proceedings 1998 - RECENT TRENDS 2016
Transkript
proceedings 1998 - RECENT TRENDS 2016
Recent Trends in Charged Particle Optics and Surface Physics Instrumentation Proceedings o f the 6lh International Sem inar, held in Skalsky dvur near Brno, C zech Republic, from June 29 to July 3, 1998, organised by the Institute o f Scientific Instrum ents AS C R and the C zechoslovak Society for E lectron M icroscopy Edited by Ilona Miillerová and Luděk Frank IS B N 80-238-2333-7 P roceedings have been printed from the cam era-ready m anuscripts supplied by the authors P ublished and distributed by the C zechoslovak Society for E lectron M icroscopy, prin ted in C zech R epublic by A rtiq B rno Czechoslovak Society for Electron Microscopy (CSEM), Královopolská 147, 612 64 Brno, Czech Republic; fax +420 5 41514 402, e-mail [email protected], http: www.isibrno.cz/csem © C SEM Brno 1998 All rights reserved. No part o f this publication may be reproduced without the prior written permission of the publisher. PREFACE Two years have quickly elapsed and the sem inar on the Recent Trends in Charged Particle O ptics and Surface Physics Instrum entation is again here, already the sixth one. The history o f the m eeting w as described in the preface to the previous sem inar's proceedings. Let us now sum m arise briefly the m ain points. The germ was the traditional sum mer sem inar held nearly regularly in the Institute o f Scientific Instrum ents in Brno on the occasion o f visits o f Professor Tom M ulvey from U niversity o f A ston in Birm ingham , UK. In the seventies and eighties, this w as valuable enough for us and offered us the opportunity to m ake the sem inar English spoken. In the sum m er o f 1989 we started to extend the participation, and the 1989 sem inar w as num bered the first. In 1990, there were as many as 30 participants from 5 countries. The third sem inar in 1992 w as m oved to hotel Skalsky dvur in H ighlands and the next three sem inars organised there, each with around forty participants, had a sim ilar schedule, at least from the point o f view o f non-scientific aspects o f organisation. The fifth sem inar w as the first one to w hich the proceedings were published. It seem s there have been no im portant events since the previous sem inar that are worth adding to the sem inar history. This may be sim ply the consequence o f that the sem inar has established a fully defined regularly repeating meeting and nothing is new about it except that its serial num ber increases by one and the year by tw o and that the registered participation is so num erous and high-quality one as it was expected. This could be a sign o f stability and tradition and we do hope that this is the explanation. It w as claim ed many tim es at various occasions during the sem inars that their prevailing orientation to charged particle optics w as and rem ains desirable owing to the lack o f m eetings o f that kind. This argum ent is generally correct but this tim e m uch less than usually: in 1998 the sem inar coincided with the CPO conference held in Europe, in April in Delft. W e are really happy that this circumstance has not caused any reduction in the participation in R ecent Trends. (To be exact, the "collision" appeared already earlier, in 1990, w hen the C P 0 3 w as held in Toulouse but our second sem inar was then still sm aller and less am bitious.) O ur traditional and a bit unusual style o f the meeting, based on a not too large circle o f personalities, know ing one another quite well, m ore and m ore seem s to be som ething that will becom e usual in the future. Large congresses, aim ing at gathering hundreds or even thousands o f anonym ous professional colleagues to one place to present their cofttributions to the crowd, are m ainly organised because o f tradition. B ut in fact they are also already split into sym posia o f a m oderate size, attended by groups sim ilar to ours. One surely cannot consider quite unrealistic a vision that presentation o f scientific contributions w ill be fully replaced by electronic conferences. B ut this w ill never be (as we hope) the case for personal face to face m eetings and discussions. The surface physics has apparently disappeared to a significant extent from our program o f a m eeting o f people connected in different w ays w ith electron m icroscopy. No wonder, the new est surface analytical m ethods, various scanning probe microscopies but not only them , exhibit surface sensitivities unachievable by electron beams. A few o f us, operating the low energy electron m icroscopes that have those capabilities, are the only ^ u r j j >|5 p n '[ RAOJ3 ||n p M B U O |] ■ s s s s s n s j b u i u i s s s q j o j u o i j n q u j u o a i i a q j j í r s p a d s E jjb j o j s j u B d p i j j B d 31)1 3 3 U B A p B U l >[URL|1 OJ 3 >{T| p j tlO M 3 .Yl !S J 3 S IU B S jO JB U IU I3 S pU B S J O J ip S S n U ip 3 3 0 