proceedings 2006 - RECENT TRENDS 2016
Transkript
proceedings 2006 - RECENT TRENDS 2016
Recent Trends in Charged Particle Optics and Surface Physics Instrumentation Proceedings o f th e 10th In te rn a tio n a l S e m in ar, held in S k a lsk y d v u r n e a r B rno, C z e c h R ep u b lic, fro m M ay 22 to 26, 2 0 0 6 , o rg a n iz e d by th e In stitu te o f S cien tific In s tru m e n ts A S C R an d th e C z ec h o slo v a k M ic ro sco p y Society. Edited by Ilona Miillerova Published and distributed by the Institute of Scientific Instruments AS CR. '* Technical editing by Marek Frank, printed by CCB, Brno. Copyright © 2006 by the Institute of Scientific Instruments AS CR and individual contributors. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher, except as stated below. Single photocopies of single articles may be made for private study or research. Illustrations and short extracts from the text of individual contributions may be copied provided that the source is acknowledged, the permission of the authors is obtained and ISI AS CR is notified. The publishers have made every effort to reproduce the papers at their optimum contrast and with optimum resolution from materials provided by the authors. The publishers accept no liability for the loss of image -» quality resulting from supply of poor original material or improperly prepared digital records. ISBN 80-239-6285-X 'XpoqÁJDAD j o j in j j ir u j p ire lURstíojd oq [ [ia \ j n a p áíjsir^ s; s q j ir j u s d s sÁRp sqj suiij siqj osp: jBqj SASipq o j 3 iu M opy s^ B S jq s S u i j s s u j s q j § u u n p s u p s s n o s ip a/v\ j a q ¿ s j b s A om] u i ureSE s n u p u o a o j ju b m sa \ o q | s a s [ j u 3 [ p o x s X jiB u o ijip u jj s q j u o s ju E d p ijjE d j o Ájq - u j s s s b s q j S u u s q j E § u i p s p s s a o n s SEq b u o [ i u i b S b s a u o ‘ i p m ( p a i u r e p sá ea \ | e A sq j jBqM) s u o juRSRSjd s j in b b sr tu o q i o j u m o u >[ u s a s s a B jd b o j s j s i j u s p s p sp E o p sA O a q i S u ij j s S qjiM s u i s j q o j d u jo jj J s j j n s s j n o o>[i[ s S u i j s s u i .lo p r u iis ‘¡p M s a i a j ü s oj u i3 3 s s o sso j § uoo j s s S jrj s q j o p i [ . \ \ s z i s s jB J s p o u i R j o s d n o j S o ju ¡ X[jRUOSJsd g u u s q j E S J o j puR S u q p A E jj jo j u is e is - n q j u s j p q j j o [u s p p o o S b js o [ /íp B n p E jS SABq s j s i j u s p s jB qj Xea \ e q o n s u i p s S u E q a o s p j SEq ‘B ip s u i p u ti s p o j u o ij B a iu n u iu io a u i q jM O jS u i o o j q s n u i j o s o u s n g u i j s p u n oqÁRiu ‘u o ijb iijis s iq j p u y s s n § B S i p a u S p j o j j p q j A'q p s a B j jB qj q jiM jE a iju s p i Á p A ijE jijE tib js b sj jb u o ijb - n jis s q j p s j s j u s 3At;q s j s i j u s p s puR 3 3 U 3 p s q a s z Q s q j u s s A \j s q u [ JE [naijJE d u i s j s i j u s p s s a E j j n s puE s u E p ij d o u o j j a s p jo j p s z i u n S j o s S u i j s s u i j o puB j b j s u s S u i S u p u s j s j u o a a y ij u s - p s j o s j s q d s o u ij R s q j S u i p n p x s j o u ‘S u iS u E q a jds>[ si;q S u iq jX jS A S s s iM J s q j o ‘j s a s m c j j JUSAS OpSqRUOlUpR.U ÁpiU SJJX S UR SpUSJX JU SaS^ S q j SS5[RUI S iq j |[R - JJS3UOS S^oUIU -3A 3 Á E p s j n q x s q i sr [p M sr s n a s q j e q j r e - u s d o s / R p s a n j s q i ‘u u ; a ij s t u a r a o s u i j s u u i p r qjiA \ p s s o p d u j gui>pB A \ s u o o u j s j j e X E p s s u p s M 3 MX qaE 3 s s j n u iu i á j s u i u j o s> [30iq u s j j o P3JSISU03 SÁRA\|R 3|n p 3 q O S 9 q j U3A3 pUR (X jJ^ OJ UOIJBdpiJiR d 3 q j SJIUljl /([JÜUOIJIPCJJ q o iq M JO 3ZIS 3 q u UlOOi 31URS 3 q j UI p 3 J 3 q jB S 3J3M S]U R d pi)JR d 3 q l p u y 3 p is 3>|R| B JE u o i s n p a s u i s p u B jq S iq s q ; j s p iu i p s jE n jis ‘s j j u s d g u q o o q a s puR p j o q s iu r s 3 ip u i 33R [d >|ooi j u s a s a q i u j n j p j iq j sji u io j j S u ij j r is ‘s j u B d p ij J c d 3 ip j o s u o i s s s j d u i i 3[qR )s 3A J3S3jd o j j s p j o u ¡ 'S u iu io a 3J3A\ s u o s j s d j q S p o j d n j o s d n o j g u s a s puR s s u i i j Xu b u i p s u s d d B q /C[[B3J s i q x • s ju s p n js jB JO jaop j p q i q jiA \ j s q j s S o j s u i o o o j r n s q j S u ij j o d d n s ‘3 3 u s p s j o q o u B jq u 3 A i§ s q j UI p3U A \0U 3J SOnqBUOS.ISd O} p3NS3.ippB 3.I3M SUOIJBJIAUI [BUOSJSd ‘SJU3UI33UnOUUE pSJEdlS - s i p X [3 q q n d j o p E 3 js u ¡ 'u o i j b s iu e § j o j o s j u s u i s p iB n s n u n js q j E j o ju i j p s j i p a j o a fo jd u o ij e u - p s s p s j d P3JE3J3 OS ' s s u i p u n o j i n s |U BSB3|d UI SÁBp 331U JBJ3A3S J S q js S o j p u s d s OJ ‘JSB3J jo u X [3 jn s jn q js b | jb pu B ‘s j3 ,w s u e p3np3|M O U >|3B A p jR iu s u io iu jn o q B u B q j s u o p s í n h p s A jo s u n jn o q B 3 .10LU jn q ‘3 S j n o 3 j o ‘s S u i u e s u i a S u B q o x a o j ‘X jiu n u iu io o 3 q j o j u i u ia q j s j b ij iu i o j j s p j o u i qjiAV q jn oX p s o i s i u a /([m bu S u u q o j 'X[.iR[nS3.i j s q j o qoB 3 33S o j ju b m q a iq M j o s j s q u i s u i s q j X p u iB j b u i sb j s n f s u i3 [ q o j d j B p u iis q jiM S u i[E 3 p a s o q j js q j B g o j sb m u o ij u s j u i tq jJ iq s ji j o p o u s d a q j S u i j j g s q s o u s q puB |B u o ijip E jju n s e a \ S u i j s s u i a q j S u iX p s p u n B 3pi s q x 3 3 tip 0 jd XJJBUIJOU 3JIJ U BUinq 3 q j JO SJR3Á U33JU3A3S JBqM UEqj 3JOUI X p j n s - s p u ir n j n o p a ja jp i 3ABq q o n u i M oq p u y ¡jEqj 3 3 u is p s á u R q n SBq p [jo,w [b do[ jn o qan ui a \o h s s u o j u s u i u i o j d ,\|[E 3 J jn q pBOjqB u .is js s m a q j u j o j j s j s s n S 3A q UBqj s j o u i JOU qjIM puB UOIjn[OA3J J3A py\ 3 q j 3 J O p q S>[33A\ U3J ‘SUOIJBJ33dx3 qjIA\ p 3|m J3A O 3 J 3 q d s -OUIJB UB UI paZIUBSjO SBM JBUIUI3S JSJIJ 3 q X :p u ;u i j n o SSOJO SJ3JJBUI 3JOUI U3A3 s p u s j x JU333^J „ 0 1 JO 3SB3 3 q i U] 'EJ3J33 J3 ‘3UIIJ UI JS3J3JUI S iq j JO J U 3U ld o p A 3 p pUB UOIJipBJJ S iq j S u in u ij u o o u i X j;u n u iu io D ju E A s p j s q j j o j s s j s j u i ‘j u s a s jB |n 3 ijjB d s iq j j o u o ij ip B jj ‘S u ij s s u i JO pu i> | USAlS B JO SSSUJtlJSSn S>[Il SStlSSI Su iJE [dui3JU 03 puB guiJJIS SUO SSJJEUI X p j n s U0ISSS3 -3tlS UI q ju a j XpB3J|B S u i j s s u i D giJU S p S B JO s g u i p s s a o j d 3 q i OJ SDBJSjd B 3JIJM OJ >|SBJ 3 q x a o v ja a d CONTENTS P R A C T IC A L M E A S U R E FO R T H E B R IG H T N E SS O F E LE C T R O N SO U R C ES J. E. B arth and M. S. B ronsgeest 5 PU R IFIC A T IO N O F P L A T IN U M A N D G O L D ST R U C T U R E S A F T E R E L E C T R O N -B E A M -IN D U C E D D E PO SIT IO N A. B otm an, J. J. L. M ulders, R. W eem aes and S. M en tin k 7 SIG N A L D E T E C T IO N W IT H S E G M E N T A L IO N IZA T IO N D ET E C T O R P. Č ernoch and J. Jirák 9 LOW VOLTAGE E L E C T R O N M IC R O SC O PE FO R B IO LO G IC A L O B JEC TS A. D elong and P. Štěpán 11 E L E C T R O N B E A M M IC R O M A C H IN IN G L. D upák and M. Z obač 15 A N E N E R G Y A N A LY SER FO R H A R D X-RAY PH O T O E L E C T R O N SPE C T R O SC O PY M. Escher, M. M erkel, J. R. R ubio-Z uazo and G. R. C astro 17 T H E D O PA N T C O N T R A S T - A C H A L L E N G E T O E L E C T R O N M IC R O SC O PY L. Frank 19 POLY [M E T H Y L (P H E N Y L ) SIL Y LE N E] L ED D IO D ES - AS SEEN BY C A T H O D O L U M IN E S C E N C E STUD Y P. H orák and P. S chauer 23 T H E H IG H -P A S S E N E R G Y F IL T E R E D PE E M IM A G IN G O F D O PA N TS IN SIL IC O N M. H ovorka, L. F rank, D. V aldaitsev, S. A. N epijko, H. J. E lm ers, G. Schonhense 25 D IR E C T RAY T R A C IN G O F E LE C T R O N S T H R O U G H C U R V E D M A G N E TIC S E C T O R PLA TES H. Q. H oang, J. W u, M ans and A. K hursheed 29 A TOM O P T IC S V ER SU S C H A R G E D PA R T IC L E O P T IC S - A F U T U R E CONTEN DER? M . Jacka and A. P ratt 31 C A L C U L A T IO N S O F T H E R M IO N IC E L E C T R O N G U N FOR M IC R O M A C H IN IN G P. Jánský 35 S C IN T IL L A T IO N SE D E T E C T O R FO R V A R IA B L E P R E S S U R E M IC R O SC O PES J. Jirák, J. L in h art and V. N eděla 37 IL fA0J3[[nj/\[ ] pue jojpuB^w y w a s a o v n o A m o i h h i n i s n o î h d h i h i v n o i s a o N O iiD g ia a 69 1 (nj:>{ vi put; uarauiojj in:a g ‘iraSSnjg ura f p\[ S N O iiv y a a a v s n 3 3 0 h d v w s i x v - a a o a o NOiiDaa^iOD :a D îm o s P M v a a in n w v n i .a o iD s y y o D a io a . v a o a s a Ç9 3SU3l[lIOipS 0 w a a d a a A a o s a a - a m i Aa s N o u v a a o s o N o w s v id -H D v a m s ö n v s c n a ia y v a N a v D iid O ‘S3 a v m N ids a o N O iiV A îiasao £9 .ranEips ¿ s a o i D a i a a N o a iD a ia w a s y o a s a v i s A î o n o l l v t il l n id s a o s o u a N r a AVDaa ^ubjj q pue cujoîjod 7 6S B5I?HPcy 1 s w v a a PM oyiDaaa ö n v n o i n i N o iiD v y a iN i aiM oanoD 19 SNO>ii3 Haa h u m s a i v x s a o A iiS N a a i v D o a a m a o d n id v w i iD a y i a a o s a o H ia w ¿5 BAOJ3[inj\¡ I puc 5[EAO{vJ q a o i o a i a a A sa N H O H i-iy v H a a A a 3 H i n i i v n o i s a o O NisssDO iid SS EjBjjny y puB EXEJM f ‘Elapse A SN O iivD iaddv ö n v N o is a a a H i - h w a s v n O v SdODSOtfDiiM N o a iD s a a o n i n n v d s a v iN S W N o a iA N S £Ç nn H PUB asnoy f ‘Subm q ‘exiling g N o is a a a v D iid o N o^ iiD aaa îio a a o H ia w D iv n a a o a v a v iiN a îia a a ia 6t? BAoaa[|np\| j adODSOiiDiiM N O îiiD a a a d n i n n v d s s h i n i a a o w S N 3 i a a o H iv D IBuipiz f puB BAoausq g Sfr 5IUBJ3 q PUB E>[IIM a IM3S A 9tf3N 3 M 03 V NI SNO>IlD3a3 ÄHVQNOD3S 3 H I H UM S H 0ID naN 03IW 3S NI SINVdOa dO DNIOVWI ¿17 s s m i v a a iM Víiooyd ( N o is s a a v D iid o N O iiiD aaa) a o 3 lť [11.10 IM Pub EAODuaq g N o is s a a v o i i d o N o a iD a a a a o a siM v a o o y d 6£ nA O PU« P33qsjnq>i y ( w a a d o i) ad O D S O iom N o is s iw a N o^ iiD aaa i H o n a - a o - a w u v a o 3DNVF\raoayad a a i v a n w i s PRACTICAL M EASURE FOR THE BRIGHTNESS OF ELECTRON SOURCES J.E. Barth, M.S. Bronsgeest Delft University o f Technology Lorentzweg 1, 2628 CJ, Delft, N etherlands J.E.Barth@ tudelft.nl To characterize electron sources, usually the reduced differential brightness SI B.lfr = — lim li m --------w y sa-.om -.oSASO ( 1) is given, with current SI, area SA solid angle S O , and extraction voltage V. However, when electron sources are used for probe formation, the differential brightness is not the relevant parameter: In a scanning electron microscope the virtual source is imaged in the probe. The virtual source has a bell-shaped intensity profile. The differential brightness, being the brightness at the top o f the source intensity profile, is therefore not applicable. W hen sources are used for probe formation the only brightness with a real physical meaning, is the reduced brightness, as Crewe has pointed out [1]: B=Hrv-d l 4 <2> ‘ where / ’ is the angular current density, which is taken to be constant over a finite solid angle, and dv is the diam eter o f the virtual source. However, Crewe does not give a definition o f that ‘diam eter’. In order to have a practical brightness a practical definition is needed. A measure that assumes no particular shape o f the source intensity profile is tlie diam eter containing a fraction FC o f the current / 'f l coming from the virtual source as seen from the extractor. To complete the definition a choice has to be made for the value o f FC. For a number o f reasons we propose a fraction o f 0.5. We consider this value most likely to be generally acceptable to the charged particle optics community. W e have derived the relation o f the practical brightness to the differential brightness for the particular case o f the Schottky source. For Schottky sources the reduced differential brightness is (e.g. [2]) b t = —— V n kT 3 H 3 ‘. U ° I j O S I e i7c 0 ( 9 0 0 c ) 6 6 [ d d y T ‘q P B g ' 3 7 p u B u s j m z s g ' n 688 (6 9 6 1 ) Z a ‘l i n - O i 's ^ M d T 'J a i s J O M . m f P 3 \ S 3 | j d o o p i l a d p a S J t J i l J j o > [ o o q p ir e H , u i o i d f [£ ] [z] ' d ‘( ¿ 6 6 1 ) S S 3 J d q j ‘s m s j j a 'V [l] [ f ] • su o p B [n o iB 3 s z i s s q c u d j o j p s s n aq UB3 s s a u iq S u q lE iju a is jj ip a q j )E q j u o ij d u m s s B ]B n sn s q j u io j j â jju b o ij iu S is s j s j j ip sjq x ' I3 W \ = 8 (1?) s; s s s i q q S u q ]B O | p B jd s q x aqX ' 3 J n iB J 3 d u i 3 j j o j £ [ j ] s p j c u d X } is u 3 } u i U E is s r r e Q b S E q s o j n o s ]B tiy ;A p ir e ‘j u e j s u o s u u E U i z j j o g s q i jy ‘X j i s u s p ju su n D s p o q jB D s q j f q j iM PURIFICATION OF PLATINUM AND GOLD STRUCTURES AFTER ELECTRONBEAM -INDUCED DEPOSITION A. Botman, J. J. L. Mulders, R. W eemaes and S. Mentink (A.B., S.M.) Philips Research Laboratories, High Tech Campus 34, 5656AE Eindhoven, The Netherlands. Electronic Mail: aurelien.botm an@ philips.com . (R.W .) Philips Research Laboratories, High Tech Campus 11, 5656AE Eindhoven, The Netherlands. (J.M.) FEI Electron Optics, Achtseweg Noord 5, 5651GG Eindhoven, The Netherlands. The technique o f electron-beam-induced deposition (EBID) [1], when performed with organic precursors, typically results in a relatively low metal content due to the partial decomposition o f the organic precursor, leaving carbon rich remnants in the deposition [2]. Solutions investigated elsewhere have included annealing in-situ after [3] or during [4] deposition, or deposition in reactive environments [5], These two approaches have apparently not yet been combined. We described a method applied to noble-metal structures deposited using EBID, which consisted o f a post-treatm ent step o f heating in a reactive atmosphere o f oxygen, whereby the amount o f carbon in the structure is strongly reduced [6]. As a result we have been able to increase the purity o f platinum deposits from 15 at% to nearly 70 at%, and gold similarly from 8 at% to nearly 60 at%. The resistivity o f these structures has also been improved by up to 4 orders o f magnitude, to achieve (1.4 ± 0.2) x 104 //Ohm.cm in the case o f platinum. Furthermore, STEM analysis of the treated structures has shown formation o f crystalline material (Figure 1). Y u o ij o . w d 3 . id u i i d u o s n u D U i ) ‘^ u o q is o d s p p s s n p u j - u iE s q - u o j p s p j s ij b s s j n p r u j s p [o 8 p u e U inilIlB |d JO UOIlBDIJUnj,, ‘ ■)¡3 7 's ú i j d ‘->JUI1U3]/VI 'S pUE S3BUI33yV\ ‘SJ3p|nj^| f ‘UBIUJOg y [ 9] (S 66 I ) ‘0 8 0 £ ;( 9 l ) 9 9 7 d d y ‘^ ju su iu o jiA u a s a ij o b s j b u i s s jn p r u js o u B U p j» S j o u o p is o d s p ureaq U()jp.T['J„ ‘U()iqÎÎIJ\\ •§ >JJR^\j puB ‘SJ3P<] [| J0l[doiSUl[3 ‘BpBfaj, JSlABf ‘qO[OJ yaqiv [si '(9661) ‘S0It’:(9)t’X ‘9 ~!ollUJSl PS DDA f ‘„s-iruBJsduisj poseaioui SuiABq ssjdures uo uoijisodsp psonpui uieaq-uojpap ,\q psonpojd sjajjiura uojpap ppij joj sdiyndns puB ‘S3JIAY ‘sjop 3Aipnpuo3 „ ‘JsqsM JAI PUE ‘BÁB» y ‘j3[ss3oqos 3 ‘sdoo>| j /\\ j{ [^| '(SOOS) ‘IT(Z)£Z a '¡outfoaj, PS ™A T ‘„uopisodsp I(|uiB3q-uojp3[S [[] p33npU[-lUB3q UOJP3J3 3JE3S-J3PUIOUBU JO JIUiq UO|)I1[OS3J 3q) SuiqSBOjddy,, ‘J3IZOJ3 ■y J3 P d puB ‘)inj>| J3J3IJ ‘UsSbJJ ~/\\ S[[3UJ03 ‘U3J3UIOS UBA q o g ‘djOQ UBA J IU3|[I/W [j] •(S003) ‘6 Ç i z - i s i r :(s)ez ‘ff lOUljJdJ P S DVyi f ‘^UinUIJBld JO uoijjsodsp JOdBA |B3IUI3q3 UIB3q U0JP3]3 uo S3|qBUBA SS330jd JO 33U3tl[|U],, ‘À3>|3BJ ’f '/V\ pUB 'SUB/W 2 ‘§UIQ S u O ^ ‘nSIJtlBSQ ( ] [£] ÇJO UOIJBOljqBJ,, ‘¡UOqqBJJ 0UBJ3JS puB ipBZZBQ 0 |JB3 UBIQ Àq S 3 p O jp 3 |9 JB ]|ld d s S UIU (S 0 0 3 ) ‘¿ o e i-c o e i :(Z.)S 7 ounN ‘„ u o p is o d s p 9001 SPU^ 1 luaoa# 8 SIGNAL DETECTION WITH SEGM ENTAL IONIZATION DETECTOR P. Č ernoch2, J. Jirák1' 2 'institute o f Scientific Instruments ASCR, Královopolská 147, 612 64 Brno, Czech Republic ■^Department o f Electrotechnology FEEC BUT, Údolní 53, 602 00 Brno, Czech Republic xcerno07@ stud.feec.vutbr.cz The gaseous ionization detector [1] is often utilized for signal detection at a higher pressure in the specimen chamber o f the environmental scanning electron microscope. We study the properties o f halved segmental ionization detector with an electrode system consisting o f four concentric electrodes divided into left and right halves, as seen in Fig. 1. Each electrode o f the detector can be connected to one o f the three following options: a potential o f 0 V to 500 V with signal detection, a potential o f -500 V to 500 V w ithout signal detection or a ground. The electrode system connection at signal detection by the left smallest electrode (Ai ) at a voltage o f 350 V while the right smallest electrode (A r) is at a voltage o f 200 V and all other electrodes are grounded is illustrated in Fig. 2. For this electrode system connection, electron trajectories in the electrostatic field in a vacuum simulated via program Simion 3D 7.0 is shown in Fig. 3a and the image o f the sem iconductor specimen is shown in Fig. 4a. Likewise, the electron trajectories simulation and the specimen image at the electrode system connection at signal detection by electrode A l at a voltage o f 350 V while electrode A r is at a voltage o f 350 V and all other electrodes are grounded are shown in Fig. 3b, 4b. In the case o f a negative voltage on the non-detection electrode, signal electrons emitted from the specimen are repelled by the non-detection electrode (A R) and attracted by the detection electrode (A l). This effect is observed as a brighter specimen image w ith sym metrical shadow and diffusion contrasts in Fig 4a. In the case o f sym metrical voltages on the detection and the non-detection electrodes, signal electrons emitted from the specimen are divided sym metrically to the both electrodes A L and A r , therefore, the angle o f the signal electrons detection by the detection electrode (A L) manifest itself, as seen in 4b. The simulations correspond to the obtained specimen images, as illustrated in Fig. 3a and 3b. According to the electron trajectories simulations and the specimen images, it is seen that the effect o f change o f contrast, shadow and diffusion, is possible to achieve not only by a change o f detection electrode position but also by a change o f voltages on non-detection electrodes influencing secondary electron trajectories. This research is supported by project G ACR No. 102/05/0886 and project MSM 0021630516. is jip a g o '¿ 0 £ 6661 ‘3 3 1 ‘°MBPI IXAVa uoTUJTS :X jojB.ioqBg jB ju a u iu o J iA u g p u e S u u s s u i S u g j b u o ij e n oq B p j [£] K)81 - 96¿ I d t 00 c ‘Se iOA Q S O ts X q j J O [B U JnO f 'J O lIO B d tQ SB£) p 0 1 R ip R J J [ - lU B 3 g - U O jp 3 [ 3 UR Ul U ()¡lRU iqU K )30>[ u o |- u o a p 3 |g j o uoijB oijiJU E nf) :']A¡ V ‘P l^ u o a ‘' 1 ’0 ‘[ 3 i q i ‘ y G ‘s [s ; u e c [ -q jo x [z ] 6 - 8 /. 917 I 0 -C I -0 N 9 S I ‘ d £01 ‘0661 ssaJd o iiu sp B D y ‘X su p K s s d o o s o j o i w u o a j3 3 |g S u iu u b o s [B ju su iu o a iA u g o ip u i s o i a s q j o j o s j s q sn o a sB Q j o X a o sq x : G X000C '^Blu ‘Bd 0 ? ¿ ‘1U9UJUOJIAU3 sjodBA A 0 S £ J0 A 00c" J ° s 38 bj| oa :¿\ 0Ç£ j o jsjba \ O ‘s o jb jiu b q [ [] íp sp u n o jS S 3 p 0 jp 3 |3 J3l[JO ‘^ y 3 p 0 jp 3 |3 UO s S bj | oa je l y sp o a jo sp Xq u o ijo sjsp [eu S | s íajBijsqns U03IJIS UO UOIJBZ1JJBJ3UI UiniUIUmpj JO u s u ip s d s UO SJSBJJU03 UOTSnjJip pUB AVOpBqS -q ‘Bf? 'S lJ í i 1 \ i I I 1 1 i i j I 1 i 1 ť ' r . ' av u°a ose ‘"'v uoa ose(q) S 3 3 jg 3 p 081 ° l 0 SUOJJ33J3 JO 3[3uB UOIJDSfojd ¡A3 S XSJ3U3 UOJJ33J3 0?£ J0 A 00Z" JO S3SbJ[0A put; :p3purlO jS U 3lU I33ds PUB S3pOJJ03[S J3l[JO í « y 3p0.1)33[0 UO a ' y 3 p o jj3 3 [3 u o a 0 S £ J ° s S b j[ o a j o j umriDEA u; u o ijB [n u iis s s u o j s s f B j j u o j p s j g ä y uo A 0 Ç£ 3 p O JJD 3 [3 uo a 0 S£ UO (q ) av A 003- PU B n y A0 u a w io a d s aa q ‘B£ S ig s p e u p s p 3 p O JJ3 3 [3 'v PUB A0 aa nv \ aa "'o 3 p O J J 3 3 |3 UO'A 0 S£ 0 0 uauiiD ads ao ya pspunojS S3pOJJD3[3 jsqjo [[B í*ly 3p0jj03[3 uo A 00Z~J° s3bj|oa ! a 0S£ jo 38bj[oa jb i y 3poaj33|3 Xq uoijosjsp |BuS(S JB UOIJD3UUOO UI3JSÄS 3pOJJ33[S 3qX 'Z av nv na "'o na J O J D 3 J 3 P U O l J B Z |U O | [B ju a a iS ss p s a | b h ' 1 'S | J LOW VOLTAGE ELECTRON M ICROSCOPE FOR BIOLOGICAL OBJECTS A. Delong, P. Štěpán Delong instruments, a. s. Bulharská 48 612 00 Brno, Czech Republic Understanding the three- dim ensional structure o f proteins and other particles (viruses, ribosomes, enzymes, DNA) is critical in determining how they perform their biological functions. The usually used technique o f X-ray diffraction requires perfect crystals with approximately 101- molecules. Electron microscopy should be superior to X-ray diffraction and 200-400kV transmission electron microscopes (TEM ) are used for obtaining satisfactory information. But today’s m icroscopes must overcom e various obstacles connected with the properties o f biological objects. It is first o f all very low contrast and sensibility to radiation damage. The result o f this fact is the necessity o f elaboration o f high quantity o f very noisy pictures ( 1- 100k) to get satisfactory results. It seems that the low voltage transm ission electron microscope developed specifically for application in biology will be more suitable for solving from above introduced task first o f all due to a much higher contrast. We shall compare the main parameters o f two different TEMs200kV TEM dedicated for biological applications and a 5kV low voltage TEM. Contrast The usual objects are so thin that all impinging electrons in both microscopes are transmitted. We will now compare how the standard object (lOnm thick specimen com posed from material with R= lg/cm and a diam eter greater than the resolution o f the microscope) influences the trajectories and the energy o f transm itted electrons. The results o f calculations are presented on the figure 1.