References - LISp
Transkript
References - LISp
LISp-Miner project: http://lispminer.vse.cz References [Ag 96] Aggraval, R. et al: Fast Discovery of Association Rules. In (Fayyad, U. M. et al., eds.) Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press, 1996, pp. 307–328. [BI 94] Berka, P. – Ivánek, J.: Automated knowledge acquisition for PROSPECTOR-like expert systems. In. (Bergadano, de Raedt eds.) Proc. ECML'94, Springer 1994, pp. 339–342. [BR 98] Berka, P. – Rauch, J.: Data Mining using GUHA and KEX. In proceedings of World Multiconference on Systemics, Cybernetics and Informatics. Red. Callaos, N. – Yang, T. – Aguilar, J. Orlando Florida 1998, pp. 238–244. [BR 03] Burian, J. – Rauch, J.: Analysis of Death Causes in the STULONG Data Set. In: BERKA, P. (ed.). Discovery Challenge. Zagreb: IRB, 2003, pp. 47–58. ISBN 953-6690-38-1. [Bu 03] Burian, J: Datamining and AA (Above Average) quantifier. In: SVÁTEK, Vojtěch (ed.). Znalosti 2003. Ostrava: VŠB TU Ostrava, 2003, pp. 297–302. ISBN 80-248-0229-5. (In Czech) [Bu 04] Burian, J: Unsupervised learning and the identification of classification attribute using the attribute dependency. In: SNÁŠEL, Václav (ed.). Znalosti 2004 – poster proceedings. Ostrava: VŠB TU, 2004, pp. 1–4. (In Czech) [CDRS 03] Černý, Z. – Dolejší, P. – Rauch, J. – Šebek, M.: Knowledge Discovery in Medical Data – Case Study. In: SVÁTEK, Vojtěch. (ed.). Znalosti 2003. Ostrava: TU Ostrava, 2003, pp. 182–191. ISBN 80-248-0229-5. (In Czech) [Ce 03] Černý, Z.: WWW support for applications of system LISp-Miner, Master thesis, University of Economics Prague, 2003, 81 Pages. (In Czech) [COL 03] Flach, P. – Blockeel, H. – Gartner, T. – Grobelnik, M. – Kavšek, B. – Kejkula, M. – Krzywania, D. – Lavrač, N. – Ljubič, P. – Mladenič, D. – Moyle, S. – Raeymaekers, S. – Rauch, J. – Rawles, S.: On the Road to Knowledge. In: MLADENIC, Dunja, LAVRAČ, Nada, BOHANEC, Marko, MOYLE, Steve (ed.). Data mining and Decision Support. Integration and Collaboration. Boston: Kluwer Academic Publishers, 2003, pp. 143–155. ISBN 1-4020-7388-7. 1 LISp-Miner project: http://lispminer.vse.cz [DG 79] Duda, R.O. – Gasching, J.E.: Model design in the Prospector consultant system for mineral exploration. in: Michie, D. (ed.), Expert Systems in the Micro Electronic Age, Edinburgh University Press, UK, 1979. [DLRS 02] Dolejší, P. – Lín, V. – RAUCH, J. – Šebek, M.: System of KDD Tasks and Results within the STULONG Project. In: BERKA, Petr (ed.). Discovery Challenge Workshop Notes. ECML/PKDD – 2002. Helsinki: University of Helsinki, 2002. ISBN 952-10-0639-0. [GH+−] GUHA+− project web site http://www.cs.cas.cz/ics/software.html [Ha 66A] Hajek P. – Havel I. – Chytil M.: The GUHA method of automatic hypotheses determination, Computing 1(1966) 293–308. [Ha 66B] Hájek, P. – Havel, – Chytil, M.: GUHA – method of a systematic search for hypotheses, Kybernetika 2, 1996, pp.31–47 (in Czech). [Ha 78] Hájek, P. – Havránek, T.: Mechanising Hypothesis Formation – Mathematical Foundations for a General Theory. Berlin – Heidelberg – New York, Springer-Verlag, 1978, 396 pp. The full text of the book in PDF format is available here. [Ha 83] Hájek, P. – Havránek, T. – Chytil, M.: GUHA Method. Praha, Academia, 1983, 314 pp (in Czech). [Ha 