0 j d S y 3 3 U3 I3 S U 0 IJBJU3 UIIU JSU I O qj jo ipuBjq JU3 JSISU 0 3 j u B j J o d u i i 3 U 0 u i s s a a ř i o j d s q j j o 3 [ ) 3 j o s |B j n q Á |u o j o u h i m q s iq M Á iq n n h |C 3 u i q 3 3 j ssin o s j b u iu is s s q j S A n p jB ‘s ř i i u p o o o o i d j b u i u i s s j o s s u s s b u o d o [ j i m ‘3 u o s n o i A 3 j d s q j o j p s r e d u i o s p ir e ( R O iq d c j S p S A O id iu i ub jo S u is q ‘>jooq s iq i jE q j sd o q 3/\\ M O U i r e q j J S S IS J U l JSJBSJŽ? B p 3 J3 BJJJB 3 d o 3 S0 J 3 IUI U 0 JJ3 3 J3 UB U l U 0 IJ3 3 J3 p U 0 JJ3 SJS js S n y sq j ‘ S s u s q M s s u i i j u i p s j B S J o ‘s o i d o j j n o j o q j o q j o u o i j B u i q u i o s j o s 3 u b a s [ s j s j o j s o j U B3 ‘SJSBJJU0 3 J O XJIUIBJ p B O j q pU B XJIA IJISU SS 3 3 B J jn S q g i q SJI q j I M \ \ d 0 3 S0 J 3 IUI A Ž J S U S M O [ X j 3 A 8 u jU U B 3 S 3 q j J O U O I J B a q d d B p s p u o j x s p U B JU3 U ld O ]3 A 3 p j a q j j n j ‘SS3 ] 3 q j i 3 AS[v[ S U 0 I j d S 3 X 3 CON TEN TS Autrata R., J. Jirák, M. Klvač, V. Romanovský Detection o f backscattered electrons in environmental SEM Autrata R., V. Romanovský J. Jirák, M. Klvač, Ionisation detector for the environm ental SEM Autrata R., J. Jirák, M. Michálek, J. Spinka A m plification o f signal electrons in gas environment Autrata R., J. Jirák, M. Michálek, J. Špinka Conditions for specim en observation in environmental SEM Barth J.E., M.D. Nykerk, M.J. Fransen A pplication o f a tw o param eter bell distribution in charged particle optics Delong A., V. Kolařík, D.C. Martin Low voltage transm ission electron m icroscope LVEM-5 El-Gomati M.M. Q uantitative surface analysis at high spatial resolution Gerheim V., H. Rose Q uadrupole projector system w ith variable m agnification for energy-filtering transm ission electron m icroscopes Hartei P., D. Preikszas, R. Spehr, H. Rose Test o f a beam separator for a corrected PEEM / LEEM v- Hasselbach F., H. Kiesel, U. Maier Recent advances in ion- and electron-biprism interferometry Hejna J. O ptim isation o f an im m ersion lens design in the BSE detector for the low voltage SEM Hutař O. N oncharging m icroscopy o f sem iconductor structures Hutař O., R. Autrata The separation o f secondary electrons in annular and planar detectors Janzen R., E. Weimer Study o f detection properties o f a M EDOL / GEM INI objective lens for secondary electrons Kahl F., H. Rose O utline o f an electron m onochrom ator w ith small Boersch effect ¡ ¡_ J3 J3 U I0 J 3 JJ 3 J U I u i s u d i q u o j p s p u n u i J 3 j[ ij u d ¡ /,\ a q j j o g u ip u B js js p u n ¡B o ija jo a q ; s q j u o lf3Pq¡3SSDf{ ¿ í) ‘¡3S3t}¡ / / ‘ J 8 d)U3UUOS A d o o s o io iu j u o jjo o [ o 3 u i u u n o s |B u o is u 3 u n p s a j q j . A i o s /M p fS ¿<) jsBjjuoo oipuSEiu uo sisBqduia qjiM jA ¡33d'X oidoosojpadg £ ) nSUDLjUOLjJf; f,í) u o i p a j i p o u o u t s i x b a q i j o j j i q s X jre jjiq jB q ;i,w s u a j s ix B - s jq B U B A tí j o s t r i p n Q 3s°n h "d P im ° s 09 s j o p s j s p J A J 3 ( l ) S J 0 .l S |B JsX j3 3 |S u i s j o s a i y a d o j d j u 3 0 S 3 u i u m [ o p o i ( i B 3 D iv m y íi ' d -»znoifos (,ç ¿ s s d o o s o j o i u i a i n j n j j o j s p o a u s q j s j b lE q w l u o p n j o s s j s j E u n q n H 3S°V XÇ J0 J3 3 JJ0 3 jo jiiu i b S u p saj jo j q o u a q [E o ijd o -u o jp s jo 3SOd H vC ■ ub jo u o i p r u j s u o ') ¥ ‘PUVH d "a SD zsypjj s s i j d o u o j p s p u i s u o iiB J J S q B p r o S 3 U 0 1 3 3 IB JJ ‘s p p i j á u i j n d u i o s j o X o E in s o B p u B p s s d s 3 q j 3 u i A O j d u n j o s ,\ b a \ j o X p n js y n i j a 'asnoy f (ni¡2 X ‘‘3 ouunyq s u o i j B j n g i j u o s [AIHS X 3 j 3 U 3 - m o i u o 3 j o u 1- i o q s yuruj IÇ j “■/ tp M U 3 i¡n jA ¡ W 3 S X 8 j3 U 3 M O | JO J JU 3U I3J3 p [ 3 I J S u ip J B J 3 J OpOlU 3 jq B IJ B y \ ú stu p y ¿¡ ‘yunA¿ 7 ' / m w a p ; y (,t- / ü o a q j 3 0 i |s i ¡ |n u j o j q s B O jd d B u o i p u n j s s u s j a q o s y 3yoÿ h H & n m [AJ3 3 J u o i ; n | o s 3 j q S i q b j o s p s d s o j d s i j X j b u b o j s i i u s q j ¿p 3SU3i/uoi^3g Q ‘uaijiaif i j j 'jp iu n p s o 'M ifos^ et? '/ y pqudffl surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs je u ip d o p w q z y / / y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t- 3 d o 3 S 0 J 3 I U I U 0 J p 3 [ 3 Á oiSU O AVO| 3 q j q jI M 3 u i 3 b UJI 3 | d 0 3 S 0 j p 3 d § usrwq g ‘a.9u u j )¡ ‘(»jumping g ‘¡piuiifos i¡j ' {) dvum¡u3ijn ()f S 3 I jd o U 0 J P 3 ( 3 JO J 3JB M IJO S UI S p U S JJ M 3 J\[ ¡[ D A 0 3 U 3 '] (,t s u o ijB jjs q B s q j 3 u ip p B j o s X ba \ j u s j s j j i q 3U37 n }/ y u u jo y Spehr R. Variable axis lens with an extremely large scanning area in one direction Slekly R., L. Frank, I. Miillerova Distributed M onte Carlo: sm art way for com puting complex problems Tsuno K., N. Handa, S. Matsumo to An E+B+E beam separator for detecting secondary electrons