[ I ]. There are in principle three kinds o f electrons in the transmitted beam electrons which were transm itted w ithout any interaction electrons which were elastically scattered. Their trajectories were changed due to deflection in electrical field o f the atomic nucleus and its electron shell. Electrons falling upon the rim o f a physical aperture are excluded from the beam and appear to have been absorbed. This electrons produce contrast Some electrons are deflected by direct interaction with atomic electrons. A measurable amount o f energy is transferred, and the resulting deflection together with energy loss is called inelastic scattering. If we compare the results o f calculationsTn both microscopes we see that the contrast and the radiation damage are more favourable in the LVTEM. Resolution The resolution o f 200kV TEM is 0.27nm approximately. The resolution o f LVTEM is 2nm. The very low contrast o f biological objects in 200kV TEM must be increased by using the phase contrast. The necessary defocusing decreases the resolution to the value o f 1 2nm .N evertheless the correction o f both mean aberrations (spherical and chromatic) can bring new possibilities for LVTEM. We decided to correct the spherical aberration by means o f hexapol corrector and the chromatic aberration by means o f inhomogeneous Wien filter. We used the proposal published by prof. Rose 17 years ago.[2] This proposal was never implemented, although its advantages are obvious. It is the rotational symmetry o f both correctors and minim um o f multipoles. Another advantage is the possibility to use the Wien filter alternatively as an electron energy loss spectrometer (EELS). The cross-section o f the 'UvZ (fr00Z)66 XdoosojoiuiBjJin : « ! W 3 'a ‘SueAT ‘Anunud'-n 16 (066l)£‘ť8 >RJdo :3so^H d 9t?6 ‘59613(3 ‘uoi3uR|SBAVÂSo[oi|n;f| j o a jn i|)s u [ S3DJOJ p a a u y ‘ d o o s o jo ij^ u o j j o s j g 3aijbjijubii£) : j q ü a ‘j ' ! ) ‘j s p p z g [£] [z] [ [] SSSU3J3J3y spuB uisp j o X ju ofeu i j o j q S n ou s sq u eo qrm |\\ u i u £ o j o u oijrqosai 3qj qoB.u oj sjq isso d oq 01 silicios j[ •uoijeuiuinjii auoo A\o[|oq aqj osn oj i o p u e sunj OAijoofqo oqj j o su o isu su iip asRSiosp oj si Kbav J3[duus y urejjsoun ss jn o o j o si j[tisai sji ‘p sjB d sjd si ju su iu a d x a s q x 'uoijrqos jss q aqj s q oj su isa s ssio d ijjn u i j o SUBSIU Xq suojjEJjaqE SA ip afq o j o u o ijo s jj o 3 'ooj u oijrqossj ss e s jo u i oj (uiu i )sp 3 fq o uiqj ÀJ3A JO 3SE3 sq j UI U3A3 X|JUB3|JIUSIS ÄJ3A p3SB3J3UI JSBJJU03 3qj U3qM uoijbijjis žq j ui 3iSo[ sq 0} SUI33S J] UUOJ 3AIJEII 3J0UI Ul SSiptJJS JOJ 33IA3p SuiSlUIOjd ÁJ3A SI SUIUIBJS JOJ SJBJ3UI ÀAB3q S u isn jnoqjiM s p s f q o [BDioO[Oiq j o jsbjjuos qSiq qsB3J oj X jijiq issod sji qjiA\ [A I3IA 1 3ll l u o isn p u o 3 ■3jnjEJ3ji] sq j ui sjsixs p B j siqj JOJ uoijBpunoj |i:oijo.iooqj o n T M 31A T u! P s S euii uoq w su oiu iood s uiqj j o ssijia d o jd suies aqj p a u o s q o 3AVn snoiA qo sjoui s u io s s q uoijBJJsqE 3ijBuiojq3 j o oijsusjSBJEqs sojBq sq j puE u o ijn jo ssj j o s s o | B s; sjs q j S3[diUBS >[0!qj qjfM uoijEjJsqB oijE w ojqo j o [BOidXj 3 jb jBqj so|E q DijsusjOEJBqo oqj A\oqs jou op puB jadreq s sjb s s a œ p iq j a\ oj je saSBUii sq j ‘À qB O ijpsds 'SuuajjBos oijsB put 3l(| Ul 3SE3J33p JUBOIJIUSIS B SI 3.I3l|J jBqj SUI33S JI (lllU()£-() | ) SU3Uipsds Uiqj À|JUOI3l|jnS JOJ ‘3|duiBX3 JOJ 'pOSBflJOap SI s SbJJCA 3qj SB JSJJip SUOIJ3BJ3JUI 3S3qj A\0q jnOqB S3I1[0 SAIJBJIJBnb 3 u in 8 u ju i u 3 ai 8 3ABq JA I3IA 1 3 lll u! P s S euii s a l u r e s j o su oijB A jssq o 'XSjaus u o jjo a p SuiSB3J33p qi|M SuiJ3JJE3S OIJSBpUI |BJOJ Ul UO|JB|JBA 3AIJBJjJUBnb 3qj SI USdo SUIEUI3J JEqj u o q ssn b |Bju3uiBpunj y K '[g] X iu u in jQ 'j'q j o a p ijjB sq j u io jj 3 j p oj p[noA\ j \\u j o j s j i j 3§BUIBp UOlJBipBy 's p p ij 0IJ3u8bIU ÁBJJS puB SUOIJBjqiA OJ 3AIJISU3S JOU 3J0J9J3qj puB (lUUI()8[) jjoq s ÁJ3A si UJ3JSÄS |B3ijdo u o jjo a p sjo q s q x ' z sjn S ij sq j uo p sju ssa jd si |/^ 3 1 A 1 p s p a u o D ° 3 S3 Figure 1: Quantitative distribution o f electrons which transmitted the object with p=lg/cm 3 and thickness t= 10nm. 1 - elastically scattered ( a > a opl), 2 - not scattered and elastically scattered ( a < a opl), 3 - inelastically scattered. Figure 2: Cross-section o f the electron optical column o f CsCc corrected LVTEM 900Z sPugJI !“ » ) / p\ ELECTRON BEAM M ICROM ACHINING L. Dupák*, M. Zobač Institute o f Scientific Instruments AS C'R, Královopolská 147, 61264 Brno, Czech Republic * E-mail: ldupak@ isibrno.cz Electron beam m icrom achining is a well-known technology used in various industrial applications [1], It is based on the evaporation o f material by intense electron beam [2]. The construction o f the e-beam m icrom achining equipm ent may be similar to an e-beam welder, but it needs a high performance electron optical system to achieve very high power density in the focus o f the beam (usually 100 times or higher). W e have studied ability o f a common ebeam welder to machine the materials like quartz glass, ceramics, plastics and metal sheets. The purpose o f our experiments was to create holes as small as possible [3], Pulse count 1 2 5 10 20 In micromachining, a short-pulse beam Depth (mm) 2.78 3.42 4.06 4.19 4.7 is used instead o f a continuous beam. If Diameter (mm) 0.32 0.34 0.39 0.43 0.48 a continuous beam is used, a lot o f heat is Depth/dia ratio 8.7:1 10:1 10:1 9.7:1 9.8:1 supplied to the surrounding material. This Table 1. Dependence o f hole dimensions on pulse count has undesirable effects like growth o f the (beam current 1 mA). diameter, deformation and material tension. In our first experiment, we have followed the growth o f the hole in the material exposed to a series o f the pulses (see Table 1). The highest growth o f the hole dimensions was observed after the first pulse. The effect o f the following pulses was decreasing with each step. The effect o f focus point position was determined in the next experiment. The beam pulses were counted until the beam passed through 0.9 mm thick quartz glass slide. The lowest number o f the pulses was needed when the beam was focused exactly on the surface. But as seen in Fig. 2, the holes created by defocused beam had higher apical angle and lower minimal diameter. The position o f the minimal diam eter is not located on the surface, but a small distance from it, sometimes more than 0.1 mm. This is probably caused by a burst o f the evaporated material. The surface tension o f the melted material then forms the narrow neck. We have been able to create openings o f 5 to 17 (im minimum diam eter (measured by light microscope and scanning electron microscope - see Fig. 3). H owevei^reproducibility o f such (UdidUÁDip ui mm p pun UiUl g) Ç sdjdlfds D1WDJ3J U1 SdAOOJQ ■sut 0Ç ySuai s s jn j ( z qv¿ m so) lUdAAUD wvdq uo dsjnd djSuts v Jo siodjfd Jo doudpuaddQ ~p S j j [q o 3 Z 3 u i] o i u g ç o o £ 'S issq j e iu o jd iQ :>|BdnQ q [<¿] • jjB g jjn js pun u js g ‘§B|j3y\ 8ba\]]bh ují «neqsspun>i s ip siu ip sx » 3 e[j,i(\ (ZL6\) M)I ¥ 3H "oqio>[ 11 [ sríEjg ‘usjqEjjsusuojoqd pun u suojj^sjg qojriQ SBjjqBjjojs>|j3M :jsssiy\ y '(900Č I« d y ) /sp'qs-p[BMJS<?[3jsMMM//:djjq ■ujuj z 'lUdAjno uwaq uo suoisudwtp djoi/ Jo DDUjpuDddQ 7 8'0 I ÍZ 8LZ 6Č0 za> 67. L8 96 1Z 0 I0T S'0 puB [z] [j] ç'z ‘£ s js m sSujjjno sqj JO SJSJSlUBjQ JSJSUIBip ui iulu ç jo/puB ÿ sjsm ssjsq d s siu ie jss s q x '( 9 'S ij 6*8 8’9 0|)BJ ss s) psrqS pue p sjjssu i si /CiBj|idEO s r o CIO (iulu) J3J3UIÜIQ JSSJS SSS[UIBJS [[BM-Uiqj B ‘sa o o j§ siqj (uiui) ipdsa t i l Z80 o j iq s jsq d s diuibjso b ui sa o o jS jBjnojio (VUI ) s! £0 Z'0 JO U01JBSJ3 SBM SuiUiqSBUIOJOIUl UIBSq -3 posn 3A\ qoiqM ui uopB3qddB J s q jo •qjSu 3 | sjí Suo]B p sjn q u jsjp KjjBinSsj s 3 |oq g | p 3 ||u p X||njSS333nS 3/\\ '[|BM >(3iqj UIUJ ¿ Q qjlM J3J3UJB(P Uf UIIU i ‘3llO[ IUUI 091 ‘sq n j ssb | 8 zjjBnb si ssiA sp siqj j o p a d juBjjoduij 'íGjauiojjDsds uoijdjosqB 3IUIOJB jo j JszauojB-jJinuj zjjBnb j o v‘ uoijsrujsuos SBM X§0[0uq33j pSJUSSSjd 3qj JO SU0lJB3l[ddB [B3IJ3Bjd 3qj JO 3UO Vd ui uirl o s i puB (ç ’S ij 33s) uirl os qSnous qSiq Suunp V d ) s p iu re X p d puB (l!°‘9 /9 UI p o j o q J3J3U JB ip 3 [ 0 q JS3|(EUJS 3 q [ SBM 3 d un3 (g<j) SU iqSE U I O) ÄSB3 3J3A \ 3U 3 iX q j3 Á |0 < j 's s i j s E j d j o S u iu iq s E U i u o jj3 3 ]3 sqj ui sjnsssjd sqj dss)| Á jq ¡q E d B 3 p s A O jd u i i q jiM j u s u i d m b s i B j u s ú l u s d x s s q j js s j oj o j A | u ib u i ‘p S U U O JJS d SBM SJBIJSJBIU 3 lJS B |d JU S JS JJip /ÍUBUI j o 8 u q | u p u i B s q - g ' ( u i u i 9 ’0 s s s u > p i q ] j s s q s ) u i m u B jíj u i U lil QZ\ PUB (U IU I [ p u B UIUJ ÇO'O S S S lD |O iqj • p S 3 )3 E J3 S 3 [ d u i B S 3 U IO S ‘X ] 3 J B U n j J O J U Q s |[ ij s j U B qj SS3I J3 J3 U lB ip p s u j 3A Bq 3jW 3 p i S J IX 3 3 q j U O U I t I 0 0 1 U B q j SS3| p U B 3 p iS u ir i o ç I S 3 jo q ¡| u p o j 3 jq E s j s m s m s u iq s B u i o j X s b s 'S u i u s d o s q j 001 Su;uup J 3 3 q s ) J33JS SSS|U |BJS UI U irl B J O S 3 |O q 3 JB 3 J3 OJ S jq B S u iS q ‘U iniU B JlJ p u B J33JS SS3|UIBJS J O jS B d u ii u iB s q s q j u o s p m > (3 iq j u i u i 9 ’o u [ s iu ib j s s £O zI V 3 J ! q M j o 3 | d u iE S 3 J B ‘X j i A i j s n p u o s | B U U 3 q j m o ] J i s q j o j s n p ' o o j ‘S3SB 3J3U I s n s o j 3 q j ui 3Z |S lU B sq s q j 3 s n B 3 s q ‘(z 3 3 S ) p s q d d E s | j u s j j n s u iB s q j s q 3 | q u s q M p s o n p o j d s a u o s n o i A S j d s q j U Bqj ju a n b s s q n g js Sj e | s ]o q s § u m s d o J sp iM sjb ‘s s i u i b j s ^ SW®! Pu®P ' § ' d puB j s d s s p s q x p u B j s i j j B q s i q j q S n o j q j s> |E S jq s s | n d b s s jb s jo u s j j o Xj s a | b i j s j e u i p s j p u i s q j s s n B D s q m o | si s s |o q |[ b u is AN ENERGY ANALYSER FOR HARD X-RAY PHOTOELECTRON SPECTROSCOPY M. Escher1*. M. M erkel1, J. R. Rubio-Zuazo2'3, G. R. Castro" 1 'Focus GmbH, 65510 Hünstetten, Germany 'SpL ine, Spanish CRG beamline at ESRF, Grenoble, France 3ICMM-CSIC Cantoblanco, Madrid, Spain * [email protected] Introduction Recently the interest in hard X-ray photoelectron spectroscopy (HAXPES) grew with the availability o f high brilliant synchrotron beamlines [ 1].With the longer escape depth o f the high energetic electrons HAXPES has the capability o f prob ing bulk properties, buried layers or interfaces down to some tens o f nanometers, which is not possible with the surface sensitive standard XPS. Analyser We developed an energy analyser, FIV-CSA (High Voltage Cylinder Sector Analyser), for electron energies up to 15keV. It is the first commercially available analyser for that energy range. The analyser is based on a cylinder sector with 90° de flection [2], 300 mm slit-to-slit distance and an entrance lens with 50 mm sample distance. The result is a very compact design o f the analyser that is easily integrated into a multi pur pose experiment with different techniques. A low noise / low Fig.I: Photograph o f the H igh drift electronics is capable o f continuous energy scans from 0 V oltage C ylinder Sector to 15keV with non-linear lens curves. The first analyser has A nalyser HV-CSA been recently installed at the Spanish CRG beamline at the ESRF (Grenoble) at an end station where simultaneous surface X-ray diffraction is possible [3]. Fig. 1 shows a photograph o f the analyser. Entrance Lens The entrance lens retards the high energetic electrons with a kinetic energy Ekjn up to 15keV to the analyser’s pass energy Epass (typically 20..100eV) which results in retardation ratios R = E hi, / Epos* UP to 1000. To accept a large phase space at the analyser’s entrance slit E , Mss A A n a l y s e r = E tlA a mpA n , Ple - t h e d e s ig n goal was to have a large lateral magnification M = j A : /■^sample which is also well adapted to a focussed synchrotron beam o f typically 50)im diameter. The entrance lens consists o f a unipotential lens near the sample followed by a three ele ment retardation stage. Its properties were calculated with direct ray-tracing using M ognificotion Fig. 2: R ange o f useable m agnifications and retard rations o f the entrance lens. ZL-V 9 (SOOc) LPS ‘V u in jjs u i - p n u ‘o jjs b 3 - y o ‘o z e n z - o iq r r a S6 ( Z L 6 1) efr u m jjs u ] - p s A oy 'X a js i^ f 8 £c-I (SO O t) LPS ‘V u in jjs u i - p n u u i doqs>|JOM sadXVH s q iJ 0 s S u ip o o o o jj [f ] [3 ] [[] sqjp|A\ \Sj3U3 pajnsEouj o q jjo oouopuodop AS.iouo ssBd :jqSu s' 1,d3 juo jojjip joj un3-o a 3>ISI e uiojj su o jjo o p POJOJJBOS A||B0ijsbi0 j o E.ijoods :jjo |:j 7 3 ij (as) Äßjaug ssed OPZ 0ZZ 00Z 081- 09L OH 031- 001 08 [A3] Äßjaug oysupi 09 Ofr OZ 0 086H 0Z6H A99 0 M1PIM ojsuuju! p a tu n sse (tra)zi.x6 (0OU6J1U3 ) 6=P :s|i|S u n ß -a 3 3 H ä luoj^ s u o j p 0|0 0|is e |e as>IS l jasÁ ieue Á6J0U0 m6¡h :00£VSQ-AH Linß-Q3 3 Hd Luojj suojp0|3 oijSB|aAsMSljssÁ|bubAßjaua qßiH OOSVSO'AH ■soiuojjoop ouibs oqj 3u isn UMoqs oq ppioo A 3m 0fr J ° u o ijti|o so j X3jouo josA|bub ub uoij -bjioxo [0[j 3 u is fi 'A 3 S’0 xojddB j o un3 uojjoo[o oqj j o qjpiM /¡S.iouo oisu u ju i oqj oj pojoujsoj ojb puB jnoiABqoq jb ou i| pojoodxo oqj m o[|o j s>[Bod oqj j o sqjpiM /¡S.iouo o q x 'p ui UMoqs o.iB sqjpiM >|Bod oqj piiB soiS.iouo ssBd ju ojojjip j o j pojnsBOui s>[Bod oijsB |g 'u n 3-Q ggH > l A 3>1SI B J ° s u o jjo o p pojojjBos X|[Bo;jsB|o S u isn pouiBjqo ojom V S O ’A H 3l|l sjjnsoj j s j i j síin sa y ■pssn u n 3-o oqj j o suoijBjjoqB jods puB suoijBjjoqB su o | u io jj s j p s o j su o iS o j oojqj oqj uooMjoq uoijisubjj q joou is o q x 'su ojjoo|o 0 | 1 SB|0 a 3 >I0I 3 u isn 00Č .1° uoijBpjBjoj b jo j oouopuodop u oissiu isu b jj pojnsBOUj oqj SMOqs £ '3 |J p o p o d x o SI UOISSIUISUBJJ JUBJSUOO B SOSBO SUIJIUII] OMJ o ssq i UOOMJOg ' /Y sdo.ip UOISSIUISUBJJ oqj puB JSSÁ|BUB JO JIJS souBjjuo oqj Áq jno si Xjisuojui oqj suoij jn o |A B q o q [Boijojooip p o jD o d x o oqj -¡pin s o u q p o q sE p o q j jo j s u o jje o ijiu S b u i ojeo juojojjip U M o q s si 1UOJJI1D ojdujBs pojn sE o ui oqj oj p,i|Bos X j j s u o j u i >|Eod o q x u o ij b o ij iu 3 e u i suoj j o U O IJO U n j E SE U O IS S IU IS U B JJ J 0 S X |B U E p O jn S E O J ^ l : £ S lJ -boijiuSbui o3jb| j o j oouBjdoooB JB]n3uB oqj sjiu iij oouBjjuo su o| oqj ojoijm juiod oqj oj dn ,/f -suBjj oq l - ^ U qjiM o su |jiav u o issu u zM / } l = J3a"...ü -bub oqj Xq ftejdoooB o|3u b p q o s p o x y oqj Áq p ojou jsoj si oosd s u oissiuisu b jj oqj uoi}eoijiu6ei/\j su o;jboijiu 3b ui ||Buis jo j 'sosbo 3 u iju u i| OMj sBq u oijboijiu3bui oqj uo u oissiu isu b jj su o| oqj j o oouopuodop o q i •punoj oq pjnoo soS b j|oa suoj ojBnbopB s? ooost ■§ cpd 00002 q % Z apoi/M l 9pO(/M OJOl|A\ SUOIJBOIJIu3eLU puB S01JBJ PJBJOJ j o o3ubj oqj SMOqs SujqsiuBA 3 'S ij '0|3ub uiBoq puB u oijboijiuSbui ‘u oijisod sn ooj u oai§ b oj joodsoj qjiM su oisu ou u p oojqj ui poqjoui s^ uojm on 3u isn punoj ojom s3uijjos o3b j|oa su o g Q'Z. U0!U1!S THE DOPANT CONTRAST - A CHALLENGE TO ELECTRON M ICROSCOPY L. Frank Institute o f Scientific Instruments ASCR, Královopolská 147, 61264 Brno, Czech Republic ludek@ isibmo.cz The continuous reduction to feature dim ensions in sem iconductor structures enhances the need for high resolution imaging o f doped patterns in plan views o f substrates or on their cross-sections. In this way a tool is sought for checking the critical dimensions (CD) o f the structures and, moreover, for two-dimensional profiling the spatial distribution o f active dopants. Various surface-oriented electron microscopic methods have been used with varying success. The contrast levels are often achieved sufficient for CD measurements but detailed interpretation o f images keeps being unclear and hence, irrespectively o f some promising experiments [1,2], any reliable quantification o f contrasts, enabling one to determine the local density o f a dopant, remains for the future. This review aims at brief summarizing of achievements in this field. N umerous o f the attempts performed so far have relied upon imaging in the secondary electrons (SE). Great majority o f studies reported the p-type Si brighter than the n-type and in discussions usually three possible emission-controlling factors were mentioned. These include the SE generation rate, influence o f electrical fields below or even above the surface, and the passage through the surface potential barrier. All these factors are interconnected through differences in the energy band structures, determined by the types and densities o f dopants. Older works ascribed the decisive role to the ionization potential, i.e. the surface barrier height, combined with above-surface “patch” fields balancing the local differences in the inner potential [3-8]. _| K H 400 700 1000 1500 2500 4000 7000 Figure 1: SE image contrast between the ptype ( 1 0 19 cm '3) patterns and n-type ( 1 0 15 cm '3) Si substrate, plotted versus the electron energy, as- measured (two times) for working distances o f 16 and 8 mm; reproduced from Ref. 15. 10000 Landing energy [eV] Further step was to adm it that the surface conditions act not only via surface states but also the treatm ent and hence cleanliness play their roles. In particular, the carbon contam ination together with silicon may form a planar junction o f properties similar to a metal-sem iconductor junction; then the balancing electric fields rem ain below the surface but still they provide explanation for at least a part o f observations [9 -1 1 ]. This conception was verified by covering a p/n structure with metals o f different work functions, which led to mutually opposite contrasts [1 1 ,1 2 ]. A s regards the surface barrier, its filtering action, similarly as that o f the patch fields, concerns only the velocity component normal to the surface. This brings not only unequal flows surmounting the barrier but also the angular pSAjasqO JSEJJU03 SUOJJS ÁJ3UiajJXa UB U3A3A\0l[ 'SBA\ SuiSIlUOjd PUB 3UIJS3J3JU! 3JO|/\J 'JSBJJU03 a q j S3S.I0A3J a a u a q p u B s u i a j j B d p a d o p ( a d X j - d ) 3 i |j u i o j j u o i p s y s j s 3 S E 3 J 3 3 p qo;qA\ ‘p A 3 | u in n a B A s q j SA oqB s s j b j s j i r e d o p X j d u i s o j u i s u o j j a a j a j u a p i a u i j o s i u o iiB A .io s q o o q x u o i j E i j a u a d b i a p o u |B [ d x 3 [ 0 c ‘6 l ] 3 a b a \ u o j j a a p j u s p p u i s q j o j p 3 |d n o a s s j b j s j o X j i s u s p | b s o | s q j o j |B U 0 IJ.1 0 d 0 jd /([3S.I3AUI 3 u i 3 q X jI A i p 3 |J 3 J U 0 J P 3 ] 3 /(S.I3U 3 MO| 3l|J JO 33U3nb3SU03 B SB p 3 J 3 S d X 3 SBM P3JJ3 S iq x A 3 0 £ jnOqB AV0[3q S 3|S .I3U 3 JB p s u u i j u o o SBM |B S J3 A 3 i JSB.IJU03 B ‘HE j o js jij ' i S i j u i U M o q s s j n p r u j s s q j 3 u i s n A q [ g | ] (IA1333S ‘a d o s s o j a i j A j u o j p 3 [ g X 8 j a u g /v \o g S u iu u B S S s q j ) 1AI3S A H fl p s d d i n b s g j b ui p s i x u o j . i s d U 3 3 q s e i( [ ¿ [] A p n js 3 q x p a ja s jS s u aq p i n o a g s j o s s B a p j jE q j ,w o | o s s a i â j a u a jb S u u 3 jjB 3 s > p E q u o j p a p a q j s ; X j i j i q i s s o d a u o •saqjadojd p auijap X p s o p sjo u i jo s 3 i 3 ads [buSis sq j Su ianp ojd m siuBqaaiu SuuajjBas u o j p a p J3 |d u n s b 3 u i/fo|d u ia ui jqS n os aq jqSjui in o /Cbm a q x 'sjsm su e UEqj su op san b ajou i spiAOjd ‘aiun|OA siqj ui a.iai|A\as|a paiuasajd ‘BjEp jssm su uaAg -/(|qB ipj jse jju o s aŽEiui aqj p ip a jd oj XjijiqB spjBŽaj si; in jssaaan s uaaq jou aAEq sa jn p n jjs jo p n p u o a u u a s aqj SuiuiuiBxa jo j |o o j aAijsjijuBnb p s jis s p aqj jeu Sis aSEiui g § aqj a>|Bui oj sjduiajjB pauopuaui-aAoqB aqj \is q j s 3 o j |v '[ ř l ] J o ja B j S u i n o j j u o a js B jju o a jaqjouB se [3A3[ uinnaBA aqj aAoqB oj pajiaxa aauo suo.ijaap j o uoijdjosqB jnoqB Bapi ut! pajBuiSuo os|B sju a u iu a d x a a s s q x ‘J issj; u oijaunf aaB jjns-qns aqj j o jdaauoa aqj puB ‘sSuijEoa |Bjaui qjiA\ sju a u iu a d x a pauoijuaui aAoqB aqj uaqj pajEAijoiu Suipuij s;qj_ -jaqSiq sbm jsBjjuoa aqj uinnaBA „Äjp„ ssa[ s i *iiasjoA\„ je jEqj Xbm b qans ui juauiuojiA ua uinnaBA §U|punojans aqj uo juapuadap paqsqqE jsa sba\ jsBjjuoa aqj M aqjjnj -uoissiura sdXj-u aqj SuisESJsap jaXiq añ jE ip aaBds v. sajBa.ia puB a jn ja m js uoijau n f aqj sajB.ijauad jEqj p p i j g j aaBjjns -aAoqB aqj ui jqSnos sbm uoijEUB|dxa a q x ' [ n ] ASjaua SuipuB| a q jj o y\a>| [ punojB um uiixEui b SiuqaBaj ‘(z 'S i j aas) sdXj Ks[iuoqx-UEqj3Ag aqj j o jo ja a ja p g § [BuoijuaAuoa b i|j;a\ pajinbaB jEqj uBqj ja§jB | XpuBSijiuSis sba\ jsB.ijuoa aqj ‘ijb j o jsji j -[gi] 1AI3S UB J ° apoui ( 3 3 ) su3| apoqjBa aqj 111 sujajjEd padop aqj SuiA.iasqo uai|A\ p3j33||03 sba\ s a u s u s d x s a\3|s[ X I J 3ÎI u io ij p 33n p ojd sj tuiui i7'() a\3ia jo p p ij a q j j o qjpiM :(jq 3 u ) /\a>| ] ASjaua SuipuBi puB yy3>] 0 1 XSjaua lUBag XjEUiud aqj qj¡M apoui su 3| apoqjBa aqj u; puB (jja]) a 3>I I Jojaajap g s ad/(j X3 |iuoqx-W BqJ 3 Ag aqj j o SUB3U1 Aq p3A\3ia pjB jjsqn s ¡s ( £.ui3 s |o i ) adXj-u ue uo ( e.uia 6]o i ) smajjBd adX j-j 3 jn S |j '[ c I ‘9 1] ( s s o p u o j j 3 3 [ 3 j o ) j u a . u n a u i E a q s q j u i p 3 |E3 A 3 j U 3 3 q S E q J o j a B j 3 u i a i i a n | j u i - j s B i j u o a | B u o ij ip p B u y JSB JJU 0 3 111 ‘u j n j 31)1 u| 3 3 U 3 I1[JU I q a ii| A \ /ÎB IU ‘[ t ^ T ř l ] ‘J 0 J 3 3 J 3 p p s ij ip o m 3 l |J JO agUEJ ^ Iiu a j a j j ip '( [ ' S y 3 3 U E jd a 3 3 B s u io s s q a s s ) [ ç i ‘t » l] p a j i n b a B JB |n§U B u o is s iu is qj|A \ sq j jo u o ij B u iq iu o a s u o ij n q u j s ip below about 3 eV, which was even capable o f changing its sign in dependence o f detection conditions (Fig. 3). The effect was found o f a dynamic character, i.e. requiring the electron dose above a certain threshold and exhibiting a time constant in the order o f seconds. Explanation is based on a conception o f the p-type doped area to be negatively charged to about 1 V with respect to the surrounding substrate, which is enough to make the incident electrons totally reflected in a narrow "signal beam”. This pencil can either escape the detection through the central detector bore or impact against the active detecting surface (Fig. 3). The proper phenom enon is then described as dynamic filling the conduction band to an extent sufficient for recom bination o f the majority holes, which leaves the ionized acceptors unbalanced [17]. This immobile negative space charge is then responsible for the mirroring. Possible quantifiability o f this contrast type needs further examination. Figure 3: P-type patterns (10 19 cm '3) on an n-type (1 0 15 cm-3) Si substrate in the CL mode at 1.5 eV, specimen tilt 0° (a), 0.45° (b), and 0.72° (c); scale bar 20 (.im, reproduced from Ref. 17. Another alternative o f how to avoid problems with the SE images is to excite the low energy electron signal with photons instead o f electrons. Preliminary PEEM study o f doped Si wafers [21] brought several surprising results. Although the energy unfiltered photoemission, excited with the Hg lamp radiation, gives again the p-type areas brighter, if only fastest photoelectrons arc acquired, the image contrast inverts in both p/n and n/p patterned structures (Fig. 4). Further, the mutual shift between photoemission spectra from p- and n-type sites reaches only 0.12 to 0.14 eV (Fig. 5) and always the photo-threshold is larger for the p-type. Crucial is obviously the difference in amplitudes o f the spectra. These findings clearly indicate not the ionization energy or surface barrier or near surface electric fields being responsible for the phenomena observed, but simply absorption o f'h o t electrons on their trajectory toward surface. The main scattering mechanism is likely the e-h pair generation. Figure 4: Photoem ission micrographs o f the p/n and n/p structures (both lO1*’ cm '7 1 0 15 cm '3) taken in the total photoem ission (a,c) and filtered with the threshold -0.36 V (see Fig. 5) (b,d). ' 1830/MV303 'ou JubjS jopun uoijBpunog a s u a p s qoaz 3 aqj qjiA\ poyoddns Xpnjs [ 33 ] 'I3 £ ‘lO’SO sSuipsaDOJd is d ‘Ç00Z s o a e q ‘g u o 3 A doosojoi^ a o jj :ui ‘qB js >jUEjg g [ 13 ] [ 6 1] An>l -sA qj ‘s;a b q -j - \ ‘aiA appg 3 ^ [0 3 ] 'S 6 8 ( f 6 6 1) Z.S 's^Md 'J S o jj s j d s y u a n s g -g I 6 £S (3 8 6 1 ) 9 3 8 '6 0 £ (£ 0 0 3 ) 8 c 1 so isX q j u o jp a j g puB S u i3b u i| ui saouB A py :u; ‘quBjg g ‘EAO.ia|[n[A¡ q [g j] '8 c (S003) 901 XdoosojoiuiBjJin ‘EAOjaniM g ‘g u E jj g [¿[] (qoaz3 ui) /.