notices Amer. Math. Soc. 11, 97. [81] K . Shiratani (1967), Bin Satz zu den relativklassenzahlen der Kreiskorpen, Mem. Fac. Sci., Kyushu Univ., Ser. A 21, 132-137. [82] K . Shiratani (1971), A generalization of Vandiver's congruence, Mem. Fac. Sci., Kyushu Univ., Ser. A 25, 144-151. [83] H . m . C j i a a y T C K H H (1961), 0 hucac KAaccoe udeaAoe Baa eeunecmeeHHux KeadpamuHHUX noAcu c npocmuM ducKpuMUHanmoM, Yh. 3an. JleHunrp. nea. nn-ra km. Fepuena 213, 179-189. [84[ H.UI. C j i a B y x c K H H (1962), OSoSmeuue cpaeneHuu BopoHOBO-PpwHa u hucao KAaccoe udeaAoe mhumozo KeadpamuHHoso noAA, Tp. n a y n . o6T3eflHHeHHa npenoflaBaxejieH 4)H3.MaT. 4)aK. n e A . H H - T O B ^ a j i b u e r o B o c x o K a , M a x e M a x H K a 1, 82-84. [85| H.UI. C j i a B y x c K H H (1966), 06o6ui,eHHoe cpaenenue Boponozo u hucao KAaccoe udeaAoe MHUMOzo KeadpamuHHozo noAx, H3B. By30B, M a x e M a x H K a No.4 (53), 118-126. [86| I.Sh. Slavutskii(1969), The simplest proof of Vandiver's theorem, Acta Arith. 15, 117118. [87[ H.UI. C j i a B y x c K H H (1972), JIoKaAwiue ceoucmea hucca BepnyAAu u o6o6w,eHue meopeMu KyMMcpa-Bandueepa, H S B . By30B, M a x e M a x H K a No. 3 (118), 61-69. [88[ H.UI. C j i a B y x c K H i i (1972), 06o6iu,eHHue nucAa BepnyAA^i, npunadACMcamue nepaenuM xapaKmepau, u pacnpocmpaneHue meopcMu Bandueepa, Y M . 3an. JleHHurp. roc. ne^. HH-xa, Ajire6pa H anajiHS 496-1, 61-68. [89] H.IU. C j i a a y x c K H H (1986), 06 :meueaAeHmHocmu cpaeneHuu Boponozo u Bandueepa. B o n p o c M xeopex. H npHKJi. MaxeMaxHKH, JleHHHrpa/i, H H - X xeKCXHJi. H jierK. npoM-cxn, JIcHHHrpa^zi, 80-85 ( ^ e n . B B H H H T H 07/21/1986, N. 5279-V). [90] H.UI. C j i a B y x c K H H (1987), p-adunecKue nenpepuemie ^yHKv,uu Vexapa u cpaenenue Boponozo, H 3 B . B y 3 0 B , M a x e M a x H K a N.4, 59-64. [91[ I.Sh. SlavutskiT(1987), A remark on the paper of T.Uehara "On p-adic continuous functions determined by Euler numbers". Rep. Fac. Sci. Eng. Saga Univ., Math., 15, 1-2. [92| H.UI. C j i a s y T C K H H (1990), OnepK ucmopuu uccAcdoeanuji apu^McmunecKux ceoucme HUCCA BepnyAAu (LUrnayOm, KyMMep, Boponou), Hcx.-Max. Hccjiefl. 3 2 / 3 3 , 158-181. [93[ I.Sh. Slavutskii(1995). Standi and arithmetical properties of Bernoulli numbers, Historia Scientarum 5-1, 69-74. [94[ E . T . Stafford, H.S. Vandiver (1930), Determination of some properly irregular cyclotomic fields, Proc. Nat. Acad. Sci. U.S.A. 16, 139-150. [95] K . G . C h r . v o n Staudt (1840), Beweis eines Lelirsatze.s, die Bernoulli'schen Zahlen betcitefend, J . reine angew. Math. 21, 372-374. [96] K . G . Chr.von Staudt (1845), De nmneris Bernouillianis commentatio altera, Commentat. 