in low voltage SEM Tyc T. A ntibunching o f electrons as a consequence o f the indistinguishableness o f fermions Zadrazil M., M. El-Gomati M easurem ents o f the secondary and backscattered electron coefficients in the very low energy range Zadrazil M., L. Frank, J. Norris Im aging o f non-conducting specim ens by noncharging scanning electron microscopy with m ethod for autom atically adjusted critical energies D ETECTIO N OF B A C K SCA TTER ED ELECTRO NS IN ENV IRON M ENTA L SEM R. A utrata, J. Jirák *, M. Klvac, V. Rom anovsky Institute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno, Czech Republic Department o f Electrotechnology, Faculty o f Electrical Engineering and Computer Science, Technical University Brno, Antonínská 1, CZ-612 64 Brno, Czech Republic Scanning electron m icroscopy w orking w ith pressure in the specim en chamber that are higher than 100 Pa enables investigation o f in-situ specimens and certain dynamic effects, w hich is not possible in convential SEM. In our case for the detection o f backscattered electrons (BSE) in environm ental scanning electron m icroscope we use a paired scintillation detector YAG {yttrium aluminium garnet) doped w ith Ce3+, provided w ith a central hole o f 300 to 500 fim in diam eter. The detector acts simultaneously as a pressure limiting aperture, w hich allow s to achieving different pressures in the specim en and differential chamber. The configuration o f the detector ensures a large collection angle for the BSE signal and allow s the use o f the small working distance o f the specim en from detector to ensure a sufficient signal even in high pressures in the specim en cham ber w hen an increase num ber o f collisions o f electrons w ith the gaseous m edium occurs. Theoretical calculations and practical m easuring show ed that a considerable portion o f the BSE signal escapes through the hole o f the scintillator and is not detected by the detector. Figure 1 show s a decrease in the detection efficiency o f the detector in relation to the working distance. This effect is appreciable above all for very sm all w orking distances o f the specim en from the detector. For this reason a double paired scintillation detector w as designed and constructed. The principle o f the double paired detector I d [mm] is evident from Figure 2. F or small working distances d o f the specim en from detector 1 which are com parable w ith the diam eter o f the hole D¡, the collection angle o f the detector 1 decreases rapidly and a considerable portion o f B SEs escapes through the hole into the differential cham ber. The detector 2 is positioned here and it ensures the detection o f those BSEs. The single crystals o f both detection stages are sym m etrically divided into the right and the left half. The interface betw een them is provided w ith an optical reflecting layer. Then both the halves are m echanically associated. B oth detection stages thus provide tw o paired signals w ith the possibility o f further processing signals. The properties o f the detectors 1 and 2 w ere investigated by m easuring the signal and noise levels in relation to the pressure in the specim en cham ber and the specim en distance d from detector 1. The signal levels were m easured in the signal path behind the photom ultiplier and preamplifier. A s the m easuring specim en a carbon cylinder w ith a Obr. 2 central hole coated with an Au - layer was Ol ‘8Z1'd ‘S66l ‘u!lJ30 P3 l ‘Sbjjba - JaSuuds ‘Xdoasojaij^ uojjaajg Suiinreas :g jauiiay [g] TI ‘£661 ‘93 °P39 'sadoosojoiui u o ija a p SUIUUBDS 1BJU3U IU 0JIA U 3 JO J J o j o a j a p U O J p a p p a j a j J B a S í p B g : ' f B 5 fin d § l ' f ÍJB JIf ‘ B J B J jn V [ i ] SZl-ÍZl dd sued ‘£1 W33I W3S pjuauiuoJiAug ui su o jja a jg p a ja jjB a sp B g j o uoijaajaQ :uj (t?66l) f m p n d s ‘ f íjBJíf BjBjjny [ i] :S33U3J3J3^J ssSbjs uopaajap qioq ujojj s[bu8is aqj jo uins aqj jo asn 3>)Bui oj ajqissod si )i /([[Bnbg p saauBjsip Suiíjjom [|Bujs Xjsa joj pire b<j 0001 iTBMl J3MOJ sajnssajd joj ‘JAI3S3 Joj 3SH uoijoajap aqj joj g§g jojaajap uo;jb[|;iuios pojisd ajqnop aqj asn oj a(q;ssod si jj -[ jojaajap aqj uBqj [3A3] |buSis jaqSiq b sapiAOjd asnBoaq uiui ^'0 oj uiui ['0 uioif aSuBj aqj ui p saauBjsip Sui^jom joj 3[qBj;ns 3JOIU si j jojaajap jaddn aqi pqi juapiAa si ji p puB £ sojnSy aqj iuojj A 009 = pn sSbjjoa sapouXp ja;|dij[nuio)oqj -(uiui jj'0 = P “«nu yQ = p turn Z'0 = P ‘unu 1'0 = P) JOpapp uiojjoq aqj uíoij p saauBjsip uaunaads joj jaquiBqa uaunaads aqj ui d ojnssajd aqj uo z Jopopp jaddn aqj jo "/} asi ou puB 73 [BuSis aqj jo aauapuadag p uqo (Bd)d 001 v.. 4s. \ _— 8‘0=P ► ‘0=p-•■ ••• Z‘0=p--H-l‘0=P—•— "x-" _______ 1 1 --- --* Z Jo jo a ja p ja d d n - leußi.s A 00t7 = pf l sSbijoa sapouXp jaqdijinuiojoqg -(unu g o = P ‘u™ V 0 = P ‘unu Z'o - p ‘uiui {"0 = p) Jojaajap uiouoq aqi uioif p saauBjsip u aiu p ad s joj jaquiBqa u auipads aqj ui d ajnssajd aqj uo [ jojaajap uiojjoq aqj j o “ß asiou puB 73 jbuSis aqj j o aauapuadaQ £'jqo T ím n o B A a q i u i j u a j j n a u r e a q Á J B u ia d a q j j o a n |B A jU B js u o a a q j jo j[Bq jq S u a q j jb j n o p a u j B o a j a M s ju a u ia jn s B a u i [ j y - u a A i§ a j a M a g e js u o i p a p p j a d d n a q j puB aSBjs u io u o q aqj jo j|Bq y a [ a q j u io ij s jb u S is S u iu u B a s a q j S u ij n Q pasn IO NISATIO N D ETECTO R FOR THE ENVIRONM ENTAL SEM R. A utrata, V. Romanovský, J. Jirák , M. Klvač Institute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno. Czech Republic Department o f Electrotechnology, Faculty o f Electrical Engineering and C'omputer Science, Technical University Brno, Antonínská I, CZ-612 64 Brno. Czech Republic One o f the relatively new trends in the field o f scanning electron microscopy focuses on observing specimens placed in the specimen cham ber under higher pressures. The group o f these m icroscopes is usually called ESEM (environm ental scanning electron microscopy). The value o f the working pressure in the specimen cham ber 609 Pa in 0 °C is tixed as the limit for the groups o f m icroscopes SEM and ESEM. The ESEM m icroscopes have wide application in observing biological specimens and various types o f specim en o f insulation character. The observation biological specimens does not require any special preparation technology. No charging phenom ena occur due to the presence o f a gaseous medium. Consequently, the com plicated and long coating o f the specimen is no longer needed. The coating usually causes the loss o f information on the material consistence o f the specim en surface. N ow adays scintillation detectors are usually used for the ESEM field. However, their principle does not enable full application o f these m icroscopes for observing biological specimens, i.e. specim ens containing a larger am ount o f w ater and especially in the lield o f topography contrast, w hich is im portant, above all, for the already mentioned field ol biological specimens. The configuration o f this detector described and used is already fully functional and enables the detection o f the low energy electrons, thanks to which we have approached to the possibility o f the better detection o f the topography contrast which we have lacked when observing certain specimens. In our case, a gaseous medium surrounding the specimen is used as an amplifier. In this medium an avalanche o f electrons occurs, produced byvxillision o f signal particles w ith a gaseous medium. The aim o f the project was a design and construction o f the ionisation detector lor the E SEM m icroscopes, containing besides the reached functional configuration also optimisation o f the working condition o f the detector. In Figure 1 there is a I Primary electrons design o f a com bined detector, T w hich we used and w hich makes use o f the features o f the scintillation and ionisation scintillation detector detectors. With this configuration a large collection angle is reached. W hen designing the detector we ionization detector tried to find prim arily the optimal w orking distance D and the specimen pressure in the specim en cham ber p as you can see in Figure 2. tig . 1 Geometrical configuration ot specimen anddeieciw Keeping these optimal conditions, it is possible to reach the maxim um possibilities offered by this detector. 6 L d ‘¿ 6 6 1 ‘6 1 X u i u u o o s 'sodoosojoitu s u o j p s p S u i u u b o s j B j u a u i u o j i A u g n q i ui s|bu3jbui h i of j o uo|ibS;js3au! oqj j o j j s b j j u o d Sutziunjdo j o spadsB suioç :\ \\ § u ijn j ‘j [ x retnps [j] a o p s p p snoosBQ sadoosojotui u o j p a p S u i u u b d s SBS-uoapajg : g p i q j ‘ ‘j ^ y p [B U 0 Q ‘ j i | j i p 3 .iO[A] [ [ ] ||’)u 3 iu u o j ia u o aqj ¿ 9^7 ui d 9 6 6 1 "8 1 S i u u o o s su o ip B ja ju i :S3 3 U3 J3J 3 ^J <M 0 0 0 1 ‘ D |E u á is - n y [e u S is ¿ S l J Bd 0001- j o p n p u o 3 |u i 3 s IM I S I ■'iqi jo 3qi Xjjsnput X8o]oiq ui [|B j o j s j i j p u s Xdoosojoiui j o s p p y oqj ||B u ¡ sadoosojniuj oqi j o ssijqiqtssod m s u u a d o pjnoqs j o p a p p j o o d Á i siqx puB u o |j B 3 |[ d d E A M PLIFIC A TIO N O F SIG N A L ELECTRONS IN GAS ENVIRONM ENT R. Autrata.