!L-Drawings of Directed Graphs
Transkript
!L-Drawings of Directed Graphs
G@.`rBM;b Q7 .B`2+i2/ :`T?b SX M;2HBMB- :X . GQxxQ- JX .B "`iQHQK2Q- oX .B .QMiQJX Si`B;MMB- oX _Qb2HHB- AX :X hQHHBb ROMA TRE UNIVERSITÀ DEGLI STUDI G@.`rBM;b Q7 .B`2+i2/ :`T?b h2`KBMQHQ;v u oBM+2MxQ _Qb2HHB v v) ̸= (v, u)- #Qi? +M #2HQM; ! (u, iQ G _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b h2`KBMQHQ;v u v v) ̸= (v, u)- #Qi? +M #2HQM; ! (u, iQ G QMHv bBM;H2 +QTv Q7 2+? /B`2+i2/ 2/;2 MQ b2H7@HQQTb oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b l#B[mBiQmb oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b G 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 Ji`B+2b >`/ iQ 7QHHQr Ti?b oBM+2MxQ _Qb2HHB LQ/2h`Bt U>2M`v 2i HX ǶydV _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b G 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 Ji`B+2b >`/ iQ 7QHHQr Ti?b oBM+2MxQ _Qb2HHB LQ/2h`Bt U>2M`v 2i HX ǶydV _QK h`2 lMBp2`bBiv lTr`/ h2biBM; Bb LS@*QKTH2i2 U:`; hKbbB ǶN8V G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b G 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 Ji`B+2b >`/ iQ 7QHHQr Ti?b LQ/2h`Bt U>2M`v 2i HX ǶydV lTr`/ h2biBM; Bb LS@*QKTH2i2 U:`; hKbbB ǶN8V *QM~m2Mi U.B+F2`bQM 2i HX Ƕy8V LQi Hrvb TQbbB#H2 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b G 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 Ji`B+2b >`/ iQ 7QHHQr Ti?b LQ/2h`Bt U>2M`v 2i HX ǶydV lTr`/ h2biBM; Bb LS@*QKTH2i2 U:`; hKbbB ǶN8V 3 7 0 2 9 4 5 8 1 6 Pp2`HQ/2/ P`i?Q;QMH *QM~m2Mi U.B+F2`bQM 2i HX Ƕy8V LQi Hrvb TQbbB#H2 UEQ`M`QTQmHQb hQHHBb ǶRRV *v+H2b `2[mB`2 2/;2 `2p2`bBQM oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b G 0 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 Ji`B+2b >`/ iQ 7QHHQr Ti?b LQ/2h`Bt U>2M`v 2i HX ǶydV lTr`/ h2biBM; Bb LS@*QKTH2i2 U:`; hKbbB ǶN8V 3 7 0 2 9 4 5 8 1 G@.`rBM;b 6 Pp2`HQ/2/ P`i?Q;QMH *QM~m2Mi U.B+F2`bQM 2i HX Ƕy8V LQi Hrvb TQbbB#H2 UEQ`M`QTQmHQb hQHHBb ǶRRV *v+H2b `2[mB`2 2/;2 `2p2`bBQM oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b Pp2`HQ/2/ P`i?Q;QMH .`rBM;b, UEQ`M`QTQmHQb hQHHBb ǶRRV 3 7 0 2 9 QM2 p2`i2t T2` +QHmKMf`Qr 2/;2b +M Qp2`HT 2t+iHv QM2 #2M/ T2` 2/;2 /BbiBM;mBb?2/ 7`QK +`QbbBM;b #v bKHH +B`+H2b 4 5 2/;2b `Qmi2/ iQT@`B;?i dz#+Fr`/Ǵ 2/;2b `Qmi2/ /QrM@H27i 8 1 6 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b G@.`rBM;b Q7 .B`2+i2/ :`T?b QM2 p2`i2t T2` +QHmKMf`Qr T`iBH 2/;2 Qp2`HT QM2 #2M/ T2` 2/;2 2/;2b 2tBi p2`iB+HHv- +M im`M BM #Qi? /B`2+iBQMb n × n `2 *QKTH2i2Hv /2b+`B#2/ #v, πH = {ÇÇÇǜ} πV = {ÇÇǜÇ} oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b rrrXTBt`iT`BMiBM;X+QXmFf+QMi2Mifi`m2@+Qbi@+QKB+@bMb@BM7Q;`T?B+ JBMBKmK@AMF G@.