1 u n d 2, E r l a n g e u . j9T| .f.J. Sylvester (1861), Sur luie propridtc de nombres premiers qui se rattache au thcor'uvi'! de Fermat, C. R. Acad. Paris 52, lCl-163. [98[ T . Uehara (1980), On p-adic continuous functions determined by the Euler numbers, Rep. Fac. Sci. Eng. Saga Univ., Math. 8, 1-8. [99| J . V . Uspensky, M.A. Heaslet (1939), Eieraentary Number Theory, McGraw-Hill, New York. 76 KompyeHViii muny BAJI HUCCA Boponozo BepnyAAi [100] H.S. Vandiver (1917), Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat's quotient and Bernoulli's numbers, A n n . M a t h . (2) 18 (1916/17), 105-114. [101] H.S. Vandiver (1918), A property of cyclotomic integers and its relation to Fermat's last theorem (third paper). Bull. Amer. M a t h . Soc. 24 (1917/18), 472. jl02] H.S. Vandiver (1919), On the first factor of the class number of a cyclotomic field. Bull. Amer. M a t h . Soc. 25, 458-461. [103[ H.S. Vandiver (1929), On Fermat's last theorem. Trans. Amer. M a t h . Soc. 3 1 , 613642. [104[ H.S. Vandiver (1931), Summary of results and proofs on Fermat's last theorem, Proc. Nat. Acad. Sci. U.S.A. 17, 661-673. [105[ H.S. Vandiver (1937), On Bernoulli numbers and Fermat's last theorem, Duke M a t h . J. 3, 569-584. [106] H.S. Vandiver (1940), Note on Euler number criteria for the first case of Fermat's last theorem, Amer. J. M a t h . 62, 79-82. Jl07] H.S. Vandiver (1940), On general methods for obtaining congruences involving Bernoulli numbers. Bull. Amer. M a t h . Soc. 46, 121-123. [108[ H.S. Vandiver (1946), Fermat's last theorem. Its history and the nature of the known results concerning it, Amer. M a t h . M o n t h l y 53, 555-578. [109] H.S. Vandiver (1954), Examination of methods of attack on the second case of Fermat's last theorem, Proc. Nat. Acad. Sci. U.S.A. 40, 732-735. [110[ H.S. Vandiver (1961), On developments in an arithmetic theory of the Bernoulli and applied numbers, Scripta M a t h . 25, 273-302. [ I l l ] B.A. BeHKOB (1952), K paSome "0 uucAax BepnyAAu", V K H . : r.O.BopoHOH, Co6p. coH., T . I , H3fl-B0 YKp. AKafl. HayK, K H B B , 392-393. ]112] r.<l>. BopoHOH (1890), 0 HucAax BepnyAAu, Coo6m. XapbK. max o6m-Ba 2, 129-148. ( A H B . TaKO>K: Co6p. COH., T . I , Hsfl-Bo A H YKp.CCP, K H C B , 1952, 7-23.) [113] r.<I'. BopoHoii (1994), UJodeHHUK, I H - T (JjyHflaMeHTajxbHHx /;ocjiifl»ceHb Y K P . nayK. acouiauii, K H I B . [114] S. Wagstaff (1978), The irregular primes to 125 000, M a t h . Comp.32, 683-591. [115| S. Wagstaff, J.W. Tanner (1987), New congruences for the Bernoulli numbers, M a t h . Comp. 48, 341-350. Institute of Computer of the Czech Academy Pod Voddrenskou Science of Sciences, vezi 2 ' 182 07 Prague 8, Czech Republic ' , ' ' . , '/ ... [email protected] HepeKjian, OjieKcaH^pa r a H i o i u K i n a 77 ''