*, J. Jirák, M. M ichálek, J. Špinka * Institute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno, Czech Republic Department o f Electrotechnology, Faculty o f Electrical Engineering and Computer Science, Technical University Brno, Antonínská 1, CZ-612 64 Brno, Czech Republic Environm ental scanning electron microscopes (ESEM ) enable the observation of specimens at higher pressures than in ordinary SEM. The pressure in the specimen cham ber can be beween 10 -5.103 Pa. W orking at higher pressures, it is advantageous to use the ionization o f gas for detection o f signal electrons. To am plify the signal, ionization detectors take advantage o f ionization that occurs in the space betw een the specimen and the detector. PRIMARY BEAM F ig .l. A schem atic diagram o f the parallel plate electrode system. A - contribution o f prim ary electrons, B - contribution o f secondary electrons (SE), C - contribution o f backscattered electrons (BSE) to the total detected current. d is the sam ple-to-detector distance, E is the electric field intensity. Electrons are m ultiplied through ionizing collisions in the gas (indicated by x). d SPECIMEN 1 The detected current is proportional to the num ber o f electrons em itted from the specimen. W e assum e that the total detected current can be found by sum m ing the following contributions: (1) w here I “ PE , I “E , I “SE are the contributions o f the prim ary electrons, the SEs, and the BSEs to the total detected current, respectively. A cording to [1] the total am plification is given by: (2 ) where I;p is the part o f the prim ary beam current im pacting the specim en w ithout any collisions w ith the gas evironm ent, p is the pressure, a and y are the Tow nsend first and second ionization coefficients, respectively, s ^ and Sbse are the field-independent ionization efficiencies o f the prim ary electrons and the BSEs, respectively, and 5 and T| are the SE and BSE coefficients, respectively. The calculation o f the am plification can only be done for a particular type o f the electrode system. In the follow ing part, we consider the parallel plate electrode system as shown in Fig. 1. F or the calculation it is also necessary to know the surface em issive properties and the ionization properties o f the used gas. Usually, we consider that the environm ent which surrounds the specim en is air, and that ionization takes place in this gas. H ow ever it is also H d ‘Ç86I u!Ija8 'P3 I ‘Sup^A ~ JaSuudg ‘Xdoasojaïui uojjaap SuiuuBOg rjaïupy qf V ] d 61 £ ‘S96I pjojxo “ P3 Z ‘SS3JJ XjisiaAïun pjojxo ‘sssbS paziuoj :'ja8ug uoa y [ £ ] 'LSZZ - 6PZZ'd ‘¿ 66T ‘0£ 'S^d ïd d y :a sXqj 3 ‘IAI3 S IBjuauiuojiAua ui sasßS SuiSbuii aAIJBUiaj[B JO SJU3UI3jnSB3UI UOI}B3I}I(duiy ipjBUOQ IAJ V ‘p t q i T a ‘13113)313 3 y [ Z ] snoasBS sad o o so jaïu i u o jja a ja Suiuubos "a ‘P[BUOQ H V ‘qlip3J01AI d[ I ] ■£¿p - ¿ g p d ‘9661 ‘81 ‘S uiuireos ‘Jojoajap [BJU3UIUOJIAU3 aqj UI UOIJOBJ3JUI SB§-UOJ}03IH:'[3iqX :s30U3jajay sa p ire d a js ip asaq j urejdxa o j aq [[im îjjo /Wja q jjn j j o rare a q x sa p u a p u a d a p p ajn d u io o aqj j o aso q j ireqj s a jn ssa jd jsm o j je sjnaoo [eu S is iiinuiixEUi 3qj }Bqj 33S UE3 3M ‘aOUBJSip JOp3pp-OJ-3[dUIBS JUBJSU03 B JOJ ‘¡BuSlS 3qi JO 33U3pU3dsp 3jnss3jd pajnduioa sqj qjiM ssu sp u sd sp sjn sssjd psjnsBam aqj SuuB duio^ ajnssajd uo jBuâts uoi]BoyqduiB aqj jo 33u3pusd3p sqj p ip s jd X pijsjosqj ubo sa\ p q j uijijuoo suoijBjnduios sq x A 00£ PUB OOZ 3J3M 3pojj33{3 U 0ip3||03 oqi uo spsijuajod sq x su o jjo sp jo u o tp s p p sqj jo j pssn sbm jbjsXjo +£s d :q v a b uo psjisodsp sapojpa[3 S uu qjiM jojoajsp u y apoui uBOS-auq aqj ui ajdures n y ub joj p au u o jjad sbm aoirejsip SupjJOM B joj ajnssajd aqj uo aouapuadap sji puB jeuS is aqj jo juauiajnsBam [Bjuamuadxa a q x uoijbziuoi usaiS apojjosja u o ip a [[o o aqj uo a 00£ P11^OOZ sjB ijuajod aqj qjiM ‘jib ui j o p a p p uoijbziuoi ub joj uoi}BDiji[duiB pazqBUiJou pajB[najB3 puB painsBaui j o aouapuadap a q x 'Z'%U [• d id oooi ■sanjBA pajnsBaui X[[Bjuaiuu3dx3 aqj qjiM jsqjaSoj Z '3ig ui UMoqs sjb ‘uiui £3 = p aouBjsip SupfjoM jirejsuoa aqj qjiM jaqureqo uauipads aqj ui ajnsssjd aqj uo aouspuadap jpqj puB juajjno pajoajsp aqj jo sanjBA uoijBjnorBO sqx '[>] uiojj g b U sanjBA puB [g] uiojj ua>[Bj pus “V a ‘V sarqEA aqj pasn a« ‘uopBjnaiBO siqj jo j ‘paziuoi aq oj sbS aqj jo XjijiqB aqj ssajdxa qoiqM sjubjsuoo 3jb a puB y ajaqM / (£ ) a dxay = a 8~ :» juapyjaoa puasuMOX Jsjij aqj Xq pazuajDBJBqo si uotjnqujuoo siqx 'jsaqSiq aqj si juajjna pajoajap jbjoj aqj oj sgs J° uoijnqujuoo aqj jBqj SMOqs uoijBjnaiBD ajafduioa aqx '(z) uoijsnba ui ^s l3ds sjuaiayjaoo aqj aauarqjui pjnoM sbS aqj SurŽireq^ -[j] sssbS jo sajnjxiui sb qa/w sb sassS jaqjo asn oj ajqissod CONDITIONS FO R SPECIM EN OBSERVATION IN ENVIRONM ENTAL SEM R. Autrata.*, J. Jirák, M. M ichálek, J. Špinka Institute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno, Czech Republic Department o f Electrotechnology, Faculty o f Electrical Engineering and Computer Science, Technical University Brno, Antonínská 1, CZ-612 64 Brno, Czech Republic Classical scanning electron m icroscopes (SEM) possess extraordinary properties (resolution, im age sharpness, possibility o f elem ent analysis o f specimens, etc.) but they have certain lim itations as regards vacuum that is necessary for their operation. The exam ined specim ens should be: - vacuum resistant: On exposing a specimen in vacuum conditions, its properties should not be affected. - vacuum inert: The specim ens may not emit gases or vapours or particles into vacuum. This could endanger successful