metodická příručka projektu – platónská tělesa
Transkript
METODICKÁ PŘÍRUČKA PROJEKTU PLATÓNSKÁ TĚLESA ZÁKLADNÍ ŠKOLA KLADNO MOSKEVSKÁ 2929 ZPRACOVALA : Mgr. MICHAELA ČERMÁKOVÁ ČERVEN 2014 Projekt PLATÓNSKÁ TĚLESA Cíl projektu : rozlišení jednotlivých pravidelných mnohostěnů, jejich pojmenování, určení jejich vlastností, určováníráce žáků s krychlí a s hlavolamem SOMA, stavba krychlových těles, práce s jednotkovými krychlemi, cvičení prostorové představivosti Očekávané výstupy žáků : žáci komunikují a spolupracují v rámci skupiny, společně řeší předložené problémy; rozvíjejí a procvičují svou prostorovou představivost; řeší křížovky, dopňují správné výrazy; na základě znalosti geometrických vzorců uspořádávají kartičky do správných dvojic; potřebné údaje týkající se mnohostěnů zjišťují pomocí 3D počítačových modelů; vytvářejí papírové i jiné modely mnohostěnů; pracují s paírem Průřezová témata : Osobnostní a sociální výchova - rozvíjení dovedností správné komunikace ve skupině - cvičení pozornosti a soustředěnosti - rozvoj kreativity - rozvíjení základních dovedností řešení předložených problémů - rozvíjení dovedností pro správnou spolupráci ve skupině - cvičení podřízení se ale i vedení a organizace práce ve skupině Realizace projektu Vzhledem k jednotlivým činnostem, které žáci v průběhu projektu plní, je nejvhodnější způsob uskutečnění projektu během jednoho dne v průběhu 4 – 5 vyučovacích hodin. Projekt lze uskutečnit i během dvou dvouhodinových celků – tento způsob však není úplně vhodný i kvůli tomu, že žáci jsou v průběhu projektu rozděleni do skupin a případná absence některého z nich tak může narušit chod a spolupráci žáků ve skupině. Žáci pracují v průběhu celého projektu ve skupinách – základní skupiny mají po 4 členech + ve dvojicích, když pracují v počítačové učebně. Rozdělení žáků do skupin je vhodné provést na základě jejich dobrovolného rozhodnutí, případně na základě losování pomocí losovacích kartiček. K uskutečnění projektu je potřeba pro každou skupinu mít : - nakopírované pracovní listy - nakopírované sítě pravidelných mnohostěnů na barevných papírech - modelína a párátka - nůžky, pravítko, lepidlo v tubě - sada zalaminovaných kartiček s geometrickými vzorci Dále je třeba mít přístup do počítačové pracovny ( doporučuji si zkontrolovat funkčnost odkazu, se kterým budou žáci pracovat ). Následující časové rozvržení projektu je pouze přibližné – záleží na šikovnosti žáků v jednotlivých skupinách. 1. hodina – rozdělení či rozlosování žáků do skupin + příprava třídy pracovní list č. 1 + 1A + 1B – Trocha historie nikoho nezabije – doplňování chybějících výrazů do neúplného textu pomocí vyluštění tajenek šesti očíslovaných křížovek žáci si volí svou strategii – všichni luští společně nebo si jednotlivé křížovky mezi sebou rozdělí 2. hodina – pracovní list č. 2 – Co budeme zkoumat sestavování správných dvojic kartiček : slovní zadání + matematické vyjádření geometrického vzorce nejprve pochopení způsobu získání tajenky a zvolení vhodné strategie – žáci sestavují dvojice nahodile a poté je teprve uspořádají nebo si nejprve seřadí očíslované kartičky a k nim přiřazují druhou kartičku s písmenem tajenky 3. – první část 4. hodiny – pracovní listy č. 3A, 3B, 3C, 3D, 3E a č. 4 – Seznamte se a Vlastnosti mnohostěnů tentokrát žáci pracují v rámci skupiny ve dvojicích a v počítačové učebně seznámení se s jednotlivými živli, které Platón tělesům přiřadil a prohlédnutí každého