85] Hájek, P.: Combining functions for certainty factors in consulting systems. Int.J. ManMachine Studies 22,1985, pp.59–76. [HR 99] Hájek, P. – Rauch J.: Logics and Statistics for Association Rules and Beyond. In: ZYTKOW, Jan, RAUCH, Jan (ed.). Principles of Data Mining and Knowledge Discovery. Berlin: Springer, 1999, pp. 586–587. ISBN 3-540-66490-4. [HSZ 95] Hájek, P. – Sochorová, A. – Zvárová, J.: GUHA for personal computers. Computational Statistics & Data Analysis 19, (1995) pp.149–153. [Hv 81] Havránek, T.: The present state of the GUHA software. International Journal of ManMachine Studies, 15, (1981), pp.253–264. [HMS 01] 2 LISp-Miner project: http://lispminer.vse.cz Hand, D. – Manilla, H. – Smyth P.: Principles of Data Mining, MIT 2001. [IS 88] Ivánek, J. – Stejskal, B.: Automatic acquisition of knowledge base from data without expert: ESOD (Expert System from Observational Data). In: Proc. COMPSTAT'88 Copenhagen, Physica-Verlag, 1988, pp.175–180. [Iv 99] Ivánek, J.: On the Correspondence between Classes of Implicational and Equivalence Quantifiers. In Principles of Data Mining and Knowledge Discovery. Red. Zytkow, J. – Rauch, J. Berlin, Springer Verlag 1999, pp. 116–124 [Ka 04] Karban, T.: SDS-rules. In: SNÁŠEL, Václav (ed.). Znalosti 2004 – poster proceedings. Ostrava: VŠB TU, 2004, pp. 17–20. (In Czech) [Ke 04] Kejkula, M.: Foundation of Interpretations of Assocional Rules. In: SNÁŠEL, Václav (ed.). Znalosti 2004 – poster proceedings. Ostrava: VŠB TU, 2004, pp. 25–28. (In Czech) [KRS 04] Karban, T. – Rauch, J. – Šimůnek, M.: SDS-Rules and Association Rules. [LRS 02A] Lín, V. – Rauch, J. – Svátek, V.: Contend-based Retrieval of Analytic Reports. In: SCHROEDER, Michael, WAGNER, Gerd (ed.). Rule Markup Languages for Business Rules on the Semantic Web. Sardinia: ISWC, 2002, pp. 219–224. [LRS 02B] Lín, V. – Rauch, J. – Svátek, V.: Analytic Reports from KDD: Integration into Semantic Web. In: ISWC 2002. Cagliari: University of Cagliari, 2002, p. 38. [LRS 02C] Lín, V. – Rauch, J. – Svátek, V.: Mining and Querying in Association Rule Discovery. In: KLEMETTINEN, Mika, MEO, Rosa, GIANNOTTI, Fosca, DE RAEDT, Luc (ed.). Knowledge Discovery in Inductive Databases – KDID '02. Helsinki: University of Helsinki, 2002, pp. 97–98. ISBN 952-10-0638-2. [Ra 71] Rauch, J.: Application of three-valued logic for GUHA method. Diploma work. Faculty of mathematics and Physics Charles University Prague, 1971 42 pp, (in Czech). [Ra 78] Rauch, J.: Some Remarks on Computer Realisations of GUHA Procedures. International Journal of Man-Machine Studies, 10, (1978), pp. 23–28. [Ra 81] 3 LISp-Miner project: http://lispminer.vse.cz Rauch, J.: Main Problems and Further Possibilities of the Computer Realizations of GUHA Procedures. International Journal of Man-Machine Studies, 15, 1981, pp. 283–287. [Ra 86] Rauch, J.: Logical Foundations of Hypothesis Formation from Databases, Mathematical Institute of the Czechoslovak Academy of Sciences, Prague, Czech Republic, PhD. thesis, 1986 (in Czech). [PR 81] Pokorný, J. – Rauch, J.: The GUHA-DBS database system. International Journal of ManMachine Studies, 15, 1981, pp. 289–298. [Ra 96] Rauch, J.: GUHA as a Data Mining Tool. In: Practical Aspects of Knowledge Management. Schweizer