£ ‘o iu g >DSV 1S1 >0 0 3 SQd :«! ‘quBjg -g ‘b^ ijm g [91] 'IS > 0 0 3 o iu g ‘spua.ii ju aaay ql6 :u; ‘quEjg g ‘Bî[ipM g [s i] '£63 (£003) £8 wag sA q j q d d y ‘^upuojAj 'PM'V'S ‘aiMOH - y ‘sX ajq d u in n '£ 3 3 (3 0 0 3 ) £6 /C doosojoiuiBum f ' 3 ‘u io o jg g - g ‘u q E lu oq ss j 1 ‘! ïB u io o -ia IA1 IAI ‘EA0 J3 [jn w ■] [I7 1 ] [e t] ' 1 0 6 (5 0 0 3 )¿£ ■|Buy aoBi-jaiiq puB aoEjjng ‘u o s |;m g L.iB 3i 's ‘XpoDBÂBf 'H ‘jiio S S e z g ‘ijB iu o o q g '¡aj [3 1 ] '8 8 3 > 0 0 3 ) IS saaiAaQ u o jjs sjg •SUB.1 1 3 3 3 1 ‘AposBXBf 'H ‘>[UBjg -g ‘BACuannw g ‘s |p M y \ y i ‘ij E u io o g g lAI'IAI [ i l ] ' I £ 6 3 ( 1003) 6 L SJajjag sX q j q d d y ‘S|ia/v\ g j ' l ‘iJB U iooq g gAI 1AI [ 0 l] S£9 ‘3 'IoA ‘0003 o u jg ‘-aso.iaiw '[ 3 J § u o j 'Jng m 3 1 d o jj : u i ‘EA0ja|[ny\[ g ‘^ u e jj -g ‘sjp M >I'3 ' I ‘UBuiooqg w n '9116 (3003) 16 's^Md [d d y g ‘sXa.iqduinH f '3 ‘uio o jg g g ‘jjo jn g 'g 'S '6 L Z (¿661 ) 69 AdoasojoiuiBJJin ‘sujEjuojEg gg ‘siAOjaj q -q ‘q ajsE j ->j -|aj l i e (0003) 6P -asopiiAi u o jp a jg g ‘A\Bqs|jM g< ] ‘ipisE 3 g j/\[ ‘/qB3s d 3 '6 1S ‘£ 'Io A ‘0003 o u jg ‘-a so ja i^ qg u ïk io j u n g qj 3 | so.ij :ui ‘a|A\OH 'V '39£ (8 6 6 1 ) 91 g [6] [8] [/.] [9] [s] [3 ] lo u q a a i g a g '3 e a f ‘s u i n o j g ' Q ‘u;Bf 'h ‘sa|qBU3A ' a [ç] > 0 1 (S 6 6 I ) 8 S AdoosojD|uiEjJin Ï<î V aiAOjaj - q - q M '361 (S 6 6 I) 081 -asojDijM g ‘aiA\o|g 'V '1 3 1 7 (9 6 6 1 ) P I g lo u q a a i p s 3 BA f ‘JaqBJM iM a ‘saïqB uaA a [ 1] V- 'p ÉS ig ui UA\oqs sa jn p ru js aqj u iojj B jp ad s u o iss iu ia o jo q j :ç ajnSjg A 1-- 8ß e ||0A ß u ip jE jej Q A I- 06BHOA 6 U|PJBJ0J 0 l [ 3 3 ] u oijiu S oa j o sajnjuaApB Suisuuoad puB 3a|PBJIJB aq oj sd aag sid o j aqi s a u s p s aiiuapBaB aqj joj ‘jaAaA\oig X|uo sjuauiajnsBaiu q j aqj qjiM ÍuiSbubui je u iie puB ‘S uqigojd lUEdop aqi joj |o o j aAijBjijuBnb pajjsap aqj 3uijjaS u| adoq j p q j jso[ aABq sjojBaqddB [Bujsnpui jBqj juasajd je sa ia a s ji qžnoqj|B Su inu iju oa aq ||ia \ ÂjqBqo.id puB ‘ajE sjojan p u oaiu ias ui sujajjBd padop aqj SuiSbuii ui sgjOM |E3|jaJoaqj se |p M sb |B juauju3dxg POLY [METHYL (PHENYL) SILYLENE] LED DIODES - AS SEEN BY CATHO DO LUM INESCENCE STUDY P. Horák, P. Schauer Institute o f Scientific Instruments AS CR, Brno, Czech Republic, horak@ isibmo.cz Organic light emitting diodes (LEDs) have attracted much interest because o f their potential for an efficient emission in visible region and for application to large area flat displays. LEDs utilizing conducting polymers have many advantages in terms o f simple fabrication process o f a thin film such as spin-coating or casting methods [ 1]. Polysilylenes (PSi) are linear silicon (Si) based organic materials whose basic building block is a chain built up o f Si substituted by alkyl or aryl groups [2], PSi are quasi one dimensional materials with delocalized a-conjugated electrons along the polym er backbone chain. Their optical and electrical properties are primary ascribable to the effect o f quantum confinement on these a-conjugated electrons. PSi exhibit a sharp photoluminescence (PL) with a high quantum efficiency in solid state. The use o f PSi in LEDs is attractive since this can emit light in the range from the ultraviolet to the visible regions [3], But problems o f life o f PSi LEDs are discussed only in very few papers. Organic LEDs generally show a degradation o f their characteristics with time, such as increase o f the threshold voltage and decrease o f the fluorescence yield [4], However, such an evolution depends on the polym er bulk modification and changcs o f the injection mechanism at the polym er-electrode interface. Cathodoluminescence (CL) is an interesting tool to study the polym er behaviour since it eliminates the injection problems. Poly[methyl(phenyl)silylene] (PM PSi) is a typical representative o f PSi. The absorption spectrum o f PMPSi consists o f three bands (Fig. 1) [5], The electronic transition at 338 nm arises from delocalised ct-ct transition. The PL spectrum o f PMPSi consists o f two emission bands - a sharp UV band at about 358 nm and a broad band in the visible part o f the spectrum (Fig. 1). The sharp UV a - a band is o f exciton nature. The exciton is localized in the Si backbone. PMPSi was selected for our CL study. The PSi specimen preparation and CL method o f the study were described previously [6]. 71-71* 150 200 a*- a 250 300 350 400 450 5«> 550 600 Wavelength X (nm) Fig. 1. Optical absorption (solid lines) and photoluminescence (PL) spectra (dash line) o f PMPSi thin film [5]. The excitation wavelength for PL was set to 280 nm. Chemical structure of PMPSi is inset. ■££-[£ ‘(frOOc) JiiAQ X^sje^s ‘uoiiBjusuitujsui ssisX qj asEjjrig puB saijdo sp ijJB j p 3gjBL[3 ui spuajx ju so sy uo jb u iu iss jsiu] qi 6 jo s o j j ‘ j JsnEqos ‘ j í[Bjoh T tt)I-£ £ 0 I (300c) 662 SP!I°S 3u i| 1b is X jj-u o n jo p iu n o f “ § >pjndssM •¿8'£8 (0003) SU W IA I “ D uipjBf ‘ o sjjXsg ‘ O xnajiog ‘T sb u saeq 'L \ 6 í - n 6 í (9661) ££ 'S^qd 'd d y jo f 'UBdBf ‘ h eunío>i ‘ IM oioiui5|B>| ‘ H o u a n "X o u iq so ^ ‘ \ u o u iq o ‘'JAj Bpiqso^ ‘">1 ojouiiqsoA ‘’V u fn j '0Il7l-6S£I ‘(6861) 68 'w ^ D ” f ‘ O í l *>IIM '393I-19Č I (Z.66 I) S8 SPPJM suaqjuXs ‘ H BUiiTo» "IV oiouiiífB^ ‘ H o u sn ">1 ouiqsoA ‘'A u o u iq o ‘ >j ojouiiqsoA l'H EpiqsoA " y iifn j [9] [ç] [fr] [£] [li []] saauajajoy lIO IJB ipE JJI u re a q u o jp a p 11! 1S ( 1 1 \ :( I J ° jo jn o q U IIU JD a d S ] ' I ) js jje 3 1)1 J O puE S u iu u iS s q U O I l E T l |B A g £ 3 ip S lJ lu s jjn o 1U 3 J 3J J I P Á 1IS U 31 U I q j 0SS 009 00t? OSť 1B ïS d lA ld A ^>[ U O f lB ip B J J I J ° 0 1 .4° U JB S q a s B a jo a p X S -I 3 U 3 U O jp 3 |3 a u n i a i)x 31) ) p u t: S u ljn p 'Z S !J [S ] a U l ) U O IlE ip E JJI |uiu] Lflßu8|0 AeAA 009 0006 09£ 00SZ 0009 OOSfr 000E 003) •XqdBjSoqqi lUBoq u o jp s p u| JSIS3J B sB 3|qE3i|ddB sq oj SUI33S uoijBpBjSsp uiEsq u o jp s p oj XjqiqijdsDsns aqj qjiM isdlAId ‘Xpnjs ^ 3 sqj oj g u ip jo ssy -XiqiqBjs [eusieui sausqus ueo sisqiosqB jo sj 9zi|;qEjs snouEA qjiM ;SdIAIdJ° gu id o g 3JH JJoqs sjí 01 anp SQgx ui jsXe| 3aissiui3 ue sb !SdlAIcI 3Jnd jo uoijEzqijn sqj sspsduu auiij qjiM Xjisusjui X3 sq) jo asBSJoap jsbj sq x uoijBjpxs jo suopipuos uo guipuedsp 3[q;ssod s; uoijeuuoj puoq pou 3>)B3A\ sqj jo gup[uqssoj 3 ‘uo issp s puoq is-JS 3M1 'uojiBUJJOjsp puoq is~!S b jo SDUsnbosuoa b si Xjisusju; -73 sqj jo 3SE3J 33p sqj ‘snqx ’(spuoq ¡S iS ) 3uoq>[3Eq |S sqi q )IM P 3 JB ]3 J SI U O IJE JIO X asp D - D A fl 'U O IJB ipB JJI UIESq U O j p s p g u i J t i p 3]qBJS X )IE3U SUIEUI3J 3UO 3 |q i s i A s q j S B 3J3qA \ ‘301IJ qji/A XjpidEj s s s B a j o s p u o i s s i u j s A íl 3M1 '( 1 '^!d) | e u o j b l u au iB S s q j j o u jn jjs s d s a q j qjiM j u s u i s a j S e pooS u i s ; (£ -g ij) [SdJAJd J ° u j n j p s d s ^ 3 sq x ■SuiuujSsq sqi qjiM guuBdmoa % Qp se mo) se si Àjisuajuj T 3 jo asBSJoap sqj Xjisusp jusjjno jssqSiq sqj je uoijBjpxa sqj jo SuiuuiSsq sqj uioij ssjnuiui 3A1J J s y y 'Xjisuap ju suno jsqSiq sqi je jaqSiq si uoijBpBjSap jauiXjod jo sajSap sq x UOlJEpBjgsp [BU3JEUJ B OJ pauSlSSB SEM XJISU3JU1 X3 JO 3SE3J03p 3qX 'J3J3BJBq3 |B[JU3U0dx3 -iqnuj 3AEq ssAjns sq x 'Z '§ !J ui UMoqs s; A3>101 J ° uoijBjpxs sqi guisn uiBsq u o jp a p jo ssijisusp JU3JJ113 jU3J3jjip aqj je ¡SdW d J ° ^Jisusjui 1 3 sqj jo 3SB3J33p sq x QOOZ spuaux W3.JSX PZ THE H IG H -P A SS ENERGY FILTERED P E E M SILICON a,* a b b IMAGING OF DOPANTS IN b b M. Hovorka , L. Frank , D. Valdaitsev , S. A. N epijko , H. J. Elmers , G. Schonhense ’Institute o f Scientific Instruments, AS CR, Brno, Czech Republic bInstitute o f Physics, Johannes Gutenberg University, Mainz, Germany *e-mail address: hovorka@ isibm o.cz In the previous PEEM study [1, 2], focused on the origin o f contrast between differently doped areas in silicon imaged by slow electrons, strong contrast was observed between p-type and n-type areas with the p-type brighter. The crucial mechanism was identified in electron absorption phenom ena that are relatively w eaker with emission from the p-type Si. The energy-filtered images o f p- and n-type areas revealed differences in the energy distributions o f photoem ission. For the filter adjusted so that only the fastest electrons can pass to the detector, the contrast inverts and the n-type became brighter than p-type. The shift between pand n-type photoem ission spectra indicated larger photoem ission threshold for the p-type. Continuation o f the study has produced results presented here. The photoemission spectra and micrographs for two sets o f samples, n-type areas on a p-type substrate as specimens A and p-type areas on a n-type substrate as specimens B - both with different dopant concentrations varying from 1016 to 1019 cm '3, are shown (Fig. 1 - 3). Si (100) wafers were prepared by standard procedures [ 1] and left in-situ uncleaned, i.e. with surfaces covered by a few nm layer o f the native oxide. The samples were irradiated by UV light from the Hg lamp with a line at 4.9 eV and additional radiation between 3.2 and 4.4 eV. The contrast inversion and corresponding shift between the p- and n-type spectra is present for all concentrations o f dopants. W hile in the total-current photoemission image the contrast between p- and n-type area disappears when decreasing the dopant concentration, the inverted contrast behind appropriate threshold at the energy filter keeps to be distinctive. In the former image the surface relief is evident but in the fast-electron image the topographic contrast is suppressed which could indicate the electron signal acquired from larger depths (Fig. 2, 3). The energy spectra exhibit some structure, possibly connected with multiple sources o f photoelectrons (regular energy bands, bands o f surface states). The difference in photoemission thresholds between p- and n-type increases up *fo 0.2 eV at highest concentrations (Fig. 1). For the specimen B the PEEM spectra also showed the photoemission yield increasing with the increasing p-doping level [3-5], Furthermore, some changes have been detected in emissivity o f surfaces exposed to prolonged UV light illumination (particularly with the specimen A). References [1] Frank L. et al.\ Origin o f the contrast in im aging o f doped areas in silicon by slow electrons - to be published. [2] Frank L. et a l. , Proceedings o f the 6th Dreilandertagung M icroscopy Conference (2005). [3] Allen F. G. and Gobeli G.W ., Phys. Rev. 127(1), 150-158 (1962). [4] Ballarotto V. W., Siegrist K., Phaneuf R. J., W illiams E. D., Mogren S., Surf. Sci. 461, L570-L574 (2000). '( f - 1113 9 , 0 1 O) 610 l : u i o j j o q o j d o j ) suoijEjjuaauoa juedop juajajjip j o j B j j o a d s adXj-d a q j j o uosuEduioa :uiojjog 'apis XSjaua m o | a q j uo a p i a u i o o oj j a p j o ui pajjjqs p u B ‘auo adXj-d aqj jo jqSiaq a q j j i j oj p a z q B u u o u uirujaads adXj-u aqj :aAjna p a q s B p í ^ u i a 8|0[ j o Xjisuap j u e d o p aqj j o j B jB p : d o x '( u o i j E j j u a a u o a J3IJJB3 ; u i o s[o i j o ajBjjsqns adXj-u a q j uo sujajjBd padop adXj-d) g suaiuiaads a q j uo SB3JB adXj-u p u B adXj-d aqj u i o j j s j e u S i s u o i s s i u i a o j o q d a S B ja A B j o B j j a a d s X 3 j a u g : [ " S i j (A ) s B b jio I- a ß u jp je ja j 0 (A ) 3 B b j |o a L- O I. ß u ip je ja j ' 1. 'LZZZISO/tOI 'ou lUBjS J3PUI1 >13 J ° XauaSy Jubjq aqj Xq pajjoddns s| Xpnjs aqx [9] ■(ZOOS) S¿fr-69fr ‘( l ) l 6 s^M d |d d y f ‘ a 3 s u ib tiI !A \ p u e Ï H jn a u s q j js u S a js ‘ M A o jjo jB [[ B g [$ ] • 16 17 • \ 18 i ' 4 -i * ’ % 19 Fig. 2: PEEM images o f the specimens B (p-type doped patterns on the 1015 cm '3 n-type substrate) with various dopant concentrations (top to bottom: 1016 to 1019 cm '3). Left column: full photoelectron emission, filter bias o f +1.64 V. Right column: filter bias o f -0.44 V. DIRECT RAY TRACING OF ELECTRONS THROUGH CURVED MAGNETIC SECTOR PLATES Hung Quang Hoang, Junli Wu, Mans, Anjam Khursheed National U niversity o f Singapore, 4 Engineering Drive 3, Singapore 1 17576. E-mail: elekaffinus.edu.sg Tel. +6565162295. Accurate ray tracing o f electron trajectory paths through curved magnetic sector plates is required for a variety o f different instruments, such as dispersion free beam separators [ 1] or energy spectrom eter designs [2], Since magnetic sector field distributions are inherently three-dimensional in nature, and often involve curved boundaries, direct ray tracing o f electrons through them is a non-trivial task. Numerical field solving techniques such as the finite elem ent m ethod do not in general provide enough accuracy to extract aberration coefficients from the trajectory paths o f focused beams in three dimensions. This is because numerical meshes in three dim ensions that model complex shaped boundaries typically need over a million free nodes, requiring prohibitively large am ounts o f com puter mem ory and unmanageably long program run times. The situation is made even more difficult for retarding sector units, w here an electric field is overlaid onto the deflecting m agnetic field in order to slow down electrons to very low energies (a few eV). Another disadvantage o f using a fully finite elem ent approach is that high-order interpolation methods are needed to extract accurate field information from nodal potentials. W hile not impossible to carry out, it is quite a challenge on curved mesh geom etries in three dim ensions, and therefore, mesh-less methods are preferred. In this paper, a semi-analytical approach is taken, one which uses a modified two-dim ensional finite elem ent solution in combination with a Fourier Series expansion. This approach avoids the direct use o f a fully three-dimensional finite element solution, and has the desirable feature o f not requiring a mesh in the region where electron trajectories are to be plot. V- A two dim ensional finite-elem ent solution capable o f modeling curved boundaries is first performed in the plane o f the sector plates (x-y plane), as illustrated in Fig. 1. In this example, circular sector plates have an inner sector plate, an outer sector plate, and an outer round casing. The outer sector plate is set to unity potential, while the inner sector and casing is set to zero potential. Fig. la shows the numerical mesh, Fig. lb shows the initial finite elem ent solution, and Fig. lc shows a modified finite elem ent solution where central nodal coefficient Po is adjusted by a factor o f (1 + I r /ld 1), where h is the mesh size in the x-y plane, and d is the distance to a zero potential odd-symmetry plane in the out-of-plane direction (z-direction). In this example, d = 1mm, and h = 0.25 mm. As expected, the influence o f the zero-volt odd-sym m etry plane causes equipotential lines to bunch towards the sector plate edges. A Fourier-Series expansion then integrates the potential in the plane o f the boundary and calculates field values for any point inside the sector unit. This semianalytical solution provides reasonably high accuracy when com pared to the full three dimensional solution, which in this case, can be calculated accurately by a rotationally symmetric finite-elem ent program, since the in-plane geom etry is circular. Fig. 2 illustrates the accuracy o f the sem i-analytical approach for electric field values in the x-y plane 0.1 mm above the zero-potential odd-sym m etry plane. The accuracy is plot as a function o f the number o f term s used in the Fourier-Series. The maximum electric field variation is divided by the m axim um field strength value along a line running through the centre o f the sector '(900c) VVV-LZV ‘9SS V SSH 'st y d ul 'umufsuj •p n u ‘g jsq jg jso 'JM pire p33qsjnq>| y (Z6 6 I) t7 f-ie ‘I °N ‘36 m dO ‘sB Z S 5 (i3 Jd q p u B aso y h P un [j] [ |] S9DU9J3J9y uim f si sdjDjdfo dUDjd 01 douvjsip ‘q = z jd si ¿üvpunoq ¡üidiuiuás -ppO 'uiui[ 0 = 2 ¿of duvjd ú-x aifi Suojv sdnjVA p p i f oujodp f o ¿DDjnooy .7 d jn S ij su li .33. jo .X d q m n jq V- ÁvMV uiiuj pdjDDOj Áuvpunoq ÁjjduiuiÁs ¡mjudiod-OAdz áqjvdu uof lunoooü 01 uoiinjos pdifipojA¡ (o) uoynjos Q£ (q) qsdw /# Áq [g (v) S9ivid joiods jv jn o jp f o auvjd dqi ui uoijnjos fUdtUdjs-Bjiwj .7 aunSij (3) (q) («0 X <~ X ^ ---------------- uiiu o č -------------- ► ■p3JU3S3jd 3q [JIMSiqj JOS3|daiBX3 p3[iBjsp Lsjiun JOJ33S psAjno qgnojqj sqjed Xbj joaiip ajBjnosB jO|d oj pssn si qoBOjddü s!lI.L '% TO UBLtl J31[BUJS SI JOJJ3 P|3IJ 3UJ03|3 3ï?BJU33J3d 3qj JBqj SMOqS Z 'S lJ 'l!un ATOM OPTICS VERSUS CHARGED PARTICLE OPTICS - A FUTURE CONTENDER? Marcus Jacka, Andrew Pratt* Email: m arcus@ hazelshaw.com *Department o f Physics, University o f York, Heslington, York, YOlO 5DD, United Kingdom The manipulation o f neutral atoms using resonant light gives rise to the possibility o f novel forms o f microscopy. We demonstrate the rudiments essential for achieving this, namely focussing and scanning, using metastable helium atoms as an example. In the second part o f the paper we propose a novel form o f ion microprobe, this time using resonance ionisation, which could overcome some o f the disadvantages o f conventional liquid metal focussed ion beams. Introduction The ease with which photons, electrons, and ions can be focussed and otherwise manipulated is reflected in the maturity o f optical and charged particle microscopies. Sub-wavelength resolution can now be achieved with scanning near-field optical microscopy, whilst the use o f aberration correctors has brought transmission electron microscopy to sub-Angstrom resolution. Neutral atoms, as their name implies, are much less susceptible to manipulation, however they have desirable properties in terms o f surface analysis, microscopy and nanofabrication. At thermal energies, o f tens o f millivolts, there is negligible penetration o f the atoms below the surface, meaning that the information area is confined to the size o f the probe. Despite their low energy, the mass o f atoms compared to electrons leads to small de Broglie wavelengths. Two other advantages o f neutral atom beams must be mentioned. One is the lack o f repulsive Coulomb forces between the particles and similarly the lack'of screening which gives rise to the Boersch effect. The other is that because non-conservative (for example velocity dependent) forces can be applied to neutral atoms with laser-cooling techniques, the Helmholtz-Lagrange relation does not apply. As a result the energy norm alised brightness (Acm" sr" eV" ) o f the microprobe at the sample is not limited to the brightness o f the source. M anipulation o f neutral atoms Laser cooling, or manipulation using light forces, is the newest, and also the most promising o f a number o f methods by which a beam o f neutral atoms can be deflected, focussed