`rBM;b oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b AMF +QMbmKTiBQM 2 2 1 3 2 2 2 2 1 3 ink(Γ) = 20 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b AMF *QMbmKTiBQM 6+ib P#b2`piBQM ink(Γ) = ink(πH ) + ink(πV ) G2KK πH M/ πV `2 BM/2T2M/2Mi- b r2HH b ink(πH ) M/ ink(πV ) oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b AMF *QMbmKTiBQM 6+ib P#b2`piBQM ink(Γ) = ink(πH ) + ink(πV ) G2KK πH M/ πV `2 BM/2T2M/2Mi- b r2HH b ink(πH ) M/ ink(πV ) 2 3 1 3 2 2 2 2 2 2 3 2 3 2 1 1 3 3 oBM+2MxQ _Qb2HHB 1 _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b AMF *QMbmKTiBQM 6+ib P#b2`piBQM ink(Γ) = ink(πH ) + ink(πV ) G2KK πH M/ πV `2 BM/2T2M/2Mi- b r2HH b ink(πH ) M/ ink(πV ) G2KK Mv G@/`rBM; Γ Q7 Kn QM i?2 nƓn ;`B/ mb2b 2n(nƐ1) BMFX 1 3 2 3 1 1 3 3 2 2 2 2 3 2 1 2 1 2 1 1 1 3 3 oBM+2MxQ _Qb2HHB 3 _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b S`Q#H2K, JBMBKmK@AMF@G@.`rBM; UJAG.V AMbiM+2, /B`2+i2/ ;`T? G = (V, E) M/ M BMi2;2` kX Zm2biBQM, .Q2b G /KBi M G@/`rBM; Γ bm+? i?i ink(Γ) ≤ k\ oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b S`Q#H2K, JBMBKmK@AMF@G@.`rBM; UJAG.V AMbiM+2, /B`2+i2/ ;`T? G = (V, E) M/ M BMi2;2` kX Zm2biBQM, .Q2b G /KBi M G@/`rBM; Γ bm+? i?i ink(Γ) ≤ k\ LS@*QKTH2i2 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b S`Q#H2K, JBMBKmK@AMF@G@.`rBM; UJAG.V AMbiM+2, /B`2+i2/ ;`T? G = (V, E) M/ M BMi2;2` kX Zm2biBQM, .Q2b G /KBi M G@/`rBM; Γ bm+? i?i ink(Γ) ≤ k\ LS@*QKTH2i2 JAG. ∈ LS, +?2+F HH +QK#BMiBQMb Q7 TQbbB#H2 πH M/ πV oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM S`Q#H2K, S`Q7BH2 LS@*QKTH2i2 U.őx 2i HX kyykV AMbiM+2, ;`T? G = (V, E) M/ M BMi2;2` kX Zm2biBQM, .Q2b i?2`2 2tBbi M Q`/2`BM; π 7Q` i?2#p2`iB+2b Q7 V !" bm+? i?i π(u) − KBM π(v) ≤ k \ u∈V oBM+2MxQ _Qb2HHB v∈N (u)∪u _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 S`Q7BH2 AMbiM+2 Q7 S`Q7BH2 QM n = 4 p2`iB+2b oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 JBH/ Kp0 Kp00 AMb2`i irQ +QTB2b Q7 Kp - rBi? p = 52 n2 + 92 n + 1 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 JBH/ Kp0 u Kp00 w ∀ v ∈ G- // 2/;2b (v, u)- (v, w)- M/ (w, v) rBi? u ∈ Kp′ - w ∈ Kp′′ oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 JBH/ Kp0 u Kp00 w oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 JBH/ Kp0 u Kp′ M/ Kp′′ +MMQi #2 /`rM bKHH2`M/ Kmbi #2 #Qp2 M/ #2HQr G Kp00 w oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 JBH/ Kp0 u 2/;2b (v, u) M/ (v, w) +Qp2` i?2 p2`iB+H b2;K2Mib Q7 i?2 2/;2b Q7 i?2 ;`T? U 4⇒ ink(πV ) = 0 V 2/;2b (w, v) +Qp2` i?2 ?Q`BxQMiH U#H+FV b2;K2Mib 2Mi2`BM; 7`QK i?2 `B;?i Kp′ M/ Kp′′ +MMQi #2 /`rM bKHH2`M/ Kmbi #2 #Qp2 M/ #2HQr G Kp00 w oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b JBMBKmK@AMF G@.