operation. - and electrically conducting. In practice, not all specim ens m eet these demands. Therefore com plex m ethods, e.g. freezing, fixation, etc., m ust be used to treat them. Specim ens having the character o f insulators must be coated w ith m etal mostly. In the environm ental SEM , where we work with pressures around 1000 Pa in the specimen cham ber, we can fill the cham ber w ith suitable gases and vapours. From this it follows that it is possible to exam ine hydrated specimens, to w atch the interaction o f specimens with the gaseous or liquid atm osphere, and to observe dynamic processes, such as crystal growth, wetting, corrosion processes, cem enting process. Charging effects are elim inated, owing to the presence o f ionized particles o f a gas [1], Conditions for the creation o f an optim um environm ent in the specimen cham ber that is necessary for a successful observation o f specimens are different for different cases, depending on the kind o f processes and specimens to be examined. Sometim es, some "preparation" o f specim ens for ESEM is needed. Let us focus on the m ost frequent case o f observation o f specimens containing w ater that is carried out in the presence o f water vapour. For the environm ental SEM , the most suitable-, range of working pressures and tem peratures follows from the curves o f relative humidity [2]. To cool specimens, it is advantageous to use the Peltier cell which m akes it possible to achieve a tem perature diffe rence as high as 40 K, compared with the tem perature o f the warm end. The setting and control o f tem perature o f ----- ► tem perature ( °C) the cell by a change in the flowing current are advan Fig. 1 Relative hum idity versus pressure and tageous, and when needed, the tem perature in the specimen chamber 'Li.Z~L.ZZ d >661 ‘£¿1 ‘X d o o s o j o i ^ v j o [Bujnof o d o o s o jo iu i u o jjo o p SllIUUBOS |BJUOUIUOJIAUO UI UOIJBJOdBAO ŽU IZIU IIUIJM : ]AJ V ‘P |B U 0 Q - g y ‘U0.13UItí3 [£ ] SS d ‘JAJ3S3 °J uoijonpojjui u y s d q iq j u u ij oqj jo ojnjBlojii [Eoiuqoox [z] •(q o o zo u !) Z O Z ~ 6 6 1 d ‘ 5 6 6 1 V3 Z I d J H Z 3 3 J ‘ £ 6 b ^ i j s o u S b i q : u j X d o o s o j o i u i u o j j o o p S u i u u b o s u ; s . i o ] B [ n s u | j o u o ij B A J O s q o j o s o i j q i q i s s o d m s s j :f ‘ E 5j u i d ç - f ‘ 5| B J if - y ‘ B lE u n y [j] :so o u o jo jo y J o q u iB q o P UR o q i u o 0 0 c j o u o o M io q X iip iu in q o jn jB J o d iu o i p o iu o s o j d o q i q iiM - o q q iM o A iin p j o z B [ iq B is s q n s o j IA I3 S V Í1 0 V o i j B u iijd o u b o j q is s o d | E iu o u iu o d x g ~ ° d X | s i d s ji 'o o j n o s [ b ju o u iu o j ia u o j o 3 >[ o j jB q j u s u n o o d s 'j u p u B M o q s s jn o d B A o í o j s jjn s o j js jb m j o o q j u ; o jn s s o jd i o S u b j o q i u i b<j O O Z s m b p u B [ u o u ip o d s ( B ju o u iijo d x g jo js o d jo d o p A o p o d o o s o jo iu i o q j p o d d r n b o [ p o o q j J O ij p j ‘X jo jB J o q B j jn o j y oojnos jnodBA j s j b m o q j ui jsjbm jo o.injEJoduioj oqj si jojobj juBjjodui; u y Suizoojj jojbm jo jaSuBp oqi osjb jopisuoo isnui OM joaom oj [ 0[qiss0d SB MO] SB oq pjnoqs ji 3 |O J b sXE[d os[B 0JnjBJ3dui0j u o u ip o d s •(ojoui puB %£(> Xjipiumq) ojnjBJoduioj uoaiS oqj jo j sjnodBA jojbaa psjiunjBs jo ojnssojd 3qj soqoBOjddB sjnodBA jojbm jo sjn sssjd oqi odoosojoiui oqj jo Suiduind oqi jo pua oqi jB jBqj os joqureqo uouipods oqi uio jj POAOUIOJ oq jsnui jib Xjp oqj jo jso[/\[ poonpojd oq Xbui S3|qqnq ou ‘3[qissod p[noqs 3SBqd pinbq oqx Suqioq ptOAB oj uouipods oqj ui sjnodBA J3JBA\ oqj jo [3A3[ oqi M opq ss R O J O s p jou p|noqs uouipods oqi OAoqß ojnssojd j[bjoao oqx - s i; o | n q SB o jB .io d B A O p o jB jn jB S :s s 3 3 0 j d o q j o z i i u i i d o o j p o jo p is u o o o q j s n u i s jo b j S u im o j j o j o q x • p o o u B [ B q o iu o o o q y q j o q j q S n o j q i p o d u i n d s o s b S j o x n j j o q i p u B s j n o d B A j o i b m q j i M p o q o u u o j i b j o m o j j - u i o q j q o i q M j b o j b j s u i n u q q i n b o o q j j o S u i u o s '£ sjnodBA joibm qjiM psjBjnjBS jib jo Suqjig 'z joqiuBqo |Bi)uoJ3jjip oqj sduind qoiqM diund b Suisn Xq (y g d ) sjnjJodB Suijiuiq ojnssojd p 0|[B0 os oqj ui Suiuodo ][Buis b qSnojqj uoijbhobao snonuijuoo puB p o so p oq ubo iBqi oa|ba b Suisn JoquiBqo uouipods oqj oj pojoouuoo duind Xjbjoj uibui oqj Xq uoijBnoBAg ' [ :sdojs Suim ojioj oqj SBq joqraBqo uouipods oqj jo uoijsnoBAO jo ssooojd oqj jiy oiqissod SB M O | SB OJB S j n o d B A uoqM p o A O |q o B JO JB M JO UOIJBSUOpUOD p U B U O U ip o d S O qj UIOJJ JOJBAV JO UOIJBJOdBAO s i o jb js s i q j u io js Xs o q j u i jB q j o m s u o p jn o q s u o t jB n o B A O j o o s jn o o 'Z oqx s jn o d B A j o j e m q jiM p o jB jn jB S s i u o u i p o d s o q j j o s S u i p u n o j j n s oq) ui jib q o |q M jb o jb js u i n i j q q i n b o u i p s p u o o q j s