or otherwise manipulated. The first methods were developed by Stem, Rabi and others in the 20s and 30s, making use o f the force exerted by an inhomogeneous magnetic field on atoms with magnetic dipoles. Later it was shown that magnetic lenses could be created from hexapole magnetic fields. Combined with laser cooling to first collimate and reduce the longitudinal velocity distribution o f the atom beam, spherical and chromatic aberrations can be significantly reduced [1], Further techniques include the focussing o f ground state helium atoms by specular reflection from clean silicon mirrors [2], and the use o f Fresnel diffraction lenses [3], ■[¿] uojjnqujsip Ägjaus mojjeu SABq puB Äjisuap qSiq sje ‘psonpojd ¿q X|iSB3 UE3 siuBsq uiojE |Ejjnau ojuosjsdns jo SAisnjjg 'sojnos uo; sssujqSuq-qSiq e jo uoijb3J3 sqj aq p|H03 juauirujsui SOl/V 3L1J u! P3sn 1J0S 3lP J ° SJ3SB| qjpiMSuq mojjeu sqj jo uoijeoqddB jsq jjn j y o qo.id o i.im i uoi passnaoj uoijbsiuoi aaueuosay su 3 [ Di}do-oi3 uSeui aqi uo pssoduiuadns sjíoo lieds dhou3euiojp3|3 äujsn iiiesq psssnooj aqí jo Suiuueos jqSu-ysq (D) ’(uiojjoq) uienq psssnDoj pl[i pue "(3[ppiiu) uieaq p3jBiii|[|OD OLfi ‘(doi) uoijBiuj||oo ajojaq apjojd ureaq aqx (q) sjusuoduioo sis\[eub SDEjjns pue SuisstiDOf ‘SU}JBUI11|0D uieiu oq] SuiMoqs oijeuraqos («) jusuiiujsui SQIAI V°A 3lll •uoijosjíp j B q j u ; j s q j j n j psdopA sp s q u b d p u s ‘a d o D s o j o i u i e j o j / Ü B S s a o s u s3|d;ouud siuos ssjEjjsuoiusp j i ( u i u i j - j o jsjsiuEip SBq u i B s q p a s s n o o j a q j ) adoosojoiui b j o u s i s i q j js|iq/v\ '[9] (SQIAI) A d o o s o j j o s d s u o i j E j p x a - s p s i q B j s E j s u i u u o j j a d o j ‘s u i o j b u i n q s q § j 3 | q B j s B j a a i j o L U E s q b U B 3 S puB s n a o j Á p p r u o o j psjorujsuoo u s s q S B q j u s a i n j j s u i u b > | J o ^ J V nqj jo e •[f] SDjjsujouEu jo SU3J uiqjiM oj suiBsq luojE jo sábjjb puB siuojB 3|Suis jo Suiuoijisod osioojd sqj a\o|[e spoqjaui pajBoijsiqdos sjoj/\[ ajqissod sje (s p p y oijauäEiu snoausSouioqui jo uoijeoqddB Aq) ssdjoj juspusdop A|[BijBds puB (jo s jp J3|dd0Q sqj oj snp) soaioj juspuodop Äj|oo|9A qjoq LsqjpiM3uq oiuiojb jo sssum ojjbu s q j jo ssnEoag -suojoqd jubuosíj -isEnb puB luojB ub u33A\jaq sssoojd uoissiuis/uoijdjosqe sqj ui poŽUEqoxs umjuaiuoiu oqj luojj 3uij|ns3j (sojoj snoauBjuods aqj se umou>[) sojoj oqj jo ssn ss>|bui poqjoui js3|duus sq x pajoaiip s; JSPESJ aqj qojqM oj (u p jsq j sa o u a p jsj puB ‘[-(7] 8s sss) smcmaju puB s>[00q ju3||33\3 XuBiu 3JE sjsq j - jq g u umo sji ui p|3ij Suipuedxs ÁJptdBJ B siuoosq sbl| ji saijqSis-piiu sqj souis puB ‘ssnbiuqosj jo aSuBj pBOjq b ssssBduioous Suijood jssEg Ionisation can be performed efficiently and in a highly localised fashion with two intersecting focussed laser beams. One raises the atom from its ground state to an excited state, the second, possibly o f the same wavelength, ionises the excited atom. The ions can then be extracted and focussed with a simple electrostatic lens. This process o f resonance ionisation is well established in other fields, particularly mass spectroscopy, and schemes have been developed for every element except helium [8], It is suggested that a resonance ionisation focussed ion microprobe would have spatial resolution equal to current liquid metal ion sources, be able to operate at significantly lower energy (the energy spread o f an LMIS is approximately 3eV, so has to be operated at high energy to minimise chromatic aberrations) and could be developed for virtually any atomic species. S o u r c e d ia m e t e r ( m i c r o r s ) Modelling o f ion trajectories for a resonance ionisation focused ion microprobe. It is predicted that a laser interaction volume o f less that 25pm diameter would produce a focussed ion beam less than lOnm in diameter. Conclusion One o f the encouraging aspects o f this area o f research is that current techniques for manipulating neutral atoms are very much in their infancy. In contrast, conventional charged particle optics is a mature subject, and advances are necessarily more incremental in nature. Its practitioners would do well to follow the progress o f its younger rival. References 11] WG Kaenders, F Lison, A Richter, R Wynands, D Meschede, Nature 375, 214 (1995) [2] B Holst and W Allison, Nature Nature 390, 244 (1997) [3] O Carnal, M Sigel, T sleator H Takuma and J Mlynek, Phys. Rev. Lett. 67, 3231 (1991) [4] H M etcalf and P van der Straten: Laser cooling and trapping. Springer (1999) [5] JJ McClelland, RE Schölten, EC Palm, and RJ Celotta, Science 262, 877 (1993) 16 1 A. Pratt, A. Roskoss, H. M enard and M. Jacka, Rev. Sei. Instruin. 76, 053102 (2004). 17] NF Ramsey: Molecular beams. Oxford University Press, (1956) 18] GS Hurst and M G Payne: Principles and applications o f resonance ionisation spectroscopy. Adam Hilger, (1988) 900Z SP U!>J J IU 3 3 3 X P£ C ALCULATIO NS OF THERM IONIC ELECTRON GUN FOR M ICROMACHIN1NG P. Jánský Institute o f Scientific Instruments ASCR, Královopolská 147, 612 64 Brno, Czech Republic jansky@ isibrno.cz Kinetic energy o f electrons incident on the surface is changing into the thermal energy. The beam with high current density can be used for melting or vaporizing materials and for m odifications o f the material surface. Beams with small diameters can be used for drilling very small holes and creating sieves. Magnetic deflection o f the beam enables very high productivity o f thousands holes per second. The electron beam -welding machine [1] in ISI Brno is intended for joining components and materials used in electron optical instrumentation and vacuum engineering, but in the last years its capability was extended for experiments in micromachining [2]. As an electron source a thermionic cathode with tungsten hairpin filament is used. Typically the beam energy is 50 keV, the maximum pow er is about 1.5 kW. The optical part consists o f four main parts (fig 1): electron gun, centering and stigm ator coils, a magnetic lens and a deflection system. Fig. 1: Scheme o f the optical system o f the electron-beam welding machine: I) cathode, 2) electron beam, 3) wehnelt electrode, 4) anode, 5) centring coils and stigmator, 6) magnetic focusing coil, 7) deflecting coils . To achieve higher current densities and smaller beam diameters, we started with numerical simulations and optimizations o f the electron-optical system. The beam properties depend mostly on the electron source, therefore we started with the simulations o f the electron gun, where the space charge effect is significant [3]. For the simulations we use program EOD [4], Field calculation is based on the finite elem ent method. Space charge distribution is iteratively evaluated from the ray tracing. From the field intensity and potential distribution near the cathode surface a new value o f the emission current limited by space charge is established. Then the space charge distribution is recalculated for the new emission current until this process converges. The electron gun is simulated as a rotationally symmetric problem. Emitting surface o f the hairpin filament cathode is approximated by a blunted cone with a spherical cap. The shape o f the cathode makes the left border o f the mesh. In our simulation (fig. 2) w e set the filam ent on 0 V and the anode is on 50 kV. We are testing and improving our new algorithms for space charge limited thermionic emission and analyzing current electron gun [1], In the next months we want start with the design o f a new electron gun and focusing optics designed with respect to requirements o f micromachining. 301-101 ‘I IoA ‘o u jg ‘0003 ■oojj ssijdo u o jp a p u; uSisap sqj joj uiEjSojd q v 3 : f jbuibjz puB g baoous'j [fz] '8t7-9fr (£003) Z ‘OS is3p d o PUB s3iuBq33]A¡ s u ij) B>|i}do b B^iireqoaui Buuisf '(qoaz^ ui) suiipBui S ll|p |3 A \ U JB 3q-U O JJ03[3 UB J O S o ijd o JO S U O lJB Z I|B U II)d o " f lBlu?IZ ‘ g BAOOU3q ‘‘J /q S U B f [ f ] ’3 1-01 (9OO3) I ‘IS (S3!ld o pus soiUBqDSjAj s u ij) E>[ijdo b E5[raBip3m Buiusf ’(qD3Z3 ui) urenq u o jp o p ,\q zjjEnb ojui s q o q ouij jo U01JEOJ3 :•[\: pBqoz ‘7 >|i:dn(j ‘ -j >[BdnQ [3] > 9 1“6 5 1 (1003) 39 uinnoEA -sjusuodiuoo I|euis jo Su|p|3M p3[[0jju03-j3jndiu03 jo j unS uojjo3|3 jE qoz ‘ 1 >(30|A “ f >l?dnQ [ |] patliwa st tum q uo.tpajd 3t¡¡ dna ¡ojuat/ds o ijii.w a u o j ps)un¡q d ifiiM paimutxo.iddo apoifinn paiodif ai/i lu o u j q q ¿¡ ui unS uouiodp stuoiw jaifi ai/t Jo uoi¡D¡niutg 'S i j SCINTILLATION SE DETECTOR FOR VARIABLE PRESSURE M ICROSCOPES J Jirák1'“, J. Linhart1'2 and V. Neděla 1 1Institute of Scientific Instruments AS CR, Královopolská 147, Brno, Czech Republic 2 Faculty of Electrical Engineering and Communication, BUT, Údolní 53, Brno, Czech Republic [email protected] Scintillation detectors are frequently used for the detection of secondary electrons in scanning electron microscopes. In order to achieve an efficient scintillation in these detectors, sufficient energy must be added to secondary electrons by an accelerating electrostatic field. This field is usually created by connecting a voltage of 10 kV to the thin conductive layer prepared on the surface of the scintillator. To add such a voltage to the scintillator of the detector may be a problem in the case when the detector with the scintillator is placed in a specimen chamber of a variable pressure microscope at a pressure of several hundreds Pa because of electric discharges in gas. In this case, the connection of a high voltage to the scintillator requires placing the scintillator in a separate room where the pressure does not exceed several Pa. Simultaneously, it is necessary to permit secondary electrons to travel from the specimen chamber to the room where the scintillator is located. In case of the proposed detector, separation of the room with scintillator from the specimen chamber is accomplished by a system of two pressure limiting apertures with central openings diameters of several hundred pm and by a separate pumping of the rooms by a rotary pump and by a turbomolecular pump as is seen in Fig.la. Owing to the vacuum system the pressure of several Pa can be maintained in the scintillator room while the pressure in the specimen chamber reaches 2000 Pa, Fig.lb. Metalized Evacuated by rotary pump . __ ____ Apertures H Electrodes , / Evacuated by turbomolecular pump 200 400 600 800 1000 1200 1400 1600 1800 2000 P r e s s u r e in s p e c im e n c h a m b e r [Pa] b) Fig. I. a) Schematic drawing of detector. b) Dependence o f pressure in scintillator room on pressure in specimen chamber. A voltage of several hundred volts is connected to the pressure limiting apertures, and an electrostatic lens is created which together with voltages on other detector electrodes enables the secondary electrons to pass through from the specimen chamber to the scintillator room. In the scintillation room, the secondary electrons are accelerated by the electrostatic field with a voltage of 10 kV to the scintillator. Trajectories of secondary electrons simulated for one version of the detector electrode system are shown in Fig.2a. Trajectories were simulated by Simion Ver.7 program [1]. •91 eO£9I cOO lAISIAI p alo jd Xq pus 9880/S0/S01 '°N ÎI3V O pafoid Áq psyoddns sem >[jom. siqx '0002 ‘Ç 'A3J £0t70/í6-13NI ‘l ^ Q 'V P^BQ ‘pmuBW s.jasn 0'L u o isjsa q £ NOIJMIS 'x 0001 (q ‘x 0 0 S O [j] [l] uoijboijiu S bui ‘b j 00c ainssaid je jo p a p p pssodojd Xq puS jaddoo psppS jo uopeAJSsqo '£'^!J (q (■ jaquiBqa uauipsds aqi u; e<j 006 P oqe jo sjnsssjd b oj dn susm pads jo uoijBAjasqo joj uoijBjíojdxa sjí jo Xjqiqissod sqj ujjijuoo jo p o p p siqj qjiM sjusiuusdxa Ájopnpojjuj ui sjb jo p o p p siqj Sujsn puS jgddoo pspjrô b jo suoije/ussqo jo sjp ssj sujos '\ OS/. = ran ‘A OSt7 = £aí"l ‘A 8" = zan ‘A 01 = lan ssp o jp a p uo soSejjoa jo j q j'3 ij ui uMoqs si sopuopuodop pojnsBoui aqi jo auo 'sap o jp sp |BnpiAipui uo s38b)|oa SuiSuBqo joj psjnsBsuj 3jsm jsqiueqo usuipads aqj ui ajnssaid sqi uo jioj uapjoS aqj uiojj p a p sp p |buSis sqj jo sapuspuadsp aqx 'A OS/. = H n ‘A OSfr = £3n ‘A 8- = zan ‘A Oi = ,an s a p o jp a p uo ssS b ijo a Jaqmeqo u siu p sd s ui sjnsssjd uo [ioj u ap | 0§ uiojj jbuS;s p o p s p p jo souspuadsp psjnsB 3p\[ (q M 0 [ jo)B[[ijups uo sSbj[oa ‘a 0S¿ = 4,3fl ‘A 00S = eaH ‘A 0 1 = zafl ‘A Z = lan ssp o jp sp uo ss3b)|Oa p p y oijBjsojps[a jo p a p p ui a 3 Çjo su o jp sp /ÜBpuooss jo ssuopsfBJx (b'2'3i¿ (q [Bd] ja q iu e q o u a iu jo e d s u; a j n s s s j j MJOJ33fB.il SIM ULATED PERFORM ANCE OF A TIM E-O F-FLIG H T ELECTRON EMISSION M ICRO SCO PE (TOFEEM ) Anjam Khursheed and Ding Yu National University o f Singapore, 4 Engineering Drive 3, Singapore 117576. [email protected] Over the last four years, proposals for time-of-flight electron emission microscopes (TOFEEMs) have been made, both with and without methods to dynamically correct for chromatic aberration [1, 2, 3]. Correction of aberrations in time is an important alternative to the more widely discussed tetrode mirror method [4, 5]. This is because the tetrode mirror method has a relatively complicated column design, where its photoelectrons are designed to trace trajectory paths around a multiply curved axis, requiring the use o f special alignment strategies for its beam separator [6 ], The TOFEEM column in comparison, is relatively simple. Fig. 1 depicts the basic layout o f a dynamic chromatic aberration corrected TOFEEM. Apart from the complication o f pulsing the source irradiation with pulse widths in the sub-nanosecond range and modulating the potential on a lens electrode at a rate of several volts per nanosecond (indicated by Vc(t) in Fig. 1), the TOFEEM has a single straight electron optical axis where photoelectrons are successively focused and magnified using standard projection principles.. The TOFEEM also has the added advantage of inherently being an energy spectrometer, which can readily band-pass filter the photoelectrons that make up the final image by simply capturing them over a series of different time windows. In the tetrode mirror method, an additional energy spectrometer must be used. In this paper, the possible advantages of TOFEEM, both with and without dynamic chromatic aberration will be examined. In particular, the residual resolution, dominated by spherical aberration, will be estimated for two different objective lens designs, and presented in a form that can be compared with predictions already made for the conventional PEEM as well as the tetrode mirror form o f aberration correction. Wan et al have predicted that the tetrode mirror method will be able to provide 4 nm resolution at 2% transmission, as opposed to 20 nm at 1% for conventional PEEMs [5]. In this work, it will be shown that TOFEEM is predicted to provide better image resolution than a conventional PEEM, and that dynamic correction of chromatic aberration through TOFEEM is expected to achieve a similar performance as that predicted for the tetrode mirror form of aberration correction. References [1] [2] [3] [4] [5J [6 ] A. Khursheed, Optik 113, No. 11 (2002), p505-9 G. Schonhense, A. Oelsner, O. Schmidt, G. H. Fecher, V. Mergel, O. Jagutzki, and H. Schmidt-Bocking, Surface Science 480, (2001), p 180-7 G. Schonhense, J. Vac. Sci. B 20(6), (2002), p2526-2534 P. Hartel, D. Preikszas, R. Spehr, H. Muller, and H. Rose, Advances in Imaging and Electron Physics, 120, pp. 41-132, (2002) Wan, J. Feng, H. A. Padmore and D. S. Robin, Nucl. Instrum, and Methods in Phys. Res. A, Vol. 519, Iss 1-2, (2004), 222-9 P. Schmid, J. Feng, H. Padmore, D. Robin, H. Rose, R. Schlueter and W. Wan, Rev. Sci. Instrum. 76, 023302, (2005) 1A133J O I pspsJJOO u oiiß xioq e oiiBuicuqo oiureuAp 900Z SPUÍ>->1 IU909^ b joj o ijE u isip s : i a in S ij PROGRAM S FOR ELECTRON OPTICAL DESIGN B. Lencová, M. Oral Institute of Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic 1. Introduction The computations in particle optics can be divided into “serious” ones, where the program packages provide a solution to a number of electron optical problems and express the final results in terms understood in electron optics like the aberration coefficients, and to approaches coming from outside of the electron optical community, which do not or cannot provide such answers. The basis of serious programs is an accurate computation of 2D electrostatic and magnetic focusing and deflection fields and programs/modules for the computation of optical properties from aberration theory or from accurate ray tracing [1-3]. Saturated magnetic electron lenses represent a very important class of problems, and the FEM is the only method which can analyze them (saturated lenses cannot be solved with CDM [4]). The advantage o f CDM is, however, the ease with which electrostatic systems like FEGs with orders of magnitude difference in dimensions can be computed easily. Other problems like the deflection systems and their aberrations are not studied in 2D [5], Computation of magnetic lenses with FDM/CDM is not very promising [6 ], 3D computations in SIMION have reached quite an advanced level [7]; this was the first Windows program, although now it looks a bit old fashioned, and its biggest advantage is the low cost. When applied to electron optical problems, sometimes quite curiously looking results can be reached and the aberrations are not easy to dig out [8 ]. Electron optical design is done nowadays by commercial firms, so hardly any interesting lens geometries are found in recent literature. What is also difficult to find are accuracy and test cases or benchmarks, the only exception being an attempt in [9] which concentrated on electrostatic problems suited rather to CPO programs. Nowadays, more and more complex problems can be and are being solved. From the user point o f view it is important to have simple but accurate and easy to use tools for the computation working under Windows XP. The software is not intended to people without some preliminary knowledge of electron optics, although quite often it is possible to meet a large degree of ignorance. In this paper, attention will be given first to questions o f accuracy of FOFEM as an example o f computation method, followed by a discussion of the requirement of accuracy for the evaluation of optical parameters. Finally interesting recent result will be shown. 2. The FOFEM Before starting a brief overview of the accuracy of FOFEM, let us briefly mention the user aspect of our software. The older 2D FOFEM packages were replaced with a new EOD program, in which we can analyze quite complex systems with many elements, lenses, deflectors and multipoles. Optimization procedures are used to adjust the image position, in particular with the accurate ray tracing, and space charge module allows the computation of intensive electron and ion sources, as discussed separately in these proceedings. Even if we want to improve the input and output of ray tracing, extraction of aberration coefficients from ray tracing results, and analysis of spot profiles and emittance diagrams, in its current form the program is stable, user friendly and easy to use, tested by a number of users as well as on u i s j o j a a y a p a i j a u S B i u j o s a i u o u u B q a a j q j js a A \o [ a q j jo j p a u iE jq o a q u s a p p y | b ix b a j E jn a a E ‘([B IJU S Jo d JB |B 3S u ; SB SIXB UO UOIJOajJOD 3 q j S u i p n p u i ) SJU 3I0IJJ3O D [ / \ [ 3 3 0 3 J ° u o ; j E j § a j u ; ja d o jd S u i u u o j j a d X q p u E u,(j) j o p E a j s u ; iuJ / lu(i) [ B ij u a jo d je je d s p a a n p a j a q j g u ijn d u io a X g s 9 |o d i ) |n i u p m ; s j o p a i j a Q ■S3SUS| DipuSeui JOJ 3|qB]lBAB 3JB SJS3J J)JBlUq3U3q 0|sl 'MB[ 3J3duiy JO XjipqEA aqj SuiMOqS J|nS3J |EIAUJ JSOU1 aqj USAS 8upj33qa ion Xq pus LS3 /un 3 uoijezijsuSeui 3uoja\ ‘sauq qsaui suij msj ooj qjiM qsaui auy Suojm •uoijipuos XjBpunoq Suojm puE japjoq aqj jo uojjisod Suojm ‘qsaui ssjbos §uoja\ Suiuijap Xq J3sn oi(i X|uo usqj si sjojjs jo ssjnos [ B n p B aqx '% [0'0 J° XaBjnaaB ue oj pajnduioa aq ubd Xjisuap xny |E¡xb aqj jBqj Su;jEJjsuoiuap ‘XjjauioaS xajdiuoa qjiA\ sasua| aAjjaafqo pajEjnjES X|q3iq joj U3A3 juiod sixe-jjo je 3 |qE[iEAE os|E si ji jnq Xjjsuap xnjj [eixe joj puBjsjapun oj XsBa si J0JJ3 aqx -[g [] saijEuiaqjEui u; spoqpuj qsaui ui pasn ajnpaaojd ajduiis b qjiM pajpaqa aq ubd sjjnsaj aqj jo XaEJnaaB aqj ‘uib§v '„sijEjjid,, pajjodaj XjsnoiAajd aqj ||B uo >|joa\ Xaqj jnq ‘sauo snoiAsad aqj usqj pajEaqduioa ajoui qoniu ooj jou ajE SB|nuuoj A\au a q i 'uoijEjSaju; jadojd E uuojjad oj puE jEijuajod jojaaA jo pBajsui xny asn oj XpuiBu ‘j/\i3 j0 d u! uoijnjos b pajsaSSns 3AEq sm 3SB3 siqj ui U3A3 -[o i] saqsaui ||Buis ui suia|qojd oijiosds joj sjjnsaj pojjoo sapiAOjd J3A3U IA13JOJ u! [Eijuajod jojaaA jBqj jsEd aqj u; X|aA|suajxa passuasip sbm ji S3SU3| OI43u8l!l\l ‘[ f l ] u> n n psjBinqBj ‘u b x ‘jsijuaias a s a u iq j jsqjouB j o s q n s s j P3XI03 3qj oi pgjBdiuoo %Sc0'0 J ° S!XB u0 Joxia p[oij qjiA\ pajndiuoo si |Bijuaiod [bixb s ijj ¡JA13J qiiM z [jO £ uo s <¿ u| jsn f paau pjnoA\ ?q s]ii|od [8 X [ü 9 l qj|A\ q ssu i jsS jb] aqj jo j jnq ‘sixb uo sju |o d 0091 sp ssu aq sa jjja d o id |B3ijdo j o uojjBjndiuoa aqj j o j ’[Aiad m !M sjuiod qsaui 0 c x 00t7 MJ!M psjn d iu o a jBijuajod aqj pBq aq ‘( [ g |] u; j a jn S ij aas ‘uoijBja|aaoB xg jo j d £ 6 '£ JB aSBuii puB Q £- jb jaafqo ‘a r o dß3) su3| aqnj-oM j b jo j ‘sasuaj 3ijBjsojjoa|a ^iBsidXj,, pazXjBUB [j/j] n i^ uaqA\ ‘ajdtuBxa j o j uoijEjndiuoa aqj jo j qsaui a u ij jo asjBoa aqj SuijBjauaS ui s jo jja jasn jo sjuiod qsaiu j o ja q u in u a\0[ j o asn aqj oj pauSissB aq jaqjBj ubd 1A13JOJ M1!M suiajqojd ja u u o j aqj ‘jjo q s u | '[ f [ ] Suiqsaiu u| s jo jja jasn oj juiod oj pasn si ajnp ao o jd [BbijDBjd jn o 0 0 3 ui ‘jaAoajo|/\[ ’[g] ui Suiobjj puB sp ja y b jo j qjoq pajsaj X nnjssaoons uaaq SBq XaBjnooB lAIHHOd ’[c I] 3UIBS aqj ajB saqsaui jB|nSuBj3aj u; sixb uo suojjßnba IM 3 J 0 J 3M1 uoijaajjo a I|Eius b jajjB ‘an jj jou s; s iq x '[ | |] Xpuaoaj ajinb uaAa pajBadaj sba\ rniBp siqj puE - paA|OAU| si juiod sixE -jjo jsajBau puE sjuiod jbixb qjoq je [Eijuajod aqj ajaqM ‘9 /(clo,A*t7+ll|ii!JA+,plA) an|EA ja a jjo a puB ja jja q b S3A|3 juiod-g aqj SEajsqM ç/(do,A*£+ll|a!JA+lplA) uoijBnba a a u a ja jjip aqj juiod (Bjjuaa e jo j sixb uo sap|AOJd 1A13JOJ 3MJ qsaiu cuEiibs b uj ajBjnaoBui si J ^ 3 J 0 J S!XB uo asnsaaq spjaij qans qS nojqj p a a sjj aq jaAau ubo s Xej puB IAJ3JOJ M1!M pajnduioo aq jouuBa sua[ aijBjsojjaa[a jEqj p a u ire p sba\ j| jssd aqj u] S3SU3[ 3I4BJSOJ439I3 p su o iju aiu X y su q sq ||¡ a\ jBqj sqjXuj ju sjsisjsd am os [||js 3JE a ja q x ■puoqajdiuoa oj q n s ijjip sjoui sauiijauios os|E jnq ‘sajSuBuj qjiA\ iai3 J pJEpuEjs oj pajBdiuoa jaisBa puE jajsBj uoijBjndiuoa aqj sa^Biu qsaui aqj j o XSo|odoj ajduiis a q x •qsaui a u y puB asjBoa aqj j o uoijBjauaS ja a jjo a aqj joj ju au ia jjn b aj aqj si u ia |q o jd jsaSSiq aqj ‘saqsaui jE |n§aj X|[EaiSo|odoj aqj Suisn ‘[£] saijdo u o jja a |a u| pasn se j ^ 3 j u[ -juBAa|ajji auioaaq 3ABq [o L] ui p a ja a y a j sb suoijEjnduioa jnoqE suoissnasip s tio u a jd j o jsoiu os ‘sjuiod qsaui 0000S Xbs uei| j ssa| qjiA\ saqsaui ui uoijBjndiuoa p jay aqj u u o jja d oj jaAaosjBqM asuas ou sa>(EUi ji jBqj qSiq os sXBpBMOu s; paads uoijBjndiuoa a q x sjuapnjs ajBnpEjSjsod puB ajBnpBJïùapun air, which can be compared with analytical expressions even for tapered coils [17]. EOD computes the axial multipole function up to m= 8 . No accuracy tests are available as well, except for misleading information that only SOFEM provides the hexapole and decapole field function for deflectors [3], For multipole systems the exact shape o f the field is actually less critical (quadrupole systems are often sufficiently characterized with SCOFF, even deflection aberrations do not strongly depend on the accurate shape of the deflection field [18]). 