`rBM;b _2/m+iBQM 7`QK S`Q}H2, AMbiM+2 Q7 JBH/ Kp0 u 2/;2b (v, u) M/ (v, w) +Qp2` i?2 p2`iB+H b2;K2Mib Q7 i?2 2/;2b Q7 i?2 ;`T? U 4⇒ ink(πV ) = 0 V 2/;2b (w, v) +Qp2` i?2 ?Q`BxQMiH U#H+FV b2;K2Mib 2Mi2`BM; 7`QK i?2 `B;?i Kp′ M/ Kp′′ +MMQi #2 /`rM bKHH2`M/ Kmbi #2 #Qp2 M/ #2HQr G Kp00 πH bXiX H2M;i?b Q7 b2;K2Mib 2Mi2`BM; 7`QK i?2 H27i bmK mT iQ ≤ k, S`Q7BH2 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv w G@.`rBM;b Q7 .B`2+i2/ :`T?b _2/m+2/@+Qbi G@.`rBM;b oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b _2/m+2/@+Qbi G@.`rBM;b AM+`2K2MiH SQHvMQKBH H;Q`Bi?K A/2 bbmK2 bm#;`T? ?b H`2/v #22M /`rM- // M2r p2`i2t, F22TBM; QH/ p2`iB+2b i i?2B` U`2HiBp2V TQbBiBQMb M2r `Qr M/ M2r +QHmKM rBHH #2 M22/2/ KBMBKBxBM; i?2 BMF `2[mB`2/ #v i?2 BMb2`iBQM P`/2`BM; "6a bQ i?i i 2+? bi2T i?2 ;`T? Bb +QMM2+i2/ " oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b //BiBQMH AMF JBMBKBxiBQM _2K`F πH M/ πV `2 BM/2T2M/2Mi- M/ bQ `2 ink(π H ) M/ ink(πV ) A/2 + AM/2T2M/2MiHv QTiBKBx2 inkH (Γ, v) M/ inkV+ (Γ, v) P#b2`piBQM ⎧ ( ) + ⎪ ⎨inkH (Γ, v) = KBM ai`H (Γ, i) + AMH (Γ, i) + PmiH (Γ, i) i=1,...,n+1 ( ) O(n) + ⎪ ink (Γ, v) = KBM ai` (Γ, j) + AM (Γ, j) + Pmi (Γ, j) ⎩ V V V V j=1,...,n+1 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b //BiBQMH AMF JBMBKBxiBQM _2K`F πH M/ πV `2 BM/2T2M/2Mi- M/ bQ `2 ink(π H ) M/ ink(πV ) A/2 + AM/2T2M/2MiHv QTiBKBx2 inkH (Γ, v) M/ inkV+ (Γ, v) P#b2`piBQM ⎧ ( ) + ⎪ ⎨inkH (Γ, v) = KBM ai`H (Γ, i) + AMH (Γ, i) + PmiH (Γ, i) i=1,...,n+1 ( ) O(n) + ⎪ ink (Γ, v) = KBM ai` (Γ, j) + AM (Γ, j) + Pmi (Γ, j) ⎩ V V V V j=1,...,n+1 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b 1tT2`BK2MiH MHvbBb oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b 1tT2`BK2MiH MHvbBb h2bi R, PP.- &_M/QK- AM+`2K2MiH- PTiBKmK@AMF' G@.`rBM;b 8- Ry- R8 p2`iB+2b RyW- kyW- jyW- dyW 2/;2 /2MbBiv PTiBKmK@AMF G@.`rBM;b +QKTmi2/ pB AMi2;2` GBM2` S`Q;`KKBM; h2bi k, PP.- &_M/QK- AM+`2K2MiH' G@.`rBM;b Ryy- kyy- jyy- 9yy- 8yy p2`iB+2b RyW- kyW- jyW- dyW 2/;2 /2MbBiv oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b AMi2;2` GBM2` S`Q;`K 7Q` JBH/ 2 1 o2`iB+2b +M #2 +?