n u i u o i jB n o B A O j o s s o o o jd o jo q M oqx I : [ £ I î u n o o o B o j u i u o 5) b j o q j s n u i b u o j u o o m j ‘u o i jB n o B A O j o s u o i j i p O o o u i n u i i j d o o u i u i j o j o p o x i n o d B A j o j B M j o o u i n j O A X j b s s o o o u B X q s s o o o j d u o i jB n o B A O o q j S u u n p X b m p o u i j o p i‘ u i p o o B ( d 3 j 3 q o i ‘u o i jB n o B A O j o S u i u u i S o q o q i j b u o u i p o d s o q j j o S u i p u n o j j n s o q j u i j u o s o j d " o j o i i d s o u i i B j o j n o o q j j o j i b X jp X jO A ijB p j o q j j o j X j b s s o o o u s i j i o j o j o j o q x 'a \ 0 [ J o q jB J si q o iq M l i n s s i i( i n q [ A i g s [ b o i s s b j o o q j j o j o q u r e q o o q j u i j B q j U B q j j o q S i q s i J M g s i b j u o u i u o j i a u o o q j j o l o q u i B q o o q i u i o j n s s o j d o q i ‘o d o o s o i o i u i o q i S u i i b h o b a o u o :]U B iJo d u ii o jb s jo b j S u i m o ^ o j o q x pojBO JO o q u b o S u i j j o m u o u i p o d s j o j s u o ; i | p u o o ‘o o i q d so > jB i j o i b m j o u o i i B S U o p u o o u o q M ‘Xj b j j u o o o q i u o u o u u o o d s ‘X b m s i q i i q sn o o sn S oqi )B q i s jn o d B A j o ib m q iiM os lo s p o p iO A B o q u b o S u i X j p p o jB jn jB S s i j o q u r e q o u o u i p o d s o q j u i o j o q d s o u ij B u o ij B A J O s q o o jb su o ijip u o o jo j ‘s u o u i p o d s d u iB p puB jo m jo j •j u o . u n o S u i M o g o q i j o X q j t q o d o q i S u i S u B q o X q S u i i n o q u o u i p o d s j o j p e s n o q u b o j p o A PPLICA TIO N OF A TW O PA RA M ETER BELL DISTRIBUTION IN CHARGED PA RTICLE OPTICS J.E. Barth, M .D. N ykerk and M.J. Fransen Delft University o f Technology, Department o f Applied Physics, Lorentzweg I, 262H ( \J Delft. The Netherlands For the sake o f sim plicity, the G aussian distribution exp(-w2x2) is used w henever the actual distribution has m ore or less such a form. Real distributions often have tails which fall off more slowly than a Gaussian. A, still simple, bell shaped distribution that can model this is 1/(1 + w2x2)p. H aving two param eters, a width m easure w and the pow er p, it can better lit a variety o f real distributions than the Gaussian. For large p it approaches the Gaussian. A practical m easure for the size o f the image o f a point blurred by chrom atic aberration is the diam eter o f the circle containing 50% o f the particles, d c = KcCc(AU/U)a. W ith AU the full w idth h alf m axim um (FW HM ) o f the energy distribution the value o f K( depends on the form o f the energy distribution. Kc = 0.34 for the G aussian and K, = 0.62 for the Lorentzian distribution (bell with p = 1). It was found [1] that if instead o fth e FWHM the FW 50 (50% o f the particles w ithin AU) is used for the measure o f AU that the coefficient K, is very nearly independent o f the distribution form; K<; = 0.61 +/- 0.01. A practical definition o f source reduced brightness is B = I[/(V(ro'4)dI2). In is the angular current density, V the energy and d, the FW 50 diam eter o f the source image. Fransen has measured [2] the brightness o f an ultra sharp tungsten field em itter by analyzing Frensel fringes occurring at sam ple edges in the point projection microscope. The fringe intensity profile calculated when a point, Gaussian or Lorentzian distribution is assumed for the source, w ill be shown. W hen m aking num erical M onte Carlo simulations o f the Coulom b interaction deterioration o f beam quality in a charged particle optics colum n it is necessary to make assum ptions as to the properties o f the source as view ed from the extractor. Inclusion o f m ore realistic distributions for the initial energy spread and source profile should allow better analysis o fth e effects o f adjusting the beam configuration in the column. [1] J.E. Barth, M.D. Nykerk: Dependence o f the chrom atic aberration spot size on the form o f the energy distribution o f the charged particles. In: Proc. o f the Fifth Int. Conf. on Charged Particle O ptics, to be published in Nucl. Inst, and M ethods A [2] M.J. Fransen: Electron em itters for electron microscopes, PhD. thesis, Delft University o f Technology, to be published. .