pravidelného mnohostěnu ve 3D animaci ovládání prvků na webové stránce obsahující podrobnou animaci těles, vyplnění tabulky a ověření Eulerovy věty druhá část 4. – 5. hodina – list č. 5 – Modely těles sestavování papírových modelů těles z nakopírovaných sítí výroba modelů z párátek = hrany a modelíny = vrcholy Výstupy projektu : - vypracované pracovní listy jednotlivých skupin žáků fotodokumentace modely Platónských těles PRACOVNÍ LISTY PL č. 1 – Trocha historie nikoho nezabije TROCHA HISTORIE NIKOHO NEZABIJE Pozorně si přečtěte úvodní motivační text z historie, který vás uvede do problematiky dnešního tématu. Text ale bohužel není úplný. Některá slova z něj „vypadla“. Chybějící slova doplň – získáš je jako tajenky předložených šesti křížovek. PL č. 1A – Trocha historie nikoho nezabije - text DOPLŇ : Roku 427 př. n. l. se do významné athénské rodiny narodil budoucí velmi známý řecký filozof, pedagog a matematik ………………………….. ( tajenka č. 1 ) Pojmenován byl však po svém dědovi - …………………………. ( tajenka č. 2 ) Své mnohem známější jméno znamenající široký, mohutný, získal údajně od svého zápasnického trenéra ( podle jiných zdrojů však díky svému nezvykle širokému čelu). Kolem roku 388 př. n. l. zakládá v Athénách …………………………… ( tajenka č. 3 ) – slavnou filozofickou školu, která byla zrušena až v 6. století našeho letopočtu. Jeho díla mají většinou formu rozhovorů, kde vystupuje ………………………….. (tajenka č. 4 ) jako hlavní postava. Ve svém díle ……………………. ( tajenka č. 5 ) charakterizuje čtyři živly – oheň, vodu, vzduch a zemi jako tělesa a ta jsou tvořena převážně z trojúhelníků. Popisuje čtyři dokonalá tělesa složená z trojúhelníků, kterým lze opsat kouli. Zároveň zmiňuje i páté těleso, které nelze vytvořit z trojúhelníků. Umírá v roce ………… ( tajenka č. 6 ) př. n. l. PL č. 1B - Trocha historie nikoho nezabije - tajenka 1-3 tajenka č. 1 matematické nic znaménko pro násobení jaká část litru je mililitr třetí mocnina čísla 2 jedna setina celku deset na druhou sto arů přímky svírající pravý úhel část přímky ohraničená dvěma krajními body plocha, výměra tajenka č. 2 výsledek dělení tisíc tisíců spojnice dvou vrcholů tělesa číslo pod zlomkovou čarou matematik, který zformuloval větu o obsahu čtverců nad stranami pravoúhlého trojúhelníku číslo vystupující v součinu tajenka č. 3 úhel o velikosti 90º deset gramů číslo nad zlomkovou čarou nejmenší přirozené číslo přímka mající s kružnicí 2 společné body římsky 1000 výsledek násobení poměr přilehlé odvěsny a přepony v pravoúhlém PL č. 1B - Trocha historie nikoho nezabije - tajenka 4-6 tajenka č. 4 polovina nejmenšího trojciferného čísla řecký symbol hustoty metr krychlový dvojnásobek poloměru část celku ( 5 % ) přímka "dotýkající" se kružnice nejdelší strana pravoúhlého trojúhelníku znaménko pro sčítání tajenka č. 5 sto kilogramů 3,14 V kolmé těleso se dvěma shodnými podstavami číslo, které se odčítá nejjednodušší geometrický útvar dětský název pro krychli tajenka č. 6 druhá odmocnina z podílu největšího dvojciferného čísla a čísla 11 druhá mocnina nejmenšího prvočísla trojnásobek čísla 5 zmenšený o třetí mocninu čísla 2 PL č. 2 – Co budeme zkoumat ? CO BUDEME ZKOUMAT ? Podobně jako Platón se budete zabývat zkoumáním těles, která se nazývají POLYEDRY. Těmto tělesům se také říká PLATÓNSKÁ TĚLESA. Z každého vrcholu takového tělesa vychází stejný počet hran, které jsou shodné a zároveň mají všechny stěny stejný pravidelný tvar. Jedná se o tzv. …………………………………………………………………………….. ŘEŠENÍ : Předložené kartičky uspořádej do odpovídajících si dvojic ( zadání geometrického vzorce + jeho matematické vyjádření ). Uspořádané dvojice srovnej podle čísel na první kartičce. Hledaný výraz sestavíš z písmenek nacházejících se na druhé kartičce v uspořádané dvojici. PL č. 2 - Co budeme zkoumat - příloha 1. OBVOD OBDÉLNÍKU 2.