3. The optical properties What accuracy o f computation we need? With what accuracy do we need to know the position of the focus, the value o f the axial aberration coefficient of the third and fifth order? We have stated that for the fields on axis the accuracy can be very high, below 0 .01 % (actually in the past a much stronger requirement was that the field is smooth so that it can be correctly interpolated). As a matter of fact, the focal distances and aberrations (3rd order geometrical and Ist order chromatic) can be computed often with the same or better accuracy than the field by solving the paraxial trajectory equation and by computing aberration integrals. The low number of mesh points was actually the main reason why tracing could not be done properly or easily, the 2D data are more difficult to interpolate than ID axial result, and so they may produce uncontrollable local errors. The error estimate brings information about possible mesh errors [13, 16]. However, it is not so trivial to get the aberrations from the direct ray tracing by solving the equation of motion, otherwise one of the first published attempts to get aberrations of a simple dipole mirror would not fail [3, 19], Unfortunately Liu [14], who analyzed “typical” electrostatic lenses to up to 5th order geometrical aberrations with his own aberration formulas and with DA program, used just very weak electrostatic lenses, which are not a proper example to check our results against his results. 4. Aberrations from ray tracing and spot profiles One of the difficult tasks is also the evaluation of spot profiles. For such a purpose, in order to get smooth representative curves, it is desirable to know the positions of a very large number o f particles, say a few billions, in a given observation plane. We can then take into account the spot profile in the object plane, the energy width of the beam, the aperture position and diameter. The best procedure we use for this purpose is to get from a representative set of particles, say a thousand or so, computed by accurate ray tracing, the aberration coefficients o f any required type and order [20], The coefficients are obtained by regression, so that the quality of the fit is easily estimated. As an example of a difficult system to analyze we show here the'preliminary results of computations of probe profiles of a very low voltage scanning electron microscope. The system consists of an electrostatic lens followed by a cathode lens, slowing down the beam of 5 keV electrons to just 1 eV energy. The figure at the left shows the beam profile after this system in the Gaussian image plane, demonstrating a good resolution of such an arrangement, even if the beam energy width is also 1 eV. After we switch the Wien filter on [21] (the filter is placed in the crossover above the lens, it acts as a weak electrostatic lens and an energy dispersion element. Without changing the lens settings, the beam size becomes larger, but 10 micrometers towards the lens the beam shape changes, making the spot size smaller and astigmatic (see Figure 1). 5. The future EOD is a modular program and it makes a good basis for further improvements. We hope to present more computation o f difficult problems in electron optics such as mirror and '6S ‘Ç00Z3IM 3 0 J J -> (3 ?E JO || PM 'BAOOUO'I g ‘5 (3 0 [A I (p sq sq q n d sq oj) 9002 o iu g ‘S |S 3qi a q j ‘[Rio K 'SS ‘9661 o u jg ‘(Jbuiuiss qlç) spuoJi iu333>| o o j j ‘b a o 3 i» i g ’LZ I ‘( 8 8 6 1 ) 8¿ > l!J d o ‘b a o s t o i g ‘s u s g ^ "60t7ť ‘(¿ 6 6 1) 89 sju su iru jsu i s i j p u s p s j o mo;a3>| ‘BAosusg g ‘o u sg pv 6PI ‘(K)0Z) 6IS V sA qj u; qpjM ijsu] p n ^ ‘b a o o u s i g '9002 o iu g '(jBuiiuns q I ) sp u s jj }U333>] o o j j ‘RAonurv] g ‘SOA BQ OZZ ‘(9003) 901 -uiBJJin ‘n n ' IM ‘(t-OOZ) 6 IS V S3>I sX qj ui qpjAi mjsui - p n ^ ‘o u sg ^ ‘b a o o u s t £68 ‘(9861) III VRd ‘98 Xdo3s o i3i[A¿ u o j p 3[g Suiuubos ‘o u sg -jm ‘çAoouaq •(1003) 911 s¿ q d u o j p s i a -3buii A p y MadsB» 6Z£ ‘(6661) LZP V '^ M d u i q p j M Jjsui - p n ^ ‘b a o o u s i Z g g g g [jj] [OZ] [51] [g [ ] [/j] [91] [ç | ] [frl] [£ [] [z\] [1 [] [o I ] ‘¿S e ‘(6661) :I ‘BAOsuaq g ‘o ijq n o q [6] > 11 ‘(S003) t>£S V s s y sXqd ui qpjAj j;su [ p n ^ ‘u e S o q -yy[ ‘n [ n JAI ‘3S}S 'O [8] LZP V S3>I sXqa ui qpjAj J}su[ p n ^ ‘[tuiiB[/ f ‘p e s y h £661 ‘iBnuBjA i s .w s n ‘O L N 01SM 3A Clř N O M I S ‘IM«a V a 6P ‘(POOZ) 61S V 'so>I 'SÁqd ui qpjM Jjsu[ p n ^ ‘q P M P'A y ‘zsuijjbjm o ‘» p s g >J iuoo'SO|idouojpD[3'M MM//:diiq e e i ‘(ťOOZ) 61S V 'S3H s¿ q d ui qppM -JJSU] p n ^ -baoou3i g ¿661 ‘uoiBy Boog ‘SS3J J 3 ^ 3 -so ijd o s p i i J e j p sS je q 3 j o >|ooqpuEH -pa ‘JJO [jo T 6 6 6 1 ‘J3A\n[>| -sojido s p i j ie d psS jeqo ui p o q p u i jirau rap sjra ij s q x ‘p s s q s jn q ^ ' y '9P-ZP ‘POOZ O iug ‘(JBUIUI3S ql6) spuojl IU333}[ DOJd ‘BAODusg g [¿] [9] [ç] [17] [e] [3] [ [] :s 3 3 u a ja ja y 3 U B |d sS B U lj 3 q j 3 A 0 q B S JS p U IO JO jlU 0 I j o j s p | o q j q 3 u s q i u o s p j o j d s q j p i r e ‘u o p s q o jiM S s i i s i j i j s q j J31JB s a n S y j b j j u 3D ‘S3SU3J 3 p o q jB 3 p u B n i j b j s o j ) o o | o o q j p a i q o q o [ i j o j d LURoq a q i s i s p i s p u B q j j 3 | a q j u o lUBOq 3BBJ3AB [m u]x 001- [ JE ] /\¡ g S A l B J ° 3 U B |d o o i- [lxiu] X t 01 snoojsp ujrl oi J91l!d ueiM 1 ™ ]» s S b UII 00 1 - 001- sq j ui A S jsu a UBISSIIBQ S q j UI X jISU Sp J U S i i n g • l 3 J t l 3 l J [uiu] A s. 0 l X X J®M!d U®!M J 9ll!d U3!M°N >13 § y jo i IS0S90ČZ0AV UB[d qoiB3S3>j [Buopnjijsui sqj Áq psjjoddng :i u oui oíí p.1[\\ o u >|oy •SU0IPBJ3JUI qiuo[no3 oijsBqsojs Á[[t:niU3A0 puB ‘suisjsás psuSqBSiui jo sisÁ|BUB sqj ‘saisisXs U0ip3|J3p X3BJtl33B qSiq JO SUOlJEXISqB JO SU0|133J-I03 DIUIBuXp JO S|SÁ[EUB 3qj 0 0 3 OJUl oj uB[d 3AV ajnjnj 3qi u¡ suoipxisqB jspjo jsq3iq jo uoijBn[BA3 pire sjo p sjjo s 3[odi}iniu ppB EOI) (ELECTRON OPTICAL DESIGN) PROGRAM FEATURES B. LencováJ'b and J. Zlámalb J Institute of Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic h Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 619 69 Brno, Czech Republic From the point of view of a user of electron optical programs for the design in microscopy it is important to have simple and easy to use tools for the computation. Standard for most CAD programs is that they work under Windows XP, use a mouse, on-line help, and provide simple guidelines and examples for working with them. Based on 15 years of experience with 2D FOFEM packages that were developed in the course o f many years, partly at ISI Brno and TU Delft, and that were equipped with a graphical input and display interfaces in DOS [1], we considered that the whole system has to be transferred into Windows. The first but only a preliminary version we showed in 2000 at EUREM in Brno [2], All FEM programs for lenses and deflectors were integrated in a single program, their interfaces were programmed, and the modules for the computation of optical properties and ray tracing have been written completely from scratch in order to introduce a number of improvements in comparison to the old software. EOD is a modular program, compiled in Visual Fortran, allowing programming o f all Windows graphics; use a mouse, pull-down menus, dialog windows, and on-line Help (see Figure 1). EOD uses a clearly defined project structure to analyze complex systems with many elements, lenses, deflectors and multipoles. Optimization procedures allow that the excitations are adjusted to achieve given image position, spot size or similar. Space charge module allows the computation of intensive electron and ion sources [3]. Field computation by the first order FEM is no more a critical issue; by using a large number of points (one minute computation is needed for around 700000 point meshes on 3 GHz P4 PC), error of field can be quite small and it can be simply identified and estimated. The size of the coarse and fine meshes for FEM is virtually unlimited because of dynamic memory allocation. FEM meshes with a graded step are used and there is more freedom in automatic line mesh generation. Old type of data for FEM or tracing can be imported. In the background the geometry of other data can be shown as well as CAD DXF files, to which the coarse mesh can snap. The program displays axial potential or field and/or color-tnded saturation of iron or map of potentials or fields [4]. Recently we concentrated on the computation of optical properties from paraxial trajectories and aberration integrals for systems with lenses and deflectors. Let us stress that, in accurately computed fields, the ray tracing of suitably chosen set of rays provides paraxial properties as well as aberrations of any order. The number of data produced while ray tracing is quite large and there is a need to establish safe and easy to use procedures for the display of results and processing of ray tracing results for a given purpose such as the evaluation of given set of aberrations. Future development o f EOD will be aimed not only at improving further the input and output o f ray tracing, to extracting aberration coefficients from ray tracing results, analyzing spot profiles and emittance diagrams. For example, the analysis of complex systems should allow •suoijexisqß pire saiyadojd [BixBJEd jo uoiiEindujoD pire sauopsÍBjj jo S u io e ji - sjBijuajodinbs pire p[9¡J jo indjno - AjpiuoaS :suai sqnj-j e szA jeue o j p3ÁE|dsip s/v\opuiM s q j jo auitfs jo 3|diuExg : [ s j n S i j 'HD SV JO 11S0S90ČZ0AV '°N m \d qsJESsay jEuoiinjpsui sqj Aq p sy o d d n s •8 ‘soaeq ‘Ç00231M '30Jd ‘puiB jz T ‘baooiisi g ' ÍZ-ZZ 'U3PS3JQ ‘£0033JM 'M y ‘I®IU?IZ 'f ‘BAO0U31 g ‘/qsiref ¿ 301-101 ‘I '[°A ‘o u jg ‘0003 r a f f i a '30Jd ‘[BU1BIZ -f ‘BAOOU31 g '9Ÿ-ÎV (P00Z o u jg ‘(jbuiums mi6) sp u s« juaosy o o jj ‘eao3U31 g [ç] [>] [ç] [z] [)] :S03U0J3J,1>J [ç] ' sb 3 qjiM ureaq aqj jo suoipEjajui jo s u o ip e j s j u ; qiuo[noj ousEqoojs U3A3 «JE! X[(biiju3A3 pue ‘siuajsÄs psuSqESim jo s is A|eue sqj pire suisjsXs uoipsgap Ad b jm o e qSiqjo suoijBjjaqB jo suoipsuoo DiureuXp jo sisX|Bire aqj ‘sjopsxioo 3|odij|niu pus j o j j iu i j o soijdo jo uoijEinduioo suijnoj b 900Z spus-il lu a js y 9P IM AGING OF DOPANTS IN SEM ICONDUCTORS W ITH THE SECONDARY ELECTRONS IN A LOW ENERGY SEM F. Mika and L. Frank Institute of Scientific Instruments ASCR, Královopolská 147, 612 64 Brno, Czech Republic fumici (w isibrno.cz One of the crucial parameters in characterization of semiconductor devices is the dopant distribution profile. Dimensions of the doped structures have decreased to the 102 nm level, so details in both lateral and in-depth distributions of dopants fall at least in the same order of magnitude. Consequently, the device characterization becomes a non-trivial task. Twodimensional dopant profiling in this study was made in the cathode lens equipped low energy scanning electron microscope (LESEM). In addition to non-destructive imaging and availability o f multiple signal modes, advantages of this type of the LESEM include very efficient signal collection and hence high speed of data acquisition. The dopant profile is determined upon magnitude of the secondary electron (SE) signal [1], namely by measuring the image contrast between doped areas and the substrate. The contrast mechanism has been interpreted in terms of electric fields above [2] or below [3,4] the surface, variations in energy and angular distributions of the SE emission [4,5], and recently the primary electron dose delivered to the surface was taken into account, too [6,7], This study aims at examining the contrast behaviour as a function o f the angular and electron dose factors on two series of samples. Set A was with the p-type doped patterns 16 iq -3 15 (1x10 to 1x10 cm of boron atoms) made on an Si (100) n-type substrate (1x10 cm"-* of phosphorus atoms), and the set B had the opposite conduction types. Surface topography was checked in the AFM device, which revealed the steps on boundaries between the doped areas and substrate to be only 6.3 nm in height for the set A, and 36 nm for the set B. Both sets of the semiconductor wafers, exposed to the same history of aging, were observed in the as-inserted status in a Vega TS 5130MM microscope. The landing electron energy was 1 keV and the image signal was collected with a standard Everhart-Thornley detector (ET) and with the cathode-lens detector (CL). At low magnifications and fast scan rates the p-type silicon appears brighter in the SE emission than the n-type Si (Fig. 1). As usually in standard-vacuum microscopes, any increase in magnification or decrease in the scan speed lead to more intensive contamination of the field of view with carbon, and also the local charging is more apparent. In the same time, decrease or even reversal of the contrast between differently doped areas is observed. With the set 5, the contrast reversal has been found dependent on the electron dose (Fig. 2) while for the set A only some decrease in contrast was established. No clear explanation of the contrast reversal is available yet. Let us add that the samples freshly cleaned in HF exhibit a monotone contrast development without inversions. Imaging in the cathode lens mode indicated the contrast behaviour possibly connected with differences in the angular distribution of the signal emission. When comparing a micrograph acquired with the CL detector well axially aligned and hence not collecting the near-axis emission that escapes through the central hole (Fig. 3a) with the identical field of view as recorded with the detector laterally misaligned by about 100 jtm, which enlarges collection of electrons emitted near the axis (Fig. 3b), we meet the contrast inversion again. Information collected so far obviously extends the scope of factors, connected with technology of preparation o f the structure, its treatment before observation, environment in the microscope chamber, up to properties and intensity of the illuminating beam, which have to be taken into account if the image contrast o f doped areas should be reliably (and even quantitatively) predicted and also utilized in diagnostic tasks. 'SSJBUlUlOp pUB p3SB3J3Ul UOISSIIU3 3dX)-u ‘jo p s p p psyiqs s i x b - j j o (q) tsaniDid sqj jo aquas sqi ui u o i s í s a u ; ou ‘s ix b sip uo pouSi|E jo p a p p (B ) :a3>1 [ JB jo p s p p 3 3 aqj qjiM psgEiui 3[duiES u íd h lQ l adXj-^ :£ ajn S y (A3>1 i JB jo p sp p 1 3 ‘Emo 6101 §u|dop sdXj-u) „.oiojrl i i 8 3S0P ‘sSbuii jsejjuos psjjsAu; sqj jo |iEpp (p) u isjd op\, (o) uiojd phi (q) ‘._w33d (B):ssop u o jp sp sqij° uoipunj e sb [b s j s a 3 j j s b j j u o j :j ajngij sqj q jiA \ ssjnpnjjs s jB jjs q n s omj sdXj-u sqj ‘(q) ssdX} uoipnpuoo sjísoddo 3qj qji/v\ sjnpiujs u b u o s m s ijE d ( u» ‘( b ) ( ř-uio s i () | x [) 0 1x I ) psdop sdXj-d pagBiui jo p s p p 1 3 : [ sanSij '¿c£t/S 0/c0I VD ou JUBjS J3P™ y 3 J ° Xousgy Juejq sqj Xq psjjoddns s; 5[jom sq x ' 106 (SOOc) L i 'P W 3DvfA3iiq f i n s [B p ^ ^ ‘ijbuioo-[3 'OS ( SOOc) 10-Ç0 sS u ip a jjo .ij ¡Scj '3 ‘^uBaj ‘ 3 '£ 6 c (£ 00 č) £8 SJ3U3J sm /j '¡ddy je p 3 ‘uqBfuoips 'ÍZZ (Č00z) £6 ■'d03S0.imuD.iiif] '1 ‘>(UEjj ‘ jai iai ‘ije u io o íS "I ‘BAOJautM '88c (t^OOČ) I S 110.113313 sun/X 3331 je p jm jaj ‘p eiu o o iS ' I 1£ (OOOt) 617 -OSOJDlfM UOUÍ33J3 f J E p ¿ J ‘X[E 3 S >01 (S 6 6 I) 8S ¿ d 0 3 S 0 .l3 tlU D .n in J E p Q ‘OIAOJSd [g] [/.] [9 ] [s] [>] [£] [z] [[] CATHODE LENS MODE IN THE SCANNING ELECTRON M ICROSCOPE I. Miillerová Institute of Scientific Instruments ASCR, Královopolská 147, 612 64 Brno, Czech Republic, e-mail: [email protected] The Cathode Lens (CL) mode of the Scanning Electron Microscope (SEM) seems to start attracting attention o f developers as well as users of the microscopes. Based upon our nearly 15 years experience with this experimental principle, mostly summarized in [ 1], a brief recapitulation of usefulness of this system is presented here. Electron optical calculations show [2] that the only way o f obtaining the high resolution in an SEM at very low energies (below 100 eV) is to use the CL principle, in which the sample is immersed in strong electrostatic field and forms the cathode of this electrostatic lens. When adapting a conventional SEM, a feasible solution consists in employing a sequential arrangement of the electrostatic field of the CL and magnetic field of the focussing lens with only weak magnetic field appearing in the specimen plane. The CL anode serves as a single-channel dark-field detector made from the YAG crystal with a small central opening (say, 0.3 mm) enabling passage of the primary beam. This detector is inserted between the specimen and polepiece of the objective lens, requiring hence a relatively large working distance (usually above 5 mm) as its main disadvantage. Calculated and measured spot size versus landing energy of electrons for one example of this simple adaptation of the SEM to the SLEEM (Scanning Low Energy Electron Microscope) mode is shown in Figure 1. Here the spot size was calculated by using approximate analytical equations [3] and aberrations of the combination of CL and focusing lens resulted from analytical equations [4], electron enerav. keV Figure 1: The energy dependences of the spot size calculated for aberration coefficients of the magnetic focusing lens Cs = 10 mm and Cc = 12 mm; primary beam current w as'5 pA, gun brightness 105 A cm'2 s r 1, primary beam energy 10 keV and energy spread 2 eV; the fixed aperture was 8 mrad. The image resolution, measured as a 25/75 edge width on the standard A^t/C testing sample in the Hitachi S-3500H SEM adapted to the SLEEM mode, is marked by points. In modem high-resolution SEMs the specimen is immersed in strong magnetic field in order to secure the ultimate resolution, and detectors are mostly placed above the objective lens so that the working distance is preserved small. Should the CL mode be introduced, the specimen finds itself in both magnetic and electrostatic fields, namely strong and overlapped. Some data about aberration coefficients and probe diameters for overlapped as well as sequential configuration of the fields have been published [5]. We have measured the image resolution for the overlapped fields and arrived at 9 nm for lOeV [6 ], The overlapped fields surely promise better resolution than sequential ones but signal electron trajectories become more complicated so explanation of the contrast formation is more difficult. sqj Sumy pus jsddn sjí oj psjBJspssE si suoijssp psjjiuis jo uinxpads XSjsus 3j3[dui03 sqj spoui 3 3 sqj u; jei|j jsquisuisj sn j 3 | ‘jxsjuos siqj u| [^i] ssodjnd siqj joj papašu s; jojosjsp sixB-sqj-jjo pue sus]-3qj-SAoqB UB jo uSissp psjojiEj y 'Sjoq jejju33 sqj qSnoiqj uoijosjsp sqi SuidEoss ssuojssfEjj u o jp sp |eu3is psjBuiq|03 AjSuojjs sqj Suuq ppiOM ‘s3i8jsu3 8 uipuB] mo[ 3M ‘soijbj uoisjsuiuii q8 iq oj uoijBoqddB jnq p3j33|[03 sjb S3(8ub JB|od jss 8je[ jspun 3u;jeu|8uo ssuojssfBjj usas ‘Ä[snoiAqo '[/.] ssuojosíbjj psjE|tJ3[E3 qj|M jaqpSoj ‘3jE|d -puuBqs-ojaiui B puiqsq pssE|d \iojss|[od psujsjjßd sqj SMoqs £ ajn 3 |j -s3uej X3jsus umipsui sqj ui jssq s^jom osjb ‘jojssjsp sqj SAoqB puB sus[ SAipafqo sqj jo sssid sjod puB usuipsds ussMjsq psjjssui spouB 3 3 sqj qjiM psu 8 issp ‘suojjssp psjjiius jo uoijnqujsip jB|n3uB sqj jo jojssjsp puuBqo-ijjmu sjduiis psuoijusw-SAoqE sqx suoijipuoo iunnoBA-q8 iq-Ejj[n jspun S3|duiBS psjBSjj nijs-ui JO/puB saojB[nsu| jo uoijEAJSsqo joj '8 