`;2/ Q7 i?2 H2M;?i Q7 i?2B` HQM;2bi BM+B/2Mi b2;K2Mi BM 2+? /B`2+iBQM 3 2 2 2 2 2 1 3 oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b AMi2;2` GBM2` S`Q;`K 7Q` JBH/ o`B#H2b, ∀i, j = 1, . . . , n, xij , yij = * 1 p2`i2t vi HB2b QM +QHmKMf`Qr j 0 Qi?2`rBb2 ∀i = 1, . . . , n, Ei , Wi , Ni , Si ≥ 0 7m`i?2bi #2M/ Q7 2/;2b BM+B/2Mi iQ vi *QMbi`BMib, +n +n ∀i = 1, . . . , n, j=1 xij = 1c j=1 yij = 1 +n +n ∀i, j = 1, . . . , n, xi = j=1 xij · jc yi = j=1 yij · j QM2 p2`i2t T2` +QHmKMf`Qr +QQ`/BMi2b Q7 vi * #2M/ TH+2K2Mi ∀i = 1, . . . , n, Ei ≥ xi c Wi ≤ xi c Ni ≥ yi c Si ≤ yi ∀(vi , vj ) ∈ G, Ej ≥ xi c Wj ≤ xi c Ni ≥ yj c Si ≤ yj P#D2+iBp2 6mM+iBQM, KBM +n i=1 (Ni oBM+2MxQ _Qb2HHB − Si + Ei − Wi ) _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b 1tT2`BK2MiH MHvbBb h2bi R, R8 p2`iB+2b- RyW- kyW- jyW- dyW 2/;2b 450 400 350 optimal incremental ood random Used ink 300 250 200 150 100 50 0 0.1 0.2 0.3 0.7 Edge density oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b 1tT2`BK2MiH MHvbBb Saved ink h2bi k, Ryy- kyy- jyy- 9yy- 8yy p2`iB+2b- jyW 2/;2b 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 incremental ood random 100 200 300 400 500 19800 79600 179400 319200 499000 Number of vertices / Theoretical maximum ink P#b2`piBQM AM+`2bBM; i?2 MmK#2` Q7 p2`iB+2b 4⇒ [m/`iB+ BM+`2b2 Q7 2/;2b M/ BMF- #mi AM+`2K2MiH bp2b BMF HBM2`Hv oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b *QM+HmbBQMb _2bmHib L2r KQ/2H 7Q` /`rBM; /B`2+i2/ ;`T?b LS@>`/M2bb T`QQ7 7Q` i?2 BMF KBMBKBxiBQM T`Q#H2K AM+`2K2MiH TQHvMQKBH H;Q`Bi?K BM bi`2KBM; 7b?BQM PT2M S`Q#H2Kb H;Q`Bi?Kb 7Q` QTiBKH G@.`rBM;b Q7 MQi#H2 7KBHB2b Q7 ;`T?b GQr2` "QmM/b QM BMF +QMbmKTiBQM TT`QtBKi2/ H;Q`Bi?Kb .Q2b HHQrBM; KmHiBTH2 p2`iB+2b QM i?2 bK2 `Qrf+QHmKM ?2HT\ oBM+2MxQ _Qb2HHB _QK h`2 lMBp2`bBiv G@.`rBM;b Q7 .B`2+i2/ :`T?b
Podobné dokumenty
Základy fyziologie
Základy fyziologie
X31ZLE Základy lékařské elektroniky
Jan Havlík | Katedra teorie obvodů | [email protected]
Newsletter SPS 2/2013 - Svaz podnikatelů ve stavebnictví v ČR
fondu rozvoje bydlení zahájil přijímání žádostí v srpnu
loňského roku. Nařízením vlády č. 268/2012 Sb. byly
upraveny podmínky tak, aby program přilákal další
žadatele. Přesto nedošlo k takovému zle...
Stáhnout skladové zásoby
4207 ATN9 2ř.kul.lož.SKF 21-5
4306 ATN9 2ř.kul.lož.SKF 14-3
6000 kul.lož. 18-2
6000 P6 kul.lož. 18-2
6000 C3 kul.lož. 18-2
6000 TB /TN9/ kul.lož. 18-2
6000 RS kul.lož. 18-2
6000 2RS kul.lož.ZKL 18-...
Katalog sacích vakuových filtrů
● Řada SRS, DN150 - DN300, 3 060 - 5 100 m3/h
str. 16
ODLUČOVAČE KAPALIN S PRŮHLEDNÝM KRYTEM
● Řada STS, 1” - 4” BSPP, 68 - 850 m3/h
str. 17