(a b) P 2. OBSAH LICHOBĚŽNÍKU (a c).v 2 R 3. OBJEM KVÁDRU abc A 4. OBSAH PŮLKRUHU 1 2 r 2 V 5. OBSAH KOSOČTVERCE e. f 2 I 6. OBSAH KRUHU r 2 D 7. POVRCH KRYCHLE 6a 2 E 8. POVRCH VÁLCE 2r (r v) L 9. OBVOD ČTVERCE 4a N PL č. 2 - Co budeme zkoumat - příloha 10. OBVOD TROJÚHELNÍKU abc 11. POVRCH HRANOLU 2S p S pl É M 12. OBSAH TROJÚHELNÍKU 1 ava 2 N 13. OBJEM VÁLCE r 2 v O 14. OBSAH ČTVERCE a2 H 15. OBSAH KOSODÉLNÍKU b.vb O 16. OBJEM KUŽELE r 2 v 3 S 17. POVRCH KVÁDRU 2ab 2ac 2bc 18. DÉLKA KRUŽNICE d T Ě 19. OBVOD ČTYŘÚHELNÍKU abcd N 20. DÉLKA ČTVRTKRUŽNICE r 2 Y PL č. 3A - Seznamte se - tetraedr ČTYŘSTĚN = TETRAEDR Platón tomuto tělesu přiřadil živel oheň – hlavně kvůli jeho ostrosti hran a vrcholů a také kvůli tomu, že se jedná o nejjednodušší a nejzákladnější pravidelné těleso. Jeho stěnami jsou rovnostranné trojúhelníky. Řekové čtyřstěn označovali slovem PURAMIS, ze kterého se odvodilo slovo pyramida. Animace tělesa http://upload.wikimedia.org/wikipedia/commons/7/70/Tetrahedron.gif PL č. 3B - Seznamte se - hexaedr KRYCHLE = ŠESTISTĚN = HEXAEDR Vzhledem k její stabilitě jí Platón přiřadil k živlu země. Na rozdíl od nejjednoduššího čtyřstěnu tvoří její stěny čtverce. Animace tělesa http://upload.wikimedia.org/wikipedia/commons/4/48/Hexahedron.gif PL č. 3C - Seznamte se - oktaedr OSMISTĚN = OKTAEDR Druhé ze tří těles, jehož stěnami jsou rovnostranné trojúhelníky. Platón ho přiřadil k živlu vzduchu, protože ho považoval za přechod mezi čtyřstěnem = ohněm a dvacetistěnem = vodou. Animace tělesa http://upload.wikimedia.org/wikipedia/commons/1/14/Octahedron.gif PL č. 3D - Seznamte se - dodekaedr DVANÁCTISTĚN = DODEKAEDR Poté co Platón přiřadil každému ze čtyřech ostatních těles nějaký živel, prohlásil : „Zbyla pátá konstrukce, kterou Bůh použil na vyzdobení celého nebe souhvězdími.“ Dvanáctistěn Platón považoval tedy za představitele jsoucna – všeho co existuje – vesmíru. Jeho stěny jsou tvořeny pravidelnými pětiúhelníky. Animace tělesa http://upload.wikimedia.org/wikipedia/commons/7/73/Dodecahedron.gif PL č. 3E - Seznamte se - ikosaedr DVACETISTĚN = IKOSAEDR Poslední ze tří těles, jejichž stěnami jsou rovnostranné trojúhelníky. Pokud bychom složili čtyřstěn, osmistěn a dvacetistěn ze stejně velkých rovnostranných trojúhelníků, pak dvacetistěn by byl největší. Proto ho Platón přiřadil k živlu vodě – nejhustšímu z tekutých živlů. Animace tělesa http://upload.wikimedia.org/wikipedia/commons/e/e2/Icosahedron.gif PL č. 4 - Vlastnosti mnohostěnů VLASTNOSTI MNOHOSTĚNŮ Vyplňte následující tabulku : pravidelný mnohostěn počet stěn počet vrcholů počet hran počet hran vycházejících z vrcholu tetraedr hexaedr oktaedr dodekaedr ikosaedr Jednotlivé údaje zjistěte pomocí aplikace na http://nlvm.usu.edu/en/nav/frames_asid_128_g_4_t_3.html?open=instructions Jednotlivá tělesa můžete pomocí pravého tlačítka myši různě natáčet a tažením jezdce je lze zvětšovat či zmenšovat Další těleso vyberete tlačítkem NEW SHAPE. Označováním pravým tlačítkem myši pak lze označit a spočítat hrany = edges, stěny = faces a vrcholy = vertices. Při označování je třeba