's |njssn sq ueo poqprn siqx pssnpsj A|3uojjs sq ues 3u ;3jB q o sqj jsbs| je jo [ f | ] s a t u r e s psjBOSun SAijsnpuos-uou jo XiuofBui b jo SuiSbuii psSjEqo-uou joj punoj sq ubo X3jsus SuipuE] uinujijdo ub ‘S|duiExs jo j A3>1 1 punojB ABS ‘ssiSjsus uinipsui jb usas [tyjiruj á j s a jA jg s oi|i ui spoui 3 3 3Ml psMoqs SBq soususdxs ‘jsasm oh ' [ j i ] jusiurujsui j/\[333 s q j s e ( [ | [ * o |] '8 's sss) s u is iu B q s s u i JSBJJUOS JB| IUJIS SJSJJO SpOUI [/V333S 3l|l A 3 001 MOpq SS|8jSU S MO] ÄJSA JV ( [9 ] u i o j j p s s n p o j d s y ) (m o j u io jjo q ) u j u i z 'Q p u B ( m o j j s d d n ) u i u i | o * 3 P jo p p ij sq j jo q jp i M ‘A 3>| 0 1 X S jsu s u iB o q X jB U Ju d í s p p i j |E i j u s n b s s : m o j l u o j j o q ‘s p p i j p s d d B j j s A o : m o j i s d d ß a 3 o z (3 ‘ A 3 o z í (q ‘A 3 o so e (B ISSlSjSUS 8 uipUB[ 3qj JB US>|BJ (169 IS JESy) U3UJ|33ds SUIJS3J U0qjB3/p|0S aqj jo sqdBjSojsijAj :j ajnSij *3uop s q o j s ju s u iu a d x a puE S U 0 ¡JE jn D |B 3 |E U O IJippB 3 j m b 3 j ||I M JO U O I lB p jd ia jU I p 3 ] |B P Q se u 3 u ii3 3 d s s q j jn q a q j jn o q B p s A js s s jd p 3 d d B |j3 A O s q i u | U O U Ejn3lJU O O P [3 IJ p a d d B |J 3 A 0 3 q i Ul p 3 J ;n b 3 B SISEJJU 03 'UOIJBUIJOJUI X S J3U 3 3 q i OJ À JB JJU 03 ‘J]3M /C[3A |1B|3J pS JJO dsU B JJ u o i j b u i j o j u i jB |n 3 u B SS3( j o s jo u i si js b jju o s s q j s 3 } B 3 ip u ; s iq x 'j s o | s¡ js b jj u o s i E 3 |q d e j 3 o d o j s q j S 3 i§ J 3 U 3 m o [ á j s a [ b u s jb u i jb s p p ij [ 9 ] s p | 3 i j |E |jU 3 n b 3 S p u E p 3 d d B |j3 A O q ji M q j o q ‘S 3 i3 j3 U 3 S u ip u B | SnOUBA j e s p o u i 1 A I 3 3 1 S 3 q i u i u s i u i s s d s 3 u i j s 3 j - u o i j n | o s 3j u o q j E 3- u o - p | o 3 s q i S M o q s 3 s j n S i j [ 5 ] SUIJBUIUJOP s d 3 3 > | ppy 3IJB JSO JJ33J3 3 q j S 3lJO J33fB JJ U 0 JJ3 3 J3 UO UOIJ3B S p jB § 3 J SB ‘J3 A 3 M O H 'S 3 lS j3 U 3 S u ip U E ] JS3M O ] p jB M O j S u i m o j S s p p i j S u i p u n o j j n s - u a u i p s d s q j o q s q j s s q d u u B UI s p o l u 3 3 s q j ‘s n q i ’[ | ] ] /\ [ a S u o ; j r q o s 3 J - q S i q UOIJEJISXS SU3J 3 A IJ3 3 fq O s q j S3SB 3J3U ¡ U3A3 S u i s n s o j s j (3 § J B | o o j j o u ) À JBSS333U s q j ‘y \3 o i o j y\3> | o í l u o j j 'S '3 ‘s p n j i u S B u i j o s j s p j o A q i B i j u s j o d 3 3 s q j BIA S U O J J3 3 P J O X ŽJSU S S u ip U B ] 3 q j S u |X jB A U S q ^ ' s p p i j ]E IJU S n b 3 S UI SE X |JE 1|U IIS p s u i B j q o s q UE3 JSE JJU 03 U O lJO B JJJip 3 q j J B q j OS S 3 IJ0 J3 3 ÍB JJ IB u S jS S q j J O S 3 |§ U B (BIJIUI J O 3§U B J p E O jq B |[S M Á p A I J B p j S 3 IÍJ S U 3 S U |P U B [ M O[ X jSA JE SJJO dsU BJJ ‘ 3 3 3 q j pUB SU3[ S 3 3 |d - S |O d S iS u iS E Xq p s i u j o j ‘s u s ) u o i s j s u i u i j s q j jB q j p s M o q s [ g ] s u o !J B |ii3 ] E 3 X jB U |ix iip jd j n o ‘| [ i j s - j j n s i j j i p SJOUI S 3 U I0 3 S q >|SBJ s q j s p p i j O IJS uS bU I pU E 3 IJ B JS 0 J J 3 S P p 3 d d B [J 3 A O s q j u ¡ ‘s j S u e J E p d p u B /O j3 U 3 [BIJIUI q jl M 3 3 U B p j0 3 3 E UI ‘p p i j 3 IJB JS O JJ3 3 p 3 3 3 q j X q SIXB |B O Ijd o 3 q j OJ p S JB U II(I0 3 usqM sq s jS u E iB q jn u iiz B j p q j d s s > [ s u o j j 3 3 p p s j j í m s s q j 3 s n B 3 s q [ ¿ ] X [d x u is j s q j B j p s u S i s s p UB3 J 0 J 3 3 J 3 P 3A IJIS U 3S-U O |J|S O d p U U B q S -IJ in iU B s p p ij [ B l j u s n b s s JO 3SE3 s q j U| primary beam energy, so very high efficiency of the scintillator or semiconductor detectors is secured at low landing energies. 0 10 20 30 40 50 60 pola r angle o f emission, deg 70 80 90 Figure 3: Left: eight-channel collector of a multi-channel detector. Right: the radial coordinate in the detector plane versus initial polar angle of the signal trajectory; primary energy 10 keV, landing energy 2 keV, distance between the cathode (specimen) and anode (detector) is 10 mm, curves labelled with the emission energies, detector segments indicated as the grey strips. (Reproduced from [7].) Further indisputable advantage of the low, but also of the medium energy range is the interaction volume proportionally diminishing, opening hence possibilities for a kind of layer by layer in-depth tomography [15]. The SLEEM method was used for investigation of the cube phase in an Al-Mg-Si alloy [16], In these experiments, visibility of nanometre-sized precipitates without any surface relief was very clear thanks to small spread of electrons, advantageous mixture secondary and backscattered electrons, and enhanced crystallinity contrast. Consequently, multiple types of precipitates have been recognized in these micrographs (Figure 4), as distinct from the standard SEM. Figure 4: Surface of an agehardened Al-1.0 mass%Mg2Si alloy with 0.4% excess Mg, observed in (a) SE at 10 keV, (b) BSE at 10 keV, and (c) SLEEM at 1600 eV landing energy and 10 keV primary energy; the scale bar is 1 pm long. (Reproduced from [16].) The contrast interpretation issues can be illustrated on doped areas in semiconductors [18]. In the example in Figure 5 two pictures are taken by so-called lower and upper SE detector [19] with the specimen immersed in the magnetic field while the other two snaps show the same field of view in the CL mode, i.e. with the specimen situated in both fields in an overlapped arrangement. Thus, we have four images, all taken at 1 keV landing energy but acquired with four different detectors. As regards the CL mode, difference was only in diameter of the central bore and consequently in the angular range acquired. sjnprujs jopnpuoojuiss oqi jo uouiioods oqj pspiAOjd Ajpupj oujg isi jo '¿Z£Z/S0/Z0I 011 JUBjg jspun uoippunoj aouaps q o szj aqj Xq payoddns si 410M sqx •¿t7 -^ (cO O Z )(l)a¿t's^ 3 N T O ar:'H uoiunzB>i 'ÍPZ-ZZZ (ZOOZ) £6 Adoosojoiuramn :'3 Pub 'W W 11BUIOOI3 ‘-I BAOJsi|t)]Ai •PZÍ-ÍZ£ (17002) Ä doosojD ijA i j o j X p p o s u a i S p g ‘a S s i q ‘IA I3 3 ql£ I '9 Lí~ I Li asB q j (SOOZ) s u o ije u u o js u B J X p ip s o j- p i[ o s "S 3Cud : u j : '3 > [ u b jj puB | BAOJ3j]np\[ JPM [OZ] [611 [81] [¿ i] |E u o ;s ry jiQ : n ° A 's[B uoic[a] d iu b S jo u j u i s u o ijb u u o js u b jx OU3>II P UE B p iq si ‘ >| BpnsjBj/\i [9 [] 'OVZ-iíZ (1003) £Z SumuEOS "3 -iampy puB j g n sy '9L-ÇL (M)0Z) >13 SV ISI ‘°u jg ‘ 1 ?AOJ3[|nw Xq pa ‘uoipjuaiurujsu] soisXqj aoBjjng puB sopdo s p ip E j ps§jBq3 ui spusjx luooo>[ JBUIUI3S [EUO|JBUJ01U| q}6 30Jd :uI ”IA[ 5l33?JOH PUB '9 baoduox ‘ j >[30]A 0S-9£ (I00Z) i l Suiuubos : [ baojouow puB IAI [|?BJpB2 ‘ 1 >|ubjj ' 8 £6 'S 68 (fr6 6 1) ¿S 'sXqd '^ o j j day : g jarreg '9£-8Z (S00Z) 901 /(doosojoiuiBjJin :'I BAOi3 [[n ^ puB 3 >|ubjj £1-1 (6661 ) IZ Suiuueos "3 JatiEg puB y uBipiEj ‘3 baoj3||0im ‘-3 íjubjj 1 >(ubj..[ ‘j B \o j3[ [ n ^ [g i ] fť I ] [ei] \Zl\ [[ |] [oI] > 9 - £ 9 ( c 6 6 1 ) u |B d § E p B U B jQ ‘|B p s o i-a y X q - p a ‘ [ j o a ‘p \ [ 3 3 3 'LLVÍLX ( 3 6 6 1 ) ZI 01 01133 ‘3 B A O i a n o w 01133 P u b | BAOJ3|]n iA i o c u j : u i : f j s s i j p u B -jai h d d n s ] B p y B D iu iiq a o j^ i^ i 6 [ ] [s] juud ui ‘o§Bo;q3 ‘900 Z sisX|bueojoija¡ puB Xdoosojoij/\[ o o jj :ui :3 bui[bauo>[ pus 1 BAOi3|jnj/\[ > Z-81 (P00Z) SZ SumuBDS :'3 >(uej3 pus 1 baoj31[im 'LL-L9 (Z00Z) £11 W dO :'V paoqsjnq-» >01'£01 (S66l) >|bao|s :bab[si}bjq ‘j o d u i B i o ’3 Xq -p a ‘[A]3 )[aj o o jj :u [ :-jaj ous3 ‘601-101 (9661) 101 >|!jdo:dJ!nJ>lpuB- 3 fqiJBg '61Z-S0Z (6661) 8ť XdoosojoijAi u o jp a|g f q B\()JO[|n[Aj puB 3 >[uejj £frt7-60£ (£ 0 0 Z ) J3IA3SI3 :oSsia ubs ‘(s3>[mbh’AV d ■ps) jj£l so|sXq(| UOJP3J3 puB SuiSbui] ui ssouBApy :u[ "3 íjubjj pus | BAOi3||ni/\[ s s a j j X u ia p B o y [¿] [9 ] [ç] [t?J [f] [z] [[] [0Z] 'sppiA | bjoj 3J31Ujo PB3JSUI suoptiqujsip UOISSIUI3 sqj ui psuiiusuBJ) si uoijBuuojui 3JOUI sspoui XSJ3U3 mo( puB lunipstti 3qi ui jnq 1AI3S 3m J0J X]iBJ3U3§ spjoq 3[nj siqx 'Suissaoojd | bu8 is juanhosqns sqj jo ÄouaiDijja 3i[) s; pqM PUE p3p3[[03 SI SUOJP3J3 p3}llUI3 3qj JO UOlJtiqiJJSip XSj3U3 pUB aBJIlSUB 3q[ JO JlBd JBl[A\ |IBpp UI SUIA\0U>[ S3Jinb3J SJSBilUOD JO UOIJBPJCÜ3JUI 3|qBl[3J IBqj spnjouoo UBO 3M (■ [/.[] Uio-U p s o n p o j d s » ) 'A 3>1 I uibSb spoui IMHH'IS sqj UI XSJ3U3 SuipUB| ‘A3>[ 01 XŽJ3U3 UIB3q iÚBUIlid ÍjapUIBip UI uiui £ 0 (P) PUB 111111 L'\ (°) J ° MOCl [BJJU30 j o s j o p a p p IM3 3 3 S aMl ‘j o p s p p 3 S p jB p u B is j s d d n ( q ) p uE J3 A \0 | (b ) : s p o u i 3 3 s q j OJ poidB pB 1M3S J00£9 3 0 3 f sqj u| sjo p sp p inoj jo SUB3UI Aq XSj3U3 8uipuE[ A 3>| 1 j e psSBui; PjBjjsqns ( [ 11) !S oju) suoisnjjip poujojiBj :ç 3jn3|3 DIFFERENTIAL ALG EBRAIC M ETHOD FOR ELECTRON OPTICAL DESIGN Eric Munro, Liping Wang, John Rouse and Haoning Liu Munro's Electron Beam Software Ltd, 14 Cornwall Gardens, London SW7 4AN, England e-mail: [email protected] Tel & Fax: +44 20 7581 4479 The Differential Algebraic (“DA” ) Method [1, 2] is a powerful and elegant technique for computing the aberrations of electron optical systems. It is far more powerful than traditional methods based on evaluation o f aberration integrals. It is particularly useful in the following situations: (1) Evaluation of high order lens aberrations (5th, 7lh order, etc.), (2) Aberrations of multipole systems, including Wien filters, (3) Curved axis systems, such as prisms, spectrometers and energy filters, (4) Electron mirrors, (5) Evaluation of asymmetry aberrations, and ( 6 ) Systems with high beam energy, where relativistic effects are significant. The DA method is conceptually quite simple. We define a Differential Algebraic Quantity ("DA Quantity'), of degree n in v variables, using the notation "„Q". The quantity ,,QVis a vector whose elements are the coefficients of a polynomial of degree n in the v variables. We also define a set of Algebraic Operations on pairs of DA quantities. Addition, C=A+B, is defined as the addition of the two polynomials. Multiplication, C=AxB, is defined as the multiplication of the two polynomials, discarding terms of degree greater than n. Subtraction, Division, Square Roots, etc., are also defined, to form a complete Algebra. In software terms, DA quantities form a new Data Type, which we call DA, with its own storage structure and operations, which we have programmed as a C++ Class. We can then write statements in our program like F = ((A+B)*C - sqrt(2.0*D)/E, where the variables A - F are DA Quantities. These DA quantities dramatically simplify our software for computing aberrations. To obtain the aberrations, we need the electron’s final position (x„v,) and final slope (.v,',v/) at the image plane as a power series in powers of its initial position (.v,„v„), initial slope (x„ ,vQ') and initial energy deviation (50) at the object plane za. To express the aberrations as a power series in these 5 variables - (x0, y 0, -v,/, v,/, Si>) - we use DA Quantities in 5 variables, i.e. v = 5. The degree n of the DA Quantities is chosen as the maximum aberration order we wish to compute. For example, if we require the aberrations to 7th order, we choose degree n = 7. We write out the differential equations of motion, which describe an electron’s position (x(z), t’(;)) and slope (jc'(z), / ( - ) ) as functions of its axial position z, ftnder the influence of the electrostatic and magnetic fields. These equations are written in curvilinear coordinates so we can handle general curved axis systems. In these equations, we replace the physical position and slope by their equivalent DA Quantities - X, Y, X ', Y '. We also replace the physical clcctric and magnetic field components by DA Quantities. We fit the numerically computed axial field functions with sets of Hermite functions [3], which are continuously differentiable analytic functions. This is a crucial step, as the DA Method requires the fields be analytically delined and differentiable. We now solve the equations of motion, with a single raytrace, from object plane z„ to image plane z„ using a Runge-Kutta method. The code is a standard Runge-Kutta solver, except that all simple variables are replaced by DA Quantities. On completion of the single raytrace, the DA Quantities .V, Y, X ’, Y ' contain all the position and slope aberration coefficients at the image plane. This is all achieved without any derivation of aberration integral formulae. This makes the software very robust and reliable. '96-06 (1?002) poqjaiu YQ '6"l (¿661) I Âdooso.i3tyq uoupaj'j fo jm u tio f ‘a so y -j-¡ pue SB zs^iajj (j £L Su3 omojpspou3ijA¡ ‘n q z x pus ojunjAj 'a ‘n iq H ‘s s n o ^ [ ‘S ubm q '68c-S 8c (0002) 111 'S u a q 3 g puE Subx i ‘S u e m j > 2 1-601 (6861) PZ suoivudpoDy a p i u o j ‘z ja g 'W [¿j [2] [i] aqj qjivi pajB|im iis |B3j u o ij E U jq ii io a j 0 j j | u j - u i s u d - s u a | aqj q jiA \ ‘s u a | a A ij o a f q o [p] v, j o ’ ) p u E s3 a q j j o a j j o o ubo u i s u d p u B j o j j i u i a p o j j a j B M o q § u iA \o q s sq n s sj j u a s a i d [|im s / \ \ j o j j i i u d p o A ¡ d i Jo s d n j ü A 33 80061- 99986L L S itc e 60 l I 06 £+ USSMS 1ČX i - OLbL1- S IS ¿ [( l i l L il puü 09 09 09 09 09 ( s i|O A ) 00 £ 00t 001 <M[o\) 'A 'A ‘A t - S 'O S I - ( U llU ) ‘3 d jq v j 00001 00001 00001 00001 00001 (SJIOA) i ¿ te i - 9 ť '6 S |9 ¿’89[ — (sjioa ) 'A '£ s^ ) p 9 j n d w o ¡ j OOS oot jo jjiiu dpojjdf j v o i j D D j d y '£ d jn S ij ueo su a j aA ijoafqo a q j j o sq a q j os ‘baijeSbu oj aAijisod m o jj ubo sj 's u a | aA ijoafqo ub jo a q j jo a jjo o ueo ji os ‘aAijEŽau ■paipouBo a q os]E ‘aS irej opiM E J3AO p ajsnfpB a q sX ea\|b si ' 3 -(z 9 |q E jJ S u ijja s a8Ej|OA qoBa l o j p a jn d u io o ajaM pni.iBA sba\ puE s3 's n o o j a q j jsnfpE oj |Buij a q j CA J° S u ijja s qoB3 joj puB ‘s j j o a 09 1®PPM SBM l'A 3 § e j |o a A3>| 01 j o X 3 jau a u reaq ju a p io u i ub qjiA\ ‘u m í 081“ = ” JB P3X!J ids?) aJaAV sauE jd aŽEiui p u s loafq o a q x 3Jba\jjos y q j n o qjiM p3jB ]nuqs ‘jojjiui s p o j js j (EOijOEjd b jo a |d u re x a ub SA\oqs Z o j n ň i j [^] jojjiiu a p o jja j e S u isn p a jo a jjo o a q ubo sua] aA ijoafqo ub jo pus a q j q jo g (E iju ajo d (siiufi ¡s) siudiDiffdOD uoijvjjdqv pdjn d w o j ¡ d¡qvj[ / 6 0 £ 'č 1 0 8 ‘t , c ! LOÍ'Z + 0 8 't? ü u i o j i {3 |B ix y 8 1 9 Z— 8 I9 T - ! ZPÍ9 - 9 Z ÍPP- / IK 9 -S £ £ W ^ - u o iy o js iQ ! ¿ I£ l ■ ť lS ť ZLÍb lu s iiB iu S i js y ! 1¿ 6 9 + 6 'S X ť - + L\ÍV 9íib Í 8 S 6 9 + l'9St- oeis íin s o íj v a le is J in s a y 3 i; Á | B u y • q y |B 0 U 9 q d s / 9 1£ I A j n j p íš i¿ BUJ0 3 u o ijB jja q y % 2 0 > IIe 3 J o a \ ( [ 3 |q B x ) s q n s a j y q 0 J 3 M BJEp 3UIBS o q x JOJJÍVUUOJfDdjd dpoip IfllM. }Sdl Dl)Á]DUy [ BjnSij L U O il{3 SUBJX a q j u; s jo jja a q x p o q ja u i Y Q s q j q J!M p a j n d u i o o u a q j '3 JJ U 0 0 SU3[ o q j JO JJ 0 [ o q j o j UllU c 8 9 ' ¿ 0 l Ie s j u i o d o S b u ii p u E jo o f q o p u E LA ° 2 9 6 6 9 . 1 ° X S jo u o |B ij iu i u b i |j i a \ s u o j j o o |3 j o j ‘s p | 0 i j o ijX [B u e a q j q S n o j q j o o b jj X e j b u i o j j POJOBJJXO S J3 M SJU3I01JJOOO u o ij B jjo q E X i E u i i j d o q j p u B s o i j o s p s s o g - j o u n o j q jiA \ p a j n d m o o a jo A \ s p | 3 i j a q x dB § lu u i g p u E ja ja u iB ip u iu i p p j o s a o a id a jo d j p u B ‘d s S u iu i o i puE j a j a u r e i p u i i u Q p j o s a p o j j o a ] a j E o u p u q X o z qii/vs. j o j j i i u a p o i p o i j a u S B U i - o ijE js o jjo a ja p a u i q u i o o b jo j a [d u re x a ub SM oqs [ a jn S ij ' s p | a y |a p o u i o [ jX ]b u b S u i s n p a > [ o a q o u a a q s s q X o e ju o o b a q x japjo pajinbaj Xub oj •sju a io ijja o o u o ijE jjaq B a q j jnoqE u o o b iu jo ju ; a q j |[B uiE juoa <: au E |d aSE iui a q j j e Z ‘ á ‘ X ‘Z *,{ ‘X saijiju E n £ ) Y Q 3ltl ‘30bjjX bj a]S uis b J a jjY 's j tu y ajaqAvXjaAa ajB sju a u o d iu o o X)iao|aA pire ssjB u ip jo o o s ^ u o jj s s p a q j ao u is ‘ju io d S u iu jn j a q j j e sa iju B jn S u is sa jE u ;u u |a s iq x ' Z ' Á ‘ X ‘Z LÁ 'X - s a ijiju B n ö Y O JuaiEA inba jia q j Xq s ju a u o d iu o o X jioo|3a puB sajB U |pjooo |EO|sXqd a q j aoE [daj puE V a u iij j o su o ijo u n j se ( ( i ) : ‘(i)á p u E ( ( / ) : '( j). \ ‘( i ) x ) sa jB u ip jo o o s^ u o jjo a ja a q j j o j u o ijo u i j o 's iq j j o j ‘(j)x) s ju a u o d u io o Xjioo[3A suo ijB n b a a q j u io jj j j e j s sm s jo jjiiu U O JJ33J3 puB S 3SU 3| spoqjEO síp ireq o j p a ijip o iu a q X jisbs ubo p o q ja u i a q x ENVIRONM ENTAL SCANNING ELECTRON M ICROSCOPE AQUASEM II - THE DESIGN AND APPLICATIONS V. Neděla1, J. Maxa2, R. Autrata 1 'institute of Scientific Instruments AS CR, Královopolská 147, Brno, Czech Republic, [email protected] “The Faculty of Electrical Engineering and Communication BUT, Údolní 53, Brno, [email protected] Environmental scanning electron microscope (ESEM) creates new possibilities in the examination of various types of specimens and their phases. Experimental environmental scanning electron microscope AQUASEM II was built in ISI AS CR in cooperation with the TESC’AN Ltd. The main task of this microscope is the investigation and development of special detector systems working in high pressure conditions and the study o f „in situ“ dynamic experiments. The microscope is equipped with hairpin tungsten filament. The accelerating voltage (AV) can be adjusted from 0.5kV to 30kV and the probe current from IpA to 2nA. The resolution (high vacuum mode, AV=30kV, working distance =3mm) is 3.5nm, and for ESEM mode (AV=30kV, WD=3mm, specimen chamber pressure lOOOPa) is approximately lOnm. The vacuum system of AQUASEM II consists of two rotary pumps and one turbo-molecular pump. The microscope is equipped with Peltier cooled specimen holder with mechanical movement system in X,Y and Z axis. The pressure values are measured independently of the gas type by the capacitance pressure gauges in the specimen chamber and in the differential chamber. The differential pumping chamber with detector unit (pressure up to 25Pa) are the main special parts of the microscope that enable to maintain high pressure (up to 2000Pa) in the specimen chamber and vacuum (0.001 Pa) in the optical column of the microscope. These parts make additional pumped space situated between the objective lens and the specimen chamber, shown in Figure 1. In the small circular hole (diameter approx. 7mm), situated in the centre o f the detector unit, is placed with the yttrium aluminium garnet (YAG) single crystal scintillator, the main part of backscattered electron detector. The scintillator is also used as a pressure limiting aperture; a hole with diameter 0.5mm is bored into its centre. The differential chamber, the detector unit and the YAG single crystal are vacuum sealed with “0 ”-rings. The circular hole through the YAG single crystal must bý*centred on the optical axis by shifting the detector unit in direction of X,Y axis in the high vacuum mode, see Figure 2. The scintillator is used as the secondary electron detector (SED) [1] for variable pressure and ESEM mode. Secondary electrons are swept by the positive potential around 350V toward the electrode system deposited on the surface of YAG and switched to the current amplifier. ESEM AQUASEM II is also equipped with a special temperature isolated hydration system situated outside the specimen chamber, see Figure 3. This system consists o f water reservoir, water level meter, water vapour temperature meter, heating system with precise temperature controller and precise flow calibrated micrometric valve. This system ensures an efficient replacement of air in the specimen chamber by the water vapour from the hydration system. It also enables to maintain stable high humidity environment respecting the physical dependence of pressure of saturated water vapour on temperature. flf» '9 8 8 0 /S 0 /Č 0 1 ° N lURJg ‘o iiq n d s ^ q o s z j s q j j o Ä o u s S y I u b jq Xq puB 3 0 9 0 5 9 0 0 c ° N Ju e j3 L3 i|q n d ffy i p o z j o qi j o s o o u o p g j o X u io p B sy ^ q p s y o d d n s sem >)jom s iq x [g] 9 1 ? - I I 9 ( £ 0 0 č ) Z s|BU3iBai s j i i j e n 'S|iïudib^\i g u p B jn su i puB p ^ \ S u iS b u ij j o j Á do3soj3ij/\] u o j p s j g S uiuuB og (B ju su iu o jiA u g j o ospi o ijx :'1A['V P IB u o q X 01 ‘(0 6 6 1 ) ‘8 L ‘sa is X q j u o j p s j g puB s o i u o j p s i g ui sssu B A p y -A doosojoiui u o j p s p SlUUUEOS |B)U3UlUOJ|AU3 3q] UI 33IA3p J O p s p p SIIOSSEÍ? 3 qj JO /Ü03l[J :'Q 'Q S01E[IUBQ [z] [[] •u u m |0 3 a d o o s o jo iu i sq j j o jjE d e p u s ja q u iE q o S u id u in d [E iju a ia jjip J iu n j o p s p p ‘jsqureqD u s u i p a d s (A \opq u io jj) : || lA ig S Y flÖ V IAI3S3 J ° A' ;|!A X b m e - jtq ' [ ' § 1 3 ■[£] UOIPB3J |B0|UI3ip pUB UOIjn|OSSip ‘UOIJBDlJipiJOS ‘S u ijp u j JO UO|lEAJ9SqO oqj jo 3|duiBS oqi j o Ájipium q jo ajnjB jaduisj ‘j o aSuBqo aiuij oqj sb qons [3] sju o u iu sd x s jijis ui„ |C3iiuBuXp suounoads jo jo j 3sn Xq u e 3 3do 3s o j3iui s q i '3SEqd ui ssSuBqs Jisq i qSnojqj osEqd p inbq Jioqj ui su o u ip o d s ‘s u s u ip s d s oA ipnpuoo-uou jo ciAipnpuoo JO UOIJBUIUIEX3 aqj JOJ 3d03S0JDlUI |BlU3UJ|J3dx3 |BSJ3AIUI1 B S| ]| 1AI3SVDÖV IAI3S3 PROCESSING OF SIGNAL IN THE EVERHART-THORNLEY DETECTOR L. Novak and I. Mullerova Institute of Scientific Instruments, ASCR, Kralovopolska 147, 612 64 Brno, Czech Republic e-mail: [email protected] The Everhart-Thornley detector has been used for detection of secondary electrons since I960 [1], in order to increase the signal to noise ratio (SNR) in the resulting signal many configurations o f this detection system have been developed. The collection efficiency corresponding to a full chamber configuration has become possible to simulate [2 ] as well as to compute and experimentally test the properties of the scintillator and the light guide [3]. So far description of individual parts of the detection route has been based on signal averages. This approach enables us to analyze the transfer of the signal and simultaneously to assess the noise characteristics o f the detection route. As a matter o f fact, this method disregards processes participating in the signal formation and besides, it is not applicable to low currents. A new approach to the above-mentioned problem has been felt necessary in order to incorporate measurement of very small currents (>0.01 pA) coming into the detector. For experimental study, a special chamber equipped with two E.