Informatiker Gesellshaft Basel, 1996. [Ra 97] Rauch, J.: Logical Calculi for Knowledge Discovery in Databases. In Principles of Data Mining and Knowledge Discovery. Red. Komorowski, J. – Zytkow, J. Berlin, Springer Verlag 1997, pp. 47–57. [Ra 98A] Rauch, J.: Classes of Four Fold Table Quantifiers. In Principles of Data Mining and Knowledge Discovery. Red. Zytkow, J – Quafafou, M. Berlin, Springer Verlag 1998, pp. 203–211. [Ra 98B] Rauch, J.: Four-fold Table Calculi and Missing Information. In JCIS'98 Proceedings, (Paul P. Wang, editor), Association for Intelligent Machinery, pp. 375-378, 1998. [Ra 98C] Rauch, J.: Contribution to Logical Foundations of KDD: Inaugural Dissertation, University of Economics, Prague, 1998. 142 pp., (in Czech). [Ra 98D] Rauch, J.: Four-Fold Table Calculi for Discovery Science. In: ARIKAWA, Setsuo, MOTODA, Hiroshi (ed.). Discovery Science. Berlin : Springer, 1998, pp. 405–406. ISBN 3-540-65390-2. [Ra 99] Rauch, J.: Deduction in Logic of Association Rules. Lecture Notes in Computer Science 1742. ISBN 3-540-66856-X. [RS 00] Rauch, J. – Simunek, M.: Mining for 4ft Association Rules. In Discovery Science 2000. Red. Arikawa, S. – Morishita S. Springer Verlag 2000, pp. 268–272. [Ra 01A] 4 LISp-Miner project: http://lispminer.vse.cz Rauch, J.: Mining for Statistical Association Rules. In The Fifth Pacific-Asia Conference on Knowledge Discovery and Data Mining Industrial Track and Workshop Proceeding Red. Joseph Fong ang Michael Ng Hong Kong 2001, pp. 149–158. [Ra 01B] Rauch, J.: Association Rules and Mechanizing Hypothesis Formation. Working notes of ECML'2001 Workshop: Machine Learning as Experimental Philosophy of Science. See also http://www.informatik.uni-freiburg.de/~ml/ecmlpkdd/. [Ra 01C] Rauch, J.: Mining for Association Rules in Financial Data. In: Seminar on Data Mining for Decision Support in Marketing. Porto : LIACC, 2001. [Ra 01D] Rauch, J.: System LISp-Miner – Example of Application. Acta Oeconomica Pragensia, 2001, Vol. 9, No 1, pp. 125–153. ISSN 0572-3043. (In Czech) [Ra 02A] Rauch, J.: Mining for Scientific Hypotheses. In Meij, J.(Editor): Dealing with the data flood. Mining Data, Text and Multimedia. STT/Beweton, The Hague. 2002. pp. 73–84. [Ra 02B] Rauch, J.: Interesting Association Rules and Multi-relational Association Rules. Communications of Institute of Information and Computing Machinery, Taiwan. Vol. 5, No. 2, May 2002, pp. 77–82. [Ra 03] Rauch, J.: Definability of Association Rules in Predicate Calculus. In: LIN, Tsau Young, HU, Xiaohua, OHSUGA, Setsuo, LIAU, C. J. (ed.). Data mining – Foundations and New Directions in Data Mining. Melbourne: IEEE Computer Society, 2003, pp. 148–155. [RS 01A] Rauch, J. – Šimůnek, M.: Mining for 4ft Rules. In: ARIKAWA, Setsuo, MORISHITA, Shinichi (ed.). Discovery Science. Berlin: Springer, 2000, pp. 268–272. ISBN 3-540-413529. [RS 01B] Rauch, J. – Simunek, M.: Mining for 4ft Association Rules by 4ft-Miner. in: INAP 2001, The Proceeding of the International Conference On Applications of Prolog. Prolog Association of Japan, Tokyo October 2001, pp. 285–294. [RS 02] Rauch, J. – Šimůnek, M.: Alternative Approach to Mining Association Rules. In: LIN, Tsau Young, OHSUGA, Setsuo (ed.). The Foundation of Data Mining and Knowledge Discovery (FDM02). Maebashi: Izumo, 2002, pp. 157–162. ISBN 4-947717-02-6. [RS 03] 5 LISp-Miner project: http://lispminer.vse.cz Rauch, J. – Šimůnek, M.: System LISp-Miner. In: SVÁTEK, Vojtěch (ed.). Znalosti 2003. Ostrava: TU Ostrava, 2003, pp. 83–92. ISBN 80-248-0229-5. (In Czech) [RS 04] Rauch, J – Šimůnek, M.: Project LISp-miner – current state and further development. In: SNÁŠEL, Václav (ed.). Znalosti 2004 – poster proceedings. Ostrava: VŠB TU, 2004, pp. 81–84. (In Czech) [RSDL 04] Rauch, J. – Šimůnek, M. – Dolejší, P. – Lín, V.: Data mining procedure KL-Miner. In: SNÁŠEL, Václav (ed.). Znalosti 2004. Ostrava: VŠB TU, 2004, pp. 350–361. ISBN 80248-0456-5. (In Czech) [RSL 03] Rauch, J. – Šimůnek, M. – Lín, V.: Mining for Patterns Based on Contingency Tables by KL-Miner – First Experience. In: LIN, Tsau Young, HU, Xiaohua, OHSUGA, Setsuo, LIAU, C. J. (ed.). Data mining – Foundations and New Directions in Data Mining. Melbourne: IEEE Computer Society, 2003, pp. 156–163. [RSC 03] Rauch, J. – Strossa, P. – Černý, Z.: Reporting Data Mining Result in Natural Language. In: LIN, Tsau Young (ed.). Foundations and New Directions in Data Mining: Workshop Notes. Melbourne: IEEE Computer Society, 2003, pp. 164–171. [Si 03] Šimůnek, M.: Academic KDD Project LISp-Miner. In: ABRAHAM, A., FRANKE, K., KOPPEN, K. (ed.). Advances in Soft Computing – Intelligent Systems Desing and Applications. Heidelberg: Springer-Verlag, 2003, pp. 263–272. ISBN 3-540-40426-0. [SSR 04] Svátek, V. – Štochl, J. – Rauch, J.: Matching Data Mining Methods with MetaData and Problem Descriptions in Recommender Systems. In: SNÁŠEL, Václav (ed.). Znalosti 2004 – poster proceedings. Ostrava: VŠB TU, 2004, pp. 65–68. [SR 02] Strossa, P. – Rauch, J.: Association Rules in STULONG and Natural Language. In: BERKA, Petr (ed.). ECML/PKDD-2002 Workshop Proceedings: Discovery Challenge Workshop Notes, Report B-2002-8. Helsinki: Universitas Helsingiensis, 2002. ISBN 952-10-06390. ISSN 1458-4786. [SR 03] Strossa, P. – Rauch, J.: Converting Association Rules into Natural Language. In: KLOPOTEK, M. A., WIERZCHON, S. T., TROJANOWSKI, K. (ed.). IIPWM'03. Berlin: Springer, 2003, pp. 383–392. ISBN 3-540-00843-8. [So 03] Štochl, J.: Data mining in catheterization database. In: SVÁTEK, Vojtěch (ed.). Znalosti 2003. Ostrava: TU Ostrava, 2003, pp. 192–201. ISBN 80-248-0229-5. (In Czech) 6 LISp-Miner project: http://lispminer.vse.cz [St 04] Strossa, P.: AR2NL/STULONG: an Experiment with a Simple Natural Language Model for Formulating Association Rules. In: SNÁŠEL, Václav (ed.). Znalosti 2004. Ostrava: VŠB TU, 2004, pp. 210–217. ISBN 80-248-0456-5. [Ze 96] Zembowicz, R. – Zytkow, J.: From Contingency Tables to Various Forms of Knowledge in Databases. in Fayyad, U. M. et al.: Advances in Knowledge Discovery and Data Mining. AAAI Press/ The MIT Press, 1996. pp. 329–349. 7
Podobné dokumenty
Comic strips and graphic novels.xlsx
Comic Strips and Graphic Novels from Eastern Europe - Eastview Information Services * http://www.eastview.com
March, 2015
ISBN
LISp-Miner - Martin Šulc
Systém LISp-Miner je nenáročný na instalaci. To znamená, že pro práci jsou
zapotřebí jen *.exe soubory, které lze uložit do jakéhokoliv adresáře na
jakémkoliv logickém disku (i síťovém). Všechny so...