držet klávesu SHIFT. Označená a započítaná hrana se obarví bíle, vrchol se označí černým puntíkem a pro označení stěny je třeba nejprve kliknout na některé z barevných čtverečků. PL č. 4 - Vlastnosti mnohostěnů Pro každý pravidelný mnohostěn ověřte Eulerovu větu. V + S = H + 2 kde V – počet vrcholů S – počet stěn H – počet hran tělesa ČTYŘSTĚN V= S= H= ověření : KRYCHLE V= S= H= ověření : OKTAEDR V= S= H= ověření : DVANÁCTISTĚN V= S= H= ověření : IKOSAEDR V= S= H= ověření : PL č. 5 - Modely těles MODELY TĚLES Při plnění následujících úkolů můžete zvolit ve skupinách různou strategii. 1. Vaším prvním úkolem je slepit ze sítí jednotlivých mnohostěnů - připravených na různobarevných papírech – jejich modely. Každý z vás může složit vždy jeden model nebo si můžete ve skupině rozdělit funkce – např. „střihač“, „ohýbač“, „formovač“, „lepič“ ……… Pracujte pečlivě, aby byly jednotlivé vytvořené modely zcela přesné. Síť vždy přesně vystřihněte, přehyby podle pravítka „narýhujte“ a čistě slepte. Z hotových papírových modelů můžete vytvořit ozdobný řetěz – navlékněte je pomocí jehly na nit ( provázek ). 2. Druhým úkolem je vyrobit modely všech pěti těles z párátek – ty budou představovat jednotlivé hrany tělesa – a kousků modelíny vytvarované do malých kuliček – ty budou představovat vrcholy tělesa. Tentokrát musíte být více kreativní. Při „ výrobě“ modelů dodržujte počet hran vycházejících z každého vrcholu a tvar stěn tělesa. tetraedr - síť hexaedr - síť oktaedr - síť dodekaedr - síť ikosaedr - síť ZDROJE : Sítě těles : http://www.worksheetworks.com/math/geometry/polyhedra/tetrahedron.html http://www.worksheetworks.com/math/geometry/polyhedra/cube.html http://www.worksheetworks.com/math/geometry/polyhedra/octahedron.html http://www.worksheetworks.com/math/geometry/polyhedra/dodecahedron.html http://www.worksheetworks.com/math/geometry/polyhedra/icosahedron.html Literatura : Sutton, D.: Platónská a Archimedovská tělesa. Dokořán, Praha 2011. 68 s. ISBN 978-80-3493
Podobné dokumenty
Návod ke stavbě
lepení dveří dbejte na to, aby byly čtvercové otvory pod nimi průchozí, spodní hrana dveří musí těsně
navazovat na spodní hranu výřezu ve stěně. Poté oblepte budovu skladu „dřevěným obložením“
z gr...
Step-by-step introduction to WaterBase Series 900
Zakrývací papír: Basecoat na vodní bázi má tendenci pronikat kryjícím paírem více
než výrobky obsahující ředidla. Výsledkem je, že zbytky zakrývacího papíru mohou
zůstat na zakrytých částech. Aby s...
Soubor her a námětů v novém pojetí matematiky pro 1. a 2. st. ZŠ
dolů. Poté někdo z ţáků vylosuje číslo (v jedné z barev), které umístí před znaménko >
(například červené číslo 4). Potom se odstartuje soutěţ druţstev, kdy z kaţdé skupiny jeden
ţák po třídě co ne...
Prakvality - Fragmenty astrologie
Jang).
Potom přichází Platón (427-347 př.n.l.) se svou představou vesmíru v dialogu Timaios. Podle
něho živly jsou tělesa a těleso má svůj povrch a výšku. Jejich plocha se skládá z trojúhelníků,
př...
E-novinky k 14. 7. 2016,E-novinky k 30. 6. 2016
E-novinky k 30. 6. 2016
Dobrý den.
Níže zasíláme pravidelný seznam novinek za dobu od posledního mailu a přikládáme nové aktuality.
S pozdravem a přáním všeho dobrého
Jan Jelínek
—> Šťastny ať jso...
psaný návod Z.7745
Do takto vytvoøené kabiny se støechou nezapomeòte zevnitø vlepit clonítko è.65. a na boky zadního okna
pøilepte mechanizmus otevírání (pro vìtší reálnost ho mùžete nahradit drátky ve slabé èerné b...