-T. detectors was fabricated. One of them has the standard position (on a side of the chamber) while the other is directly exposed to the impact of primary electrons. The primary current can be measured by means of a movable Faraday cup. In fact, three parts of the detection route were examined. Using the chamber described, the section starting with scintillator and ending with preamplifier was thoroughly investigated. In order to identify the influence of photomultiplier, its input was excitcd with a LED signal. Fig. 1 shows a pulse generated by one detected electron at the output of the preamplifier. Finally, the signal-processing electronics was tested by means of a voltage generator. Two detectors of two different manufacturers have been examined. The main features observable in detection routes of these detectors proved themselves quite similar. Measurements exhibit an exponential decrease in the number o f high pulses of Ijght coming out of the scintillator. In the photomultiplier/preamplifier section of the detector the shape of the tranported signal changes in two significant ways. The photomultiplier adds noise pulses whose number is proportional to voltage on the dynodes. In comparison with these pulses the dark current of the photocathode becomes negligible. The preamplifier smoothens the signal according to frequency of the filter chosen. As a result o f this, SNR [4] in the output signal can rise but at the same time information about fast changes in the signal (edges, phase contrasts) becomes lost. In terms of the measurement accuracy* the signal-processing electronics does not increase the signal noise, introducing quantization noise only, as a result o f the digitalization. Taking into account the above-mentioned properties of the detection route, a computer simulation routine was created in Matlab. This is based on generation of single pulses that represent light pulses leaving the scintillator. They occur randomly but their heights and widths are correlated with the measured values. The artificial signal created in this way is then processed by means of individual operations, such as filtration, addition of noise pulses etc., in line with what actually happens in the detector. Comparison between the real pulses from the detector and the generated ones is pictured in Fig. 2. By dint of the simulation we obtain an image in which the SNR and blurring of edges at fast signal changes can be determined. This makes it possible for us to evaluate the features of the detection route in its totality. The line-scans across real and simulated images are contrasted in Fig. 3. The SNR of the simulated image and o f those obtained by means of E.-T. detectors are then portrayed in 'm c /W t/cO I ou lUEj3 ‘uoijEpunoj oouspS ip o z 3 oqj Xq puE ‘ pjg ‘onqnday q o s z j ]gg Xq psuoddns s; >|jom oqx '£££ (9661) 81 SuiuuEog ‘je jo Xof J a 'I I l OA ‘ 8 ¿ 6 I J u n J js u j - p s : g sX qd f ‘üdBA ^ [g] [p] f p u B |id t!A > j 7 M a n B q o s 'd ‘ B j B j j n y - y [£ ] 801 (£00c) (£ q d d n s ) 6 qBUBOJOipM -osojoijai ‘b a o jo u o w 1 puB BuqBAUo^ q '9PZ (0961) Lí u in jjs u j -p s f ‘X o |u jo q x m j y puB UEqjoAg g x (\I9 T J Ijd lU B 3 jd 3i|l u; psjspisuoo 3J3M sj9j[ij ‘V^Ol lU9JjnD papapa) pajunos jusjsjjip jnoj p3iB[nuiis aqi uiojj - S3SSOJ3 adXj 'X_'H sip jo saopspp juaiajjip omj jo subsui Aq psjmboB ssSbuii sqi UIOJJ pSJB lU IJSS - S 3 |§ U B P 9 J pUB S 3 p j l ; } p * § IJ [3 ] [)] (pauisosip 3 q ubd sibu§is qjoq jo adBqs sqj aapjo ui psyiqs Á||BioijpjB 3J9m ssuiq) ubos -9 U i[ 31 UBS sqj jo uoijBjnuiis J9jndiuoo - auq psqsBQ •(pssn Sui^usjq jsbj ‘z^piSZ J3JUJ ‘% 0 Í ÍSBjjuoo ‘srl [ 9UJI1 \\9JAp ‘y d o i= ,3pI ‘A>10l=MBn ) Jo p ap p JL-'H UB Suisn pajinboB ubos-suij - 9ui| pijOS £ *S|j[ [zh>1] j3^!|duieajd ¿o jajiij [ s r l] a i u j i (ZHIAÍ £ _ JSijqduiBSjd aqj ui J 9 j [ i ¿ |) •sssjnd js b jju o d p s jB jn iu is sqj jo Suijunoo- ‘y d i -o = ,api ‘A ^ 0 l = 3Bn ) 3U i| pijos (%0£ J3 iJ Í¡d u iB 3 jd sq j j o jndjno sq; jb sssjnd jo Suijunoo- S9SSOJ3 z ‘Sjtf [ / \ lu ] ( r z3 - ) d x 3 * v l D = ( 0 n p ijo g u o ip u n j sqj Aq S u ijjij - a u ij a 9 i j i |d i u B 3 j d s q j j o j n d j n o i b p s a ^ n b o B u o j p s p p s p s p p 3 u o u io jj S u is u b s s jn d s q j - s s s s o j 3\ ’S i j [su ] a u iji 6 u j ) u n o o ¿ o |aA a~ i p u n o j s q ueo o jn o j u o i p o p p a q j j o u o p E j n S iju o o u i n u iijd o u b ‘s ja p u iE J E d aso q j jo s u o ijE u iq u jo o j|E p a y is s E p pus p o s s o o o jd 3uiA B [g 'X ub o iio X o p a u u q jjs d oq ueo u o ijB in a n s ‘j o p o j a p s q j j o u o ijE jn S iju o o S u iq u o s o p s jo p iu E J B d j o p s u o a iS b j o j ' p 'Sig M ETHODS OF DIRECT IM AGING OF THE LOCAL DENSITY OF STATES WITH ELECTRONS Z. Pokorná and L. Frank Institute of Scientific Instruments, Academy of Sciences, Královopolská 147, Brno [email protected] The electronic properties of modem nanodeviees are determined by their electronic structure, the local density of states (LDOS) being one of the key characteristics. Various methods exist for the LDOS mapping with lateral resolutions ranging from macroscopic scale (Photoemission Spectroscopy) to the atomic one (Scanning Tunnelling Microscopy). Taking nanodevices as those having at least one dimension under 100 nm, we require a method probing in the scale of at least tens of nm. Another requirement is that the LDOS should directly depend on the quantity measured with the method in question. Methods for mapping the LDOS are the following: Photoemission (and Inverse Photoemission) Spectroscopy are macroscopic techniques for studying the band structure of occupied as well as empty electronic states. In the latter case, electrons of a well-defined energy are incident on the surface and so injected into empty electronic states above the vacuum level. From there they are de-excited into lower empty energetic states and the de-excitation energy is released as an ultraviolet photon. The energy of the lower state is determined by the difference between the incident electron energy and the energy o f the released photon. The UV intensity versus UV photon energy plot gives a qualitative image of the distribution of unoccupied electronic states above the Fermi level. The angle-resolved version of this technique allows the 3D band structure E(k) to be mapped. The tunnelling current in the Scanning Tunneling Microscope (STM) is influenced by the local density of states. According to the Tersoff-Hamann model [1], LDOS of the sample is directly proportional to the measured differential conductivity dI/dV(V), obtained by modulating the tip voltage. The model holds rather exactly at low voltages with respect to work functions of the tip and the sample (about 4 eV). However, the model generally requires s-like tip states, and although quantitatively correct concerning the spatial distribution of the LDOS, it is only qualitatively correct concerning the energy dependence. The energy resolution is inversely proportional to the temperature, which is why very low temperatures are used in the experiment. Under certain specific conditions, the Scanning Near-field Optical Microscopy (SNOM) has also been used for the LDOS mapping [2], Another approach to determination of electronic bands above the vacuum level is to measure the electron reflectivity R(E) by means of the Very-Low-Energy Electron Diffraction (VLEED), or the electron transmission T(E) by means of a closely related method of the Target Current Spectroscopy (TCS). Both methods employ an electron beam of kinetic energy E in the range of 0 to 30 eV, directed onto a sample surface. In VLEED the elastically reflected current is measured as a function of E, while in TCS the absorbed (transmitted) current is measured. The inelastic contribution varies very little in this energy range, so both R(E) and T(E) contain information about elastically scattered electrons, thus revealing band structure features [3], Analysis of the data is based on the matching approach of the LEED theory [4,5], The periodicity of the surface implies that the impinging electrons will only couplc to the Bloch states having the same reduced wave-vector component k g parallel to the surface. These Bloch states determine, through the matching on the surface, the amplitude of the reflected wave. For example, if for given E and Kg of the impinging electron wave there ' I 830/M)/303 'ou lUBjS J3Pun >13 J ° -<3U3§ v j u b j q sip Xq psjjoddns s; Xpnjs sq x > 0 1 1 ( U 6 l) 3 3 'S ^ d T ‘ I ls o j j b 9 puE g ‘X>pipA T 9£ (6961) £1 P S J-mS ‘ O ‘UBdEj [¿] [9] [g] '( P L 6 I LU 0 p U 0 1 ‘S S S J J S llU S p E S y ) U O IlJD .lJJlQ UO.lf¿>3¡g X S .L lU q M O 7 : g [t/J f ‘X jp U S J '6SZ.8 (S661 ) c i a Asy sX iy ‘t H ‘3 jsq u .ieis puE 'N 'A ‘a o s o jjs 'Z Q P L ( 3 0 0 c ) 8 8 ' » 3 1 j [e] ‘a in iB O iiQ [3 ] S08 (S 8 6 I) 1£ a Asy sXi(d ‘ y a ‘uuBiuBH puß f ‘J J o s js x [[] A s y ' s X q j ‘ |B j s • p s .i s p i s u o o s .i s q 0 1 | s p o u i S u i i u j o j js e jju o s o ip u o i/ j c u J J iQ o jin b s j u o . ip a ig puß 1A13 u o i s s i u i s u B j j S u m i m o s uw ag j io S .w a u o j sq j jB p u i sq j ui sso q j p s X o |d u i s uo s |q u i s s s j s n b iu q s s j ( 0 3 8 3 ) s u o ijip u o s 3 S 3 i[ x ■M3|A J O P |3 I J 3 q i J3A O SUIUUBSS U IE S q q jlA \ pSJSSU U O S §U|>|OOJ 3 q j JO U 3A 3 pUB U lB Sq J U S p p U I sip j o s.mjjsdB jE|n3uE s[qiS i]3su-uou sq j j o sq j j o 3;doj aqj si S O Û 1 J ° SuiddBiu p 3 j;p s p n p u i ssnssi u i b u i 3i(x ’Xpnjs ju sssjd p o q p u i IAI333S 3lll J ° X ji|iqE si[ddy S u iS e u e u i jo j •ssuBpunoq UIBiS 3l|l |B3A3J 01 psqsjs pUE p3qS|[0d USqj pUB ‘SZIS U|BJ§ p3J|S3p Sqj SASIl|0E OJ pSJBSUUB pun p3||Oi sba\ 3[diuBS sq x 'XiSAijosdss.! ‘a s 61 PUB A3 63 s u o jp s p ju sp p u i jo XSasus ‘|s>piu ui suibjS psju su o X jjusjsjjip ussM pq ssSuBqs jsejjuos sip jo uoijEAJSsqo Jsjij : [ sjn S ij ■( i -S |j) s j n p r u i s s i u o . i j s s p j u s j s j j i p j p q i uiojj S in n s s i ‘S[duiBS [B p u i s u ;i|e js X j3 X |o d b in uoijbjusuo |ejsXjo j u s j s j j i p j o suibjS u s s M p q s s g u E q s jsejjuos M o q s ’S 's u s i p u e o sSubj A 3 ()£-() 311J j 3 a o s u o j p s p j u s p p u i s q i j o X3jsus s q j S u i u n x 'sbsje X j i A i j s s j j s j - u o j j s s p - q S iq p u e -a\o| j o sSeuii ub g u p s p u s j ‘ssejjiis sjduiBS s q j jsa o ubss ‘a s O ř A \o p q XSjsus q jiM uie3b ‘u iB sq u o j p s | s XSjsus-a\o] s i p s p [ j [ - s p o q js iu 0 3 3 3 A PUB S 3 I 3lHJ ° J U E p u ss s sp j s s j i p b S| p o q p u i (IAI333S) ,ldojsoADiyj uoupajg ,(3.i3itg-Moj Suuiuojg s q x '[ 9] u isije iu jo j u o ip u n j u s s j q ssB jjns sq i ui je s |3 ss u io s sq X jiA ipsysj sq j puE s a n p n jjs puBq sq j ussM jsq u o |jb [sj sq j ‘X[SA¡jBj¡juBnO -psjss[Ssu sq ubs ssssssoad sijsbjsuj )Bi[j pspiAOjd ‘ssB jjns sq j Xq >|0Bq p s js s y s j sq ][ia\ su 0j j s s |s |[b ‘s|qE|iBAB ssjbjs s s jj ou sjb 900Z JU9D9X 09 COULO M B INTERACTION IN ION AND ELECTROM BEAMS T. Radlička Institute of Scientific Instruments, AS CR Královopolská 147, 612 64 Brno, Czech Republic [email protected] The development of nanotechnologies in present days is often connected with the use of high density ion or electron beams. Unfortunately the physical description of such beams leads into great difficulties, because in high density beams the particle-particle interactions become significant. We can proceed in two main ways, the space-eharge method or discrete Coulomb interactions. The spacc-charge method was implemented into computer programs [1,2] and is used mainly in high density beams, where the effect of Coulomb interactions may be averaged into an additional field. A disadvantage of the method is that it is not, in principle, possible to describe changes in the energy distribution. When we decide to calculate the Coulomb interactions directly from Coulomb's law as a many-particles problem [3], the energy distribution can be calculated very easily but the calculation time will be much longer. The first Monte-Carlo calculations of particle-particle interactions in beams were started in the late eighties in TU Delft by Jansen [3], He described electron beams in free space or in a uniform electrostatic field and used Monte-Carlo method to calculate the beam properties like energy distribution and trajectory displacement. The calculation time even in this simple case was very long. The computers have become much faster in the last 20 years and we can now easily calculate more problematic systems like ion sources. Such calculations also take a long time, but it is possible to do it in several days or week on a PC. The Monte-Carlo method was implemented into a computer code by Munro [4] but it cannot be used for particles in the vicinity of the source. The simulations of any system consists of four steps • Calculation of the field in the system. We used FEM programs [5,6], • Assignment of initial conditions to all particles (position, velocity and time of emission) so that the macroscopic properties of the simulated beam correspond to the properties of a real beam - Monte Carlo methods [7] • Ray racing of the particle beam in the field including the particle-particle interactions. During calculation the position and velocity of particles-at the transition through selected planes are stored for later use. Analysis of the beam properties from calculated data. • The ray tracing is the longest and the most problematic part of the calculation. The equation o f motion for the ilh particle reads d i m — (yvl) = qEj + qv x B + q - 2_, ,3 C*t j±i Ť*—p. We use the non-relativistic approximation ( y = 1) for ion systems. The length of calculation is affected by two properties. The first one concerns the regions where the field is very strong. Even if they may be very small, it becomes a great problem if we consider particle-particle interactions, because all particles must be calculated u; s s d p s y [B o u siu n N :A js u u b u (9 8 6 1 ) SS3-ld 'f l 3 § p u q u JB 3 ‘u e j j j o j ‘3 u i [ j o j p a 'l'M . ‘/ q s i o j p s i V S ‘SS3Jd 'H 'M jg 061-S 8I ‘( S 6 6 I ) 6 LA ' s so js iw f :g b a o s u s i /iuoo-s>iJOMqjBui-MA\A\//:djiq ‘5-9 g y i lV I A I />[TT03'sq3urMMA\//:djjq * sjea\jjo s uiBsg u o jjs s jg oiunj/\[ (8861) U P O D I ” s i s s q i a q j ‘sujB sg s p ijJ B j ui su o ijse jsju ] q m o |n o 3 :ussuBf H '3 (5 0 0 c) 8 'd ‘SOABQ ‘SOOc SSUSJSJU0 3 Ad0SS0JSIJ/\[ " f (BUIE\Z ‘g EAOOUSJ (M)()c) K )c “9 6 l ‘6 IS V 'S3>I s¿Md ’qjsiAJ Pub jsu i -3njs[ :S uuM og N ‘pE sy J [¿] [9] [g] [p] [£] [3] [i] :sa3uaj3ja» (3Djnos s q j uiojj lu iu g [ 03UBJSIP B IB) ?uB[d s jn y s d B a q j ui S IIA n BD u ! uJBaq s q i j o u o iin q u is ip A S jai» puB S 3 |ijo jd uiBsq p3)B|H3|B3 [AS]3 [uiui]j 100 zoo coo fOO 900g 900 ¿00 800 600 J paqjnyadun — 1 peqjnjjad ---1 9000 100 9100 200 9200 €00 9£00 W'O S^O0 900 s u o i j o s p A 3>(Sl j o uiB sq psdB qs sjqBUBA b 40 u o ije u u o j s q j u o s u o ijs e js ju i s p ijJ E d - s p ijJ B d j o j s s j j s s q j psjB[ns]B3 3A\ suiqoB ui g g g s q j j o 3SE3 s q j u j 3 zis s o jn o s p n jjiA 3 q i puB 3UB|d s in jjs d E s q j jb (PMHAVd) qipiM A S jsu s s q j pszA|BUB 3M jE p s ijJ E d u j -ssp ijJB d j s p i o q 0 0 c LH!M (s s p ijJ B d 0 0 S ) sJ->Bd psjB|n3[B3 sb a\ u o ; j h |o a s s q i ’(ju3§JSA ip A jsa si uiB sq s q j) s o jn o s s q j u io jj u iu i j o ° l d n p sjE psiE O 3J3M u o ijs e js ju i S[0 |jJB d -sp ijJE d s q j ‘S11A11E9 J ° 3sb3 3qj u j ’uisjsA s ( g g g ) A qdE jS oqjq UIBSq u o j j o s p u b puB ( s i l A n E9 ) s s jn o s u oi [e jsu j p in b q a in q iB á s q j ‘siusjsA s o a \j p sjE jn u iis • s p i y E d j s p j o q j s e [ s q j puiqsq pus s p i j j B d jsp joq js jij aqj jo ju o jj ui js 8 [ | ia\ s s p ijJ B d uresq ou jE q j os ussoqo s i s s p i j J B d isp io q jo junouiB s q i ' sis Ajeub ui psjspisuos jou s je jB q j s s p i j J E d jsp jo q Aq sspis qjoq u io jj pspunoq sq uEO sdnojg s s s q i sspijJBd 000c °J dn sdnojfS Aq uresq sqj sjB]ns|EO oj si Abm puosss s q i - s s p i jJ B d 000c °1 dn s S e js a e uo s q | | ia\ jjB d qoBS u; jB q j os A|juspusdspu| psjnduios sjb jB qj sjjBd [[buis oju i u is js A s s q j jns ubo s u o J! qj[A\ |B sp oj A\oq sAem s[qissod oa\ j sje s j s q i -ssp ijJB d 000c UBlIl 3JOlu J0J ^qiSusj ooj si qsiqA \ ‘uiqjuoSiE (_N)0 UB ^IpnjSB si uins s p ijjB d qui 0|n 03 s q i ’uisjsAs sqj ui ss|s¡jJBd jo jsquinu sqj si Ajjsdojd 3 u ijiu ji [ puosss s q i •u isjsA s s q j j o j s s j s q j u io a j S u o jjs s i p p i j s q j s js q M s u o iS s j s q j u i u o ijo u i s p i j j B d s q j j o u o i j d u o s s p s q j ojB JB dss o j sjq E siA p B s i j; s s u iijs u io § J|B U is A jsa s u ib u is j ji os ‘p p i j 3 u o .ijs b u i s j e jBqj s s p i j J B d u iE s q s q j 11b j o u o ijiijo a s s q j usqA \ j s a s m o h Aq p s u i u u s j s p s i s z i s d s js s q j ‘p sjB ]n s[B 3 s i s s p ijJ B d d s j s u o ije jS s ju i S uo] p p i j >]esa\ b ui si jB qj s p i j j B d qoBS j o j s s n | | i a\ p o q j s u i u o ije jS s ju i s q j s p i j j B d s |3 u i s b j o u o ijE p o iE S j o s s e s u j - A |s n o s u B j|n u iis DECAY KINETICS OF SCINTILLATION CRYSTALS FOR SEM ELECTRON DETECTORS P. Schauer Institute of Scientific Instruments. AS CR, Brno, Czech Republic, [email protected] 1. Introduction The principal quantities of image quality in SEM are contrast, spatial resolution, and noise. However, to quantify the overall performance of an imaging system, the detective quantum efficiency (DQE) is a better tool as it includes both the modulation transfer function and the noise power spectrum. This means that for a detector to have high DQE, it should possess not only high efficiency and low noise, but also good kinetic properties. A study of the decay kinetics of some single crystal scintillators for SEM is presented in this paper. 2. Cathodolum inescence decay m easurement The pulse mode utilizing a blanking system and 10 keV electrons for the excitation and a sampling oscilloscope for the cathodoluminescence (CL) detection were used for the measurement of decay characteristics [1], The measurement was controlled using the IEEE-488 interface and processed by software written in Microsoft Visual Basic. Single crystals of cerium-activated yttrium aluminum garnet (YAG:Ce), cerium-activated yttrium aluminum perovskite (YAP:Ce), cerium-activated yttrium silicate (Y 2Si0 5:Ce3+), and europium-activated calcium fluoride (CaF 2:Eu2+) were the scintillators studied as the most interesting ones for SEM. Some typical CL decay characteristics of single crystals for SEM measured in our laboratory are shown in Fig. 1. The best decay characteristic belongs to the P47 single crystal, whose decay time is 34 ns. YAP:Ce single crystal, having the decay time of 38 ns, is also a very good solution. It has, however, a multi-exponential decay characteristic, so it shows the afterglow of 1 % (measured 5 ps after the end of excitation). If a scintillation detection system in SEM is to be able to operate at TV rates, its decay time should be smaller than 100 ns. Hence, the decay characteristic of YAG:Ce is a little problematic. Having the (Jecay time of 1 10 ns, it shows the afterglow as high as 2 %. Eu-activated calcium fluoride has the decay time of approximately 1.2 ps. and it is applicable only in slow scan rates. It can be seen in Fig. 2 that the short-term decay component (decay time) of both YAG:Ce and YAP:Ce single crystals depends only negligibly on the duration of excitation. On the contrary, the long-term component of the decay characteristic depends strongly on the duration of excitation. Therefore, at a very short excitation, the afterglows of YAG:Ce and YAP:Ce are one and two orders smaller, respectively, comparing wifh a long excitation. 3. Kinetic model It is evident, after a deconvolution of the decay characteristics from Fig. 2, that not only emission from the Ce activator is present in the CL recombination processes in YAG:Ce and YAP:Ce single crystals. Using the correction for the decay constant of the measuring device, the fastest decay constants at whichever duration of excitation are about 60 ns and 20 ns for the YAG:C'e and YAP:Ce, respectively. This corresponds to the single-exponential decay at the photoluminescence measurement [2], Therefore, the fastest decay constant of the multi exponential decay characteristic can be ascribed to the emission from the activator. The other decay constants can be ascribed to both radiative and nonradiative transitions originating from unwanted defect and impurity centers. Utilizing the presented results and other CL measurements (first of all dependences of intensities and decays of spectral peaks on the activator concentration), a schematic kinetic model of radiative and nonradiative transitions in the YAG:Ce single crystal has been created in Fig. 3. S 6 f ‘(6 6 6 1 ) S6 'V sÁ qd e p y "JB P í'PM ‘S jo q u u o !'V ‘!>P!qn>I ■ [ ‘b ^ s m o z jb q ' l ‘(9 6 6 1 ) 6 '[ddn§ -osojoipM 3 u iu u b o s r j u o n e ip s pue y ‘BjBjjny [ť] e o i u o |o j [j] S9DU9J9J3>j •oijqnds^i ipaz^ aqijo XousSy iubjq sqi jo p p \ZIWIZÜX ‘°N }ubj§ aqi Áq psyoddns sem >[jom siqx Ä |9 A IJ 0 3 d S 3 J ‘SJ31U3D J O JB A ip B pUB Á JU tld lU l ‘p 9 J 3 p 3 l|J UIOJJ S9JBJ (U OISSIUIS) SA lJB ipB J 3 q i 3JB vf p u B ‘> f ÍQJ p u B ‘S J3JU 90 j o j b a i j o b s q j o j A j u n d u u a q j u i o j j 9JBJ j s j s u b j j s q ; s i VIM. í Á p A i p s d s a i ‘s s i j u n d u i i PUB s p s j a p ‘S3JBJS 30IJJB J 9q} UIOJJ S9JBJ SAIJBipBJUO U 9 q j 9JB rS pUB >aS ‘í Í Á |3 A ip 9 d S 3 J ‘S J9 ;U 9 0 JO JB A ip B pUB Ä j i j n d u i i ‘p 9 j 3 p s q j o ; s s j b j a jn jd B O s q i 3JB t9JB J U O ;iB J9U 9§ UOJIDX9 3 q i S JU 9 S 3 Jd 3 J 5 vo p u B ‘O ÍQo í s j a j u s D p s j s p a q j u i o j j s ; b j u o i j B z í j B i u i s q i s q j s i ^ D V Á 9 m i ° 93U 3D S 3U IU iniO pO qjB O s q j j o p p o u i o i p u p j 3 q x ’£ #§ i j SJOlBqiJUIO S JB}SÁJD 9 |S u iS s : o i SBM q i p i M s s j n d 33 :dVÄ PUB 93 :OVÄ J° Aßoap 30U3DS3U|Uin|opoqjBD u o p B ip x s s q j j l ^ 3 S JOJ s j o j b [ [ i j u i o s j b j s ä j o S jS lI I S j o sqj uo qipiM ssjnd uoijB ipxa sq i j o so u sn iju i 'z *Sij s o ijs u s p B J B q o ÄBD9p (sri) a l u n 01- 80 90 VO s o u a o s s u iu in io p o q jB ;} (s ri) a m u Z'O 00 ’S i j OBSERVATION OF SPIN WAVES, OPTICAL NEAR FIELDS AND SURFACEPLASMON OSCILLATIONS BY TIME-RESOLVED PEEM G.Schonhense Johannes Gutenberg-Universitat, Institut fur Physik, D-55099 Mainz, Germany (e-mai I: [email protected]) 1. Introduction Fast processes on the sub-nanosecond time scale and transient states in nano-scale electronic systems are attracting high interest in basic and applied research. Full-field PEEM (photoemission electron microscopy) imaging with high lateral resolution provides an experimental tool to look into such phenomena. Owing to the excellent time structure of Synchrotron radiation and pulsed laser sources, high time resolution can be achieved in stroboscopic PEEM imaging. In the picosecond to nanosecond range remagnetisation processes and transient domain states [ 1] or magnetic high-frequency eigenmodes in confined magnetic structures [2-4] attract much attention due to challenging applications, e.g. in spintronics. In the femtosecond range the lifetime contrast of “hot electrons" [5], the properties of plasmonenhanced optical near fields [6 ] or the dynamics of surface plasmons are directly accessible by time-resolved PEEM. In a Mach-Zehnder like all-optical pump probe set-up, a temporal precision of 50 attoseconds has been achieved by Kubo et al. [7], In this contribution the state of the art of time-resolved PEEM is discussed with emphasis on two classes of applications, i.e. imaging of fast magnetization processes and femtosecond electron dynamics. In particular, we focus on stroboscopic imaging of precessional magnetic excitations via XMCD-PEEM exploiting the time-structure of Synchrotron radiation (magnetic field pulse pump - X-ray probe). The method is illustrated in Fig.l. In a special bunchcompression mode at the storage ring BESSY (Berlin), a time resolution of about 15 ps has been obtained. Further, we discuss recent PEEM experiments using femtosecond laser excitation. A current overview on time-resolved PEEM can be found in a forthcoming review [8 ]. Pulsed CCD camera Screen time pump probe Fig. 1. Schematic view of the experimental set-up (left) and principle of stroboscopic imaging (right). Hp denotes the field pulse Field pulse pump - XMCD probe (pump), hv the photon pulse (probe). •(£ - g y 33S) s3pnji|diuB qSnoua 9 3 jb [ jo j s s q s iu B A |[ba\ p aj\[ sq i X|[buij puB p p ij S u ijp x s apniqduiE guisE aioui qiiA\ ssseoioui y iq s s i q x 'iqSu sq j oj u o u iso d iBOupuiuiXs sjt j o 3 i[l j o ino ||B,vi |bjiu33 3i(j j o y iq s UB3UJ b 3ipOU3d 3 q i 01 LJ3A3A\0H 'Z 'SiJ u; 3 A J3 sq o 3M 3|IJ|| Xj9A X [U0 3A0UJ [{EM |3 3 N - Q0 8 1 J3A\SUB |EOlUIBuXp 3qi U A \o q s s s u s s sq j in oq Sn ojq i 3 lU ‘X|JE[110llJBd ‘pUB S ||B A \ UIBUlOp 3qX -UOlJBipXS 3A J3SqO 3A\ pUB ‘J01B [[j3S 0 U 3A U p B S3|qUI3S3J UI31SÁS 3qj *pB3isu | Abm |b ia u i b ui 3 S |n d p | 3 i j sq i a\o[|oj iou sso p X|snoiAqo 0£ ' S y u i p sp id a p sb ssu o d sa i [ESIUlBUÁp 3 q i J3[31B |d 3q} JO s p i s 3 u O | 3 q i U0I1BZU3UŽBUI oql JO |3|[BJBd p 3 J 3 3 J ip SIXB p p ij 3AI]33JJ3 3 q l pUtlOJB 01 U 0 lS S 3 3 3 jd B JO 3pO U I UOIJB1I3X3 lU B U IU IO pS jd 3 q i § U IJE 3ipU I S31JBA SUjBUJOp 3 3 jB | 0 A\1 3 q i Ul XlISU31Ul a q x siMBoiop s3jb[ oa\i sq i ssiBJBdss ||b a \ p s N - ,,0 8 1 UV SUlEU lO p 0 M 1 sq i 3 [iq M ‘> p E |q p u B 3JiqA\ JB a d d B nqx bj '3i j on sqx ZH1A1 OOS J° 31BJ U3>]B1 3JE S 3 3 eU II spmSsABM snqi u o p ip d a i Xq sq i ui saqounq u o ip s p Xq J Ol p U B IB d llU B p u B p[]BJBd paiUSUO SUfBUlOp f\j u oiiezipuS eui b bia pszm ojqouX s 9jb sjqB U B A b Xq p 3 A [0 S 3 J -3 lU |X 'q č '§ !X ui a q i j o uoprqoAS a u i u s q j j o s a s p i d aqojd sq i p u B lusxino SuiAup Bqd[B-A\0[ q iiM ( a p o r n p s a n p o jd s s s jn d X e j-x a q i oiui lu a u n o q l|M jBsddu qioq j o i jE jnoipusdisd p siu s u o u i UA\oqs s j e p p jE jd X o q B u u s d sq i u i sioqsdBUS X sp p o i u o j p s p ‘X[[B3ipOU3d ' ( l q 3 u ) pjE A \U A \ 0 p p u B ( J J 3 |) p iB A \d n f X ‘s d £ = whmh/) 3 [duiB S s q i j o UA\OL|S SB p p ij 3 u u uoiiojqouX s u o i} E u iu in ( i! a i d o o s o q o a i s O ip u S B U I aqi g U |iB J3 U 3 § .w X ousnbaij-qgiq b s p s ju ; joibj3us8 s s p d saem ojoiui y ([ l] UIOJJ E1EQ ) (p) 3 S |lld P |3 1 J [sd] aun; Sui}pX3 OOOt' 000£ OOOZ 0001 3i|l jo ( j _j ) u iru p sd s puB X o u 3 n b 3 jj 1 |3 | 3 q i Ul J01.13A U0I1EZI13U§BUI 3 1 [1 J0 í(q) ‘o s u o d s s j D ip u g e u io jo iu i :(b ) sqi 1U3UI3J0UI s d o o i ib U3>[E1 S3SBUII m i« :( 3 ) 3|3uE uiEiuop sd OOP‘ U0I1E10J S'I p [3 ij d ip u S bui Su;ipx9 sS pa u o u d io s q B W33d-0DWX J° sousnbss "i - S i j (O) (ZH 9)/ ^3U3tlb3JJ , , 20 " , IOv^ oo r ro “ zo (p) eo (e) IIIIIIIIHIHDDÍXHRII sdoOOL-1 sdQOH" sdooil * - síOOl 'iap iB |d sqi j o spis y o q s sq i Suo[B iusuoduioo UOUBZjlSuSBUI 3UB[d-UI 3l|l 01 3Ajl|SU3S 1S01U 3JB 3A\ 03USppU| ŽUlZBiS l y 'apinSsABM JBUB|dOO B u o p o 3 B [d ‘s s 3 u > |D iq i i u u o i p u B ‘q j 8 u 3 | u ir i ao | s ijn s s j SM oqs z J ‘qipiAV u ir l 9 1 q i|A \ s i s p i B [ d ( ° ‘ 3 J 08iJs[) X o j j B u u a j d ■f \ l °1 I B U o i y o d o j d s i q s iq A \ ‘p x i d q o B 3 ib X jis u iu i X s b a q i 8 u iiE in D iB 3 X i i o q s q u o i o q d a i i s o d d o q iiM U 3 >[B] s s S b u i ! o a \ i i u o j j p s u i B i q o 3 j b s s S b u i i ( a j p \ I X ) u i s i o i q o i p J B |tl3 J I3 3I10u8bIXI X bJ~ X d -I0133A U O |lB ZIJB |O d ( jB jn C Ijp ) pUB UOIJEZIISUSBIU JO U 0IJB1U 3U 0 3A|iB|3J sqi qiiM sauBA ppiX u o j p s p sq i J u a iu s p 3;i3u3bui b j o sagps uojidiosqE Eq 3qj 01 psuni si suoioqd pszuB jod X pB jnajp j o XSjsus sqi u sq ,\\ 's u o j p s p XjBpuooas j o ppiX u o j p s p oqi b ia uoudiosqB Xbj-x s q i j o u o u n q u isip [BiiBds sqi s p a p p lA133d 3lll I '3! 3 J ° d n -p s aqi uj suiajsXs pauyuoa ui sapoui-uaSp sabav uids jo SuiSbuii p 3A|0 S3j-au i|x 7 Fig. 3 Left: Sketch and snapshots of magnetic domain patterns at the time t = 0 excited with increasing field amplitudes I, 11 and III. The bottom panel shows comparison of an analytical model and experimentally observed mean shift of the central domain wall. The inset shows an analog mechanical model. Right: Within a closed system, entropy maximization increases disorder. An open system with constant energy dissipation allows for an increase of local order. (Data from [2]) The magnetization distribution adapts itself to increase the energy dissipation and thus causes an overall increase of local order. The near-resonance spin wave mode causes an effective force perpendicular to the 180°-Neel wall that is balanced by the restoring force of the stray field energy. The system is excited with a significant oscillating field component of 1 GFlz (cf. Fig. 2d), i.e., just below the resonance frequency of the free running system of about 1.25 GHz. If the domain wall shifts to the right, the resonance frequency will decrease in the left domain; therefore the amplitude (and the total energy) of the precession will increase in the left domain. 3. Observation of optical near fields and plasmon eigen-oscillations In experiments using all-optical fs-laser excitation the delay between pump and probe pulse can be generated in a Mach-Zehnder interferometer like element. Thus, any electronic jitter is avoided and the time resolution is finally limited by the properties of the laser pulses. In phaseaveraging experiments the resolution is of the order of the pulse lengths (about ten to several tens offs). In interferometric experiments the precision can be driven down to 50 attoseconds [7] (the exciting and probing waves still consist of several periods). Kubo et al. have clearly demonstrated changes of interferometric time-resolved PEEM images on a time scale of 133 attoseconds. Femtosecond-laser excited PEEM also gives access to “hot-electron" dynamics [5] and to plasmon-enhanced optical near fields [6 ], An example is shown in Fig. 4. Upon excitation with femtosecond laser pulses at 400 nm, a Ag crescent fabricated on a Si surface does not appear in its true shape, but instead the spatial distribution of the optical near field becomes visible (b). A simulation reveals strong enhancement of the optical near field at 400 nm (e), i.e. the crescent acts as a resonant “nano-antenna” tailored for maximum response at 400 nm excitation. In contrast to SNOM, the PEEM technique does not influence the near field structure. oos9N£o j m a -w PaPuní Ijaftuj •juoddns awju/oaq pooS uof ffojs XSS39 3V °l SD IPM sv uoiivuadooo lUdjpoxB uof (zuwp\¡ ‘ijjAD3S3}¡ A3WÁJOJ .to/ ajnjiisuj youojj XDjAj) uaipuyjq pun ‘(ifoijnf z j ) jsppui/og 'WO ‘(zuw¡/\[ 'MUfi) js u s p o y ‘o y fid a fjy s 'u a a / j '/ " / / ‘ih31{duij -ja¡ ‘ynúsvuyy o; dnp 3jd syunm 9003 ‘s3 > ]m b h d Aq 'p a ‘^ sais/C q d M jo ajg puB S u iS e u ii u i s a a u B A p y „ u i ‘j b ja a s u a q u o q a s '9 [g] £311 (S003) S S J3 JP T OUBN ‘ |E p o q ir f l y [/.] I09Z.W) (S003) S6 WH Aay 'sAqd ‘je p ijjaqou^ PM [9 ] £33 (3003) XL Q s^Md |ddy ‘ [b P jpiuiqos 'O [s] PQZLXZ (S003) t>6 '«31 Aay -sAqd ‘-[B p aqEEy 7 [*,] 03fr (17003) ť0£ 33U3PS ‘'1®13 soq 3 g - s [£] 103¿03 (S003) S6 »31 Aay sAqd ‘ |e p >[nXsBj>i -y [3] 31-1 (9003) 9PZ a M131AI -Jjsui p n ^ “|B p asuaquoqas D [l] JU3lU§p3|MOU5)3y / S33U3J3jay ( a p jdsD uoD -aD B jins'M M M ) OMj j o j o p B j b jn o q B Áq p a A O jd u u a q h im puB s d 0 3 1 jn o q B X p u a s a jd si u o ijr q o s a j a u iij s j[ X jo u is u i u iE jS o js iq ( j ‘X‘x ) q £ b u i p a jo js s j b jB qj SJU3A3 u o x p a p a jS u is s a j m b a e ji a s r re a a q j n ja s n X p E in a ija e d si j o j a a j a p a u i|X E p p a q x aíimiu 3uiA¡ossu-diu¡t S u is n qoB O jddB u b si S u iS b u ii a id o a s o q o jjs uoiiodidp o j a A ijB iu ajje S u is iu io jd X |q 8 ;i| y - s a in o s u o jo q d a q j j o X jqB tib a q j u o X ijE iju a ssa s p u a d a p jB qj u o ijr q o s a j a u iij b qjiM puB |B |ju a jo d q g ;q A js a q jiM a n b iu q o a j 8 u i8 e u ji p A o u b s i J M g g d p a A jo s a j- a u iij ‘u o i s n p u o a u j V- ([9] u io jj) uoijB[niuis 9i[j ui ajqisiA si (p) uiu oj pajEdiuoa se (a) uiu oofr 1B PPL! JEau [Eoijdo aqj j o juauiaauEqua S u o jjs '(a) a§Eiui p ^ g s ai|j ui UMoqs (ig uo) juaasaaa 8 y E jo MaiA j o p p ij |EDijuapi aqj j o (q) aSsuu [Ajggj-uojoqd-OMj p a jp x a jasE|-puoaasojuiaj e i|J[m pajEduioa (e) sSeuii w g g j - A il 'P ’^!j spiaij JE0U|BC|jdo jo uo!)e|nui|S 89 USE OF A ‘FOIL CORRECTO R' IN A MULTIBEAM SOURCE: CORRECTION OF OFF-AXIS M ACROLENS ABERRATIONS M. J. van Bruggen, B. van Someren, P. Kruit Delft University of Technology, Faculty of Applied Sciences, Particle Optics Group Lorentzweg 1, 2628 CJ Delft, The Netherlands We present a irmltibeam source (MBS) based on splitting the broad beam of a Schottky Field Emission source into many sub-beams with a microlens array (see fig. 1). To avoid problems associated with skewed incidence in the microlenses we use an electrostatic collimator lens to illuminate the microlens array with a parallel beam. However, this collimator lens introduces unacceptably high deflection aberrations. We show that it is possible to create a negative lens in that MBS with negative spherical and chromatic aberration coefficients. This lens can be used to correct the off-axis aberrations of the collimator lens. The MBS will be mounted in a Scanning Electron Microscope (SEM) to produce multiple 1 nm beams. This multibeam SEM will be used as an Electron Beam Induced Deposition nanolithography machine [1], In 1947 Scherzer published his ideas about a foil corrector that could be used to correct for both spherical and chromatic aberration in electron optical systems [2], However, the scattering of the electrons in the foil was a serious problem. That difficulty can be circumvented by using a silicon wafer with holes in it that are much smaller than the diameter of the macro electrode in front of it (see fig.2). In our case, we use the aperture lens effect in these holes to focus each sub-beam individually, while the negative macrolens can be used to compensate for the off-axis aberrations introduced in the collimator lens. This silicon microlens array, electrode number 3 in fig. 2, is fabricated with Micro Electro Mechanical System (MEMS) technology with sub-micron accuracy. The configuration in fig. 1 is modeled using a thin-lens approximation with only one first and third order coefficient for each macrolens, describing the deflection angle at that lens: »• A a = a ih + a ih ' + 0 ( h 5) Here aj is the lens strength and a_s the coefficient describing the third order geometrical aberration from the perfect lens effect; h is the height of incidence in the lens. In fig. 3 it is shown that the aj coefficient of the negative lens can be negative, depending on the distance between electrode 3 and 4. With this model, expressions were found for the shifts in the two perpendicular directions in the paraxial image plane, separated in powers of h. This results in the Seidel aberrations with their coefficients expressed in terms of the single third order coefficient as- We expect that this approximation is valid as long as we use the model to see if there is an optimum setting at which both the third order geometrical aberration and the first order chromatic aberration, also taken into account in our model, o f the two macrolenses exactly cancel. A full 3D field calculation and ray tracing of the configuration at the optimum setting will be necessary to check the validity o f the model. 'LP61 >11=3 .mpiauo'x 3q3Si}BUiojqo pun a q o su B q d g i o ‘js z ja q o g Ç00Z asa/AON ‘(9)ZZ ‘g |ouqo 3i Tg 'p s dbá T ‘uoiiisodsp psonpu; uiBsq uoapap uiu oi-qns j o j 3Djnos uiB3q-uoaj03p-ij[niu b j o jusuidopASQ i'd ‘}|nj->| !uba g ‘uaisuios íuba 'f ja ‘uaSSnjg ‘> ]ijd o ‘ussuiq-uauojppjg uoa (l u l u ) s [3 ] [[] (LULU p SI p 3p O Jp 3 |9 P'P = •’A ‘A>l O Z = EA) P Pub £ spoapap JO J3J3UIB|P 3qi PUB A>1 U33MJ3q S 33UBJSIP 3qj JO UOIJ -ounj B SB SU3[OJDBUl 3ApßS3U 3qj JO fB }U3piJJ303 J3pjO-£ '£ 3jn§¡ j 'S3pOJJ33]3 3AIJ33dS3J 3qj JB SU3[ 3AIJB33U B pUB ÄBXIB SU3|0JDIUl B S3qSI]qBJS3 p pUB £ SpOJJOSp U33MJ3q p p ij s q x 'J0jbuii[|03 sq j j o p p ij su3[ sq) o i o j j ssjn jjsd B S u u |u ii|-ju 3 jjn 3 sq j s p p iq s pue (g ) Xbub su 3]ojoiu j puB sjn jisd B S u i}iu ii[-ju 3 iin o p su iq u io o sq j sb (Bpuajod 3UIBS aqj u o si 1 joq u in u ‘uresq pBOjq sq j 3jbuji[|00 oj p ssn s; [ ju 3 iu 3 |g sgiA I nqi j o u ojjE inSijuoo a p o jp a j g *j 3 J n 8 |j *SU3| 9A H B 3 sU PUB ÄBXIB SU9|O JO|U I ‘Xexie ‘SU3[ ajnyadB JO } B U Il[|0 0 SuLjiuiq-juaxinD B q ) IA \ 30JI10S uiBoq iqtitti posodojd sq) jo A\aiAJ3A0 (BoqBuisqos •j a jn S ij e r DETECTIO N OF SIGNAL ELECTRONS IN THE LOW VOLTAGE SEM P. Wandrol and I. Mullerova Institute of Scientific Instruments ASCR, Brno, Czech Republic; [email protected] In the low voltage SEM (LV SEM) specific approach to the signal detection is needed. As usually, secondary electrons (SE) can be detected by the Everhart-Thornley detector situated in the specimen chamber or inside the final lens. However, energy of BSE is too low to produce a high quality image with standard scintillation or solid state detectors, and it is too high to allow for efficient extraction with a lateral electric field. Some o f newest in-lens BSE detectors employ transformation to SE3 [1] or acceleration toward a scintillation detector [2]. Most efficient BSE detector for the primary beam energy 5 keV and higher is the YAG single crystal scintillation detector [3]. Low energy BSEs do not generate the number of photons sufficient for quality image - before they hit the scintillator, acceleration of them to at least 5 keV is necessary. Acceleration is carried out toward a positively biased electrode, which is formed by a thin layer of the indium-tin oxide (ITO), deposited on the scintillator. This layer is transparent for BSE and represents a high-voltage electrode at a potential up to 8 kV. Naturally, the electric field accelerates the secondary electrons, too, so an energy filter at a negative potential of hundred volts is placed between the specimen and scintillator. A grounded tube inserted in the scintillator bore shields the primary electron beam, and the entire scintillator is surrounded with a grounded shielding as well. Schematic view of the improved BSE detector for LV SEM applications is shown in Fig. 1. The detector has been installed in the specimen chamber of a field emission SEM with an immersion objective lens. In this microscope, secondary electrons move on helical trajectories, being collimated into the final lens. This has been revealed by computer simulation of the spatial distribution of fields as well as of the signal electron trajectories [4], performed by means of software packages MLD, ELD and Trasys [5]. We have found that not all SEs reach the final lens and 10 to 20 % o f them can hit the scintillator of BSE detector. The proportion depends on the SE energy and emission angle. Computer simulations have been confirmed by experimental results that showed essential the application of the energy filter. Difference between signals acquired with the energy filter grounded or negatively biased is demonstrated by images of a blast furnace slag sample in Figs. 2 and 3. With energy filter grounded, a mixture of SE and BSE is collected (Fig. 2). Combined topographical and compositional contrast with dominance of the topographical one is obvious here because the SE yield at low energies is several times higher than the BSE yield. Only BSEs are collected when applying -200 V bias on the energy filter. Then the distribution of metal oxides in the slag is clearly visible (Fig. 3). In both cases the high voltage electrode on the scintillator is biased to +4.5 kV. Fig. 4 presents the signal levels measured on a gold surface - the characteristic energy dependences of SE and BSE yields are here appearing as limiting cases. The detector can be retracted off the optical axis in order to suppress the impact of BSE and to detect preferably the secondary electrons. For efficient collection of SE, the energy filter must have a positive bias of hundreds volts (Fig. 5). The above-described detector offers a solution to the BSE problem in the LV SEM mode for every scanning electron microscope. Signal o f this detector is approximately three times larger in comparison with a standard YAG-crystal BSE detector at accelerating voltages from 0.5 to 3 kV. Besides detection of low energy BSE, this type enables one to detect also the SE signal and an SE+BSE signal mixture. ' 10S0S900c3f>l ou l UBJ3 jspun y 3 SV J ° XousSy Ju ejq si|) Xq psyoddns s¡ >[aoM sq x '95 (0 6 6 1) 86ZV MJ31M uinjjsui - p n ^ ‘-9 >(U|pss|M ‘ g çAoousg 'LL (frOOS) POQZ spuajx Jusos» aoaj in • y EiBjjny ' ¿ [ojpuEM ¿ c l (¿661 ) PI Suiuubds “ IA1 J3|iniM " ä uubiuj3h " y BJBJjny 9Z (£003) 11 ^ BP °1 XdoDSOPiw ‘ q q •^ p p A u sS p js |IU JI|'S 3 J0 U l|0 3 J p iU 3 ~ p |~ 3 § B d ~ 3 d X j~ J 3 p B O |3 S B d /U J O O -B jq - jq D B } iq 'M M M //:d j} q 33S ‘8 g 'OU P S q S ‘BJEQ |E 3 IU l[3 3 X )U 3U in jJS U ] D IJ!JU 3 |3 S ll |3 B l|H 'A>I ç > IB SI 3p01j03[3 [9 ] [j] M [f] [c] [ |] s S b JJOA q3iq aqj ‘a 00£+ s! J31|LJ X8j 3U3 sqi jo SEig j o p s p p g s g sm Xq psjinboi: saisqds xajB] 3U3jXjsX|od psjB osun jo sSbuii 3 s u y -ç -813 ’A5! Ç'P Ie 3p o jp 3[3 3§B}]OA q8 iq sq j ‘A 00S" oi pssBiq -13}[IJ X8jsu3 sq j iuiEsq /ÜBiuud a 3>( I 1® 38bui| g § g srux £ '813 (A U O IJEO I|ddB 3 3 e )|O A [Bijusjod SuijBJspoDB sq j snsaoA p sjjo jd ‘jo p s p p sqj u io jj puSis in d jn o > '813 'A >1 Ç > JB 3 p O j p 3 [ 3 s S b jio a q8 iq s q j i p g p u n o j S J 3) [ i j X S j s u a s q j qjiAV S |B u 8 i s g s g 00 S + O» 0 ) J3H!i A ß ja u a (A>l 8 <U dn) puB g § j o M n jx ijM 8 13 6 u jp | 3 ji| s p u e aqn) p a p u n o jB 0 p o j } 3 0 | 3 a ß e } | O A L|BjL| U O |JB J3[333B M O] JOJ jo p s p p 3§g U O |]B ||U U |3 S sdXj I a p m B ) i { 6 ;| '8 |J s o a jd 3 |od J 0 } e ||! ; u p s
Podobné dokumenty
proceedings 2004 - RECENT TRENDS 2016
Copyright © 2004 by the Institute of Scientific Instruments AS CR and individual contributors. All rights
reserved. No part of this publication may be reproduced, stored in a retrieval system or tr...
proceedings 2002 - RECENT TRENDS 2016
Recent Trends
in Charged Particle Optics and
Surface Physics Instrumentation