-iill 3 u i a \ 0 | | e p u B 3 U 3 [ X q p o j o ¡ q 3 B jp j u i u o p n j o s jU 3 3 J 3 d jm •■"l.l. j ' o e S u i j s s q X q p s J B d s j d 3 J3M s je js X js I t i 6 1 T J ° x s p u ; X jis js d s ip X jo d p u e s p u i / s u i S 0 0 0 ‘0 Z I J ° iq S iS M J B j n s s j o u i s S b j s a b ) q S p A \ n S u jA B q 3 U 3 [ X q p X jo d j o s [b js X jo 3 ]8 u i s 3 J 3 a \ p s jE S p s s A U i 3 J 3 m q o iq A \ s s j d u r e s 3 q x puu.iuiuodxg 'c [ s,-> nb iuq o3 i s q o j d p s s n s o j p u e u o p a B j j j i p u o j p s j s s b q s n s s i s X j b u b j o s a p o u i j s q ) o j o j jB p u s jo d 3 q i pttt> ' \ j 0 )RJ0 q E | s q j u i s s n j o j JU3IU3AU03 Ji S3>jbui q o iq M ‘j u u d j o o j j j b u j s 3 q ) a p n p u i ssSBiUEApB jo q io s ¡s X [ e u e l u a n b s s q n s p uB S u i p j o s s j 3 § b u i i j o j b j s u i b s u i u i g £ j o 0 3 3 b q jiA \ p s d d i n b s X j p s j i p ? q ub:> p u s ‘s j n y s d B |B 0 U 3 u m u a q j u i j u s iu s A O j d u ii } U B 3 ijiu 8 is b s s p u o j d q 3 iq A \ sd oD S O JO iui jB O ijdo |EU0JJU3AU03 B SI 3 3 IA 3 p 3 q j JO )JB d pU 033S 3 q X U O ip B JJ J ip U O .IP3J3 p u B S sS bU II 3 q X 'U 33J3S O V A JU 33S3JO ri|J B UO pSUU O J 3JB SUJSJJBd 'UOIJBOIJIuSbUI |OJ)UOD O} S3SU3[ 3IJB JSO JP3J3 pUB ‘UOpBUUOJ .InlHUI JO J SOSUO] 3 ¡ P u 8 b U I }U3UBUU3d ‘33JUOS J3JJIU I3 ,\>¡}10q3g B S3ST1 qSiqAV 3 d 0 3 S 0 J3 IU I U 0 JP 3 J 3 u o is s iu is u E J i /\>] g 3 jn jB ] u iu i b s i } s j ij s q x u i3 js X s a q | 'J s q p S o j p s s n s j b qoiqM s s d o o s o j o i u i o m j j o s j s i s u o s " i p u B [ S J n S i j u i U A \oqs s j b u j e j S e i p s j i p u B j u a u i n j j s u i J n o j o s j n p i d V uoijduasap )uauinj)sa] 'z ■SJU3UIB[IJ pUB S S p iJ J E d 3JB3S J3PU I0U B U p u l! SUI|IJ U Il|) p u B S|EJSXJ3 J3 U lX [0 d p u s 3 IUb 8 j O JJBU1S ‘S U 0 IP 3 S |B 3 l8 0 ] 0 t q s p n p u i JS3J3JUI 3}Bip3UIUII | 0 K O |duiB S S 3 |d u iB S OIUb S j O U iq i JO 8U I8BUII JAJ3X 3 q j JOJ |B IJU 3 )o d 3 |q B J 3 p iS U 0 3 SBlf JU3UIWJSUI 3 l|) )EL|J 3IEJ]SUOU13p SSS e UII 3 S 3 q X jo s j e i s Xj d 3 ) 8 u is j b | | 3 u ib | | o u S i s s p 3 q i 3 u i |j n o 3A\ ‘3 J 3 U JOJ ISBJIU03 s iq j j o u U i S b UII ]b o 3 s q x u iq j j o SJBJJSqnS U 0 q jB 3 SnO qdjO U IE UB OJUO p s j i s o d s p 3 U 3 [X q p X j0 d S u iS e iu i p js s s s s n s u o p n p s s j j o s s o j jB iju B js q n s sq ; e s jB jjs u o u is p puB ju s u m jjs m in o q jiA \ s u s u i p s d s j s q u i n u 3 iu io }E s iq j a\ o [ p33U B qU 3 S p iA O jd Xj)U3IU3AU03 p jn O S q S iq M ;U3UItUlSUI UB 3JB3J3 OJ SEM JJOJJ3 ' [ i ] q o B O J d d B j B u o iiu s A u o s u n X ( 3 }3 ] d u i0 3 b 8 u i s n ( g - J A J H X A l ) s d o a s o j a i ^ u o j p s j g u o i s s i i u s i i B j j 3 8 e j[ o ¿ \ a \ o j a^I S b p s p n j i s u o s p u s p s u S i s s p 3 A B q s a \ u o p B n j is s iq ; u s a i q SUIBSq U 0JJ33J3 X 8J3U 3 M O ] j o s s n 3 q j si s ) ii3 i u r u ) s u i |E U 0i)U 3A U 03 u ¡ s n s j n d o í s j q i s s o d j o u s i q s i q M j n q |B ij u 3 io d s j q B J s p i s u o s j o qsB O JddB ja q jo u v aqj jo se 'S u u 3 i | i j X 8j3 U 3 u o j p s p A q j o ‘ 3 [ 8 u b S jn jja d B 3 A p 3 3 f q o s q ) j o u o i p n p s j s e q a n s j u s u r n j j s u i s n p d o u o j p s j s s q i o í s s S u B q o u i b j j 3 3 X q p 3 3 u s q u 3 s q o s j b UB3 j j i |3 n s s iu 3 u i3 [ 3 j a q u i n u o iiu o jB j s q S i q q jiA \ S u i u i b j s -u in iu is o j o u i n i u s q p j X q p s A O jd u ii s q u e 3 j s b j j u o ^ - s ju a u is p j o q u m u 3IIU 0JE A \0 | J O p 3 S 0 d u i0 3 S 3]dulB S JOJ ]B 3ldÁ J JSBJJU03 sS b U II MOJ 3 q j SI SJBIJ3IBUI JESlSOJOiq p u B 3 IU b 8 j0 J O X d 0 3 S 0 J3 IU I U O JP 3 J3 UOISSIUISUBJJ UI S U IS jq O jd JUBU O dui^JSOU I 3 q ) JO 3 U O u o i p n p o j j u j •[ 9eiz-6oi8ť v s ’n ‘in ‘joqjv «uv ‘Smpipa « °a h h zzoz • S u i J o o u i S u j p u e o n u o n g s je iJ a je iA J j o jd Q ‘ 3 u u 3 a u i 0 u 3 j o 3831103 ‘ U E S iq o iiM j o X j i s j S A i u f i a q j . » » D iiqndffy q o s z o ‘o a i g 0 0 3 1 9 ‘8 t> ?>iSJE m ng ‘ o j s s iu s u in jjs u j S u o p a , „ U p jE J A J J p iA B Q p u B ‘*>1!JB[0>I JIU JipB JA ‘ +8 u O J 3 a U lU U y S - W 3 A 1 a d o D s o jD iu i u o a p a p u o is s iu is u b jj 3 § b íio a A voq suspension to crystallize by cooling to room temperature. It is known from previous studies that this method o f sample preparation leads to regular lozenge shaped crystals, with a nominal thickness of 10 nm. The crystals were deposited from the suspension onto an amorphous carbon coated sheet of cleaved mica and susequently floated onto the surface of distilled water, where they were retrieved onto copper finder grids. The images (Figures 3,4) show the well known, lozenge shaped crystals associated with the PE single crystal morphology. The regularity in the crystal faceting and presence o f overgrowths at their edges are similar to previous observations o f these same samples by conventional high voltage TEM and scanning tunnelling microscopy [3]. The estimated resolution of these images is on the order of 2 nm. The images show that variations in contrast are perceptible up to three or four layers thick, corresponding to the penetration o f the low voltage electron beam through samples with an estimated mass thickness (pt) o f 4 x 10'5 kg/m2. References 1. Delong A., Low Voltage TEM, Electron M icroscopy 1992, V o l.l, 79-82, 1992. 2. Delong A., Hladil K., K olařík V., A Low Voltage Transmission Electron Microscope, Microscopy & Analysis, 27(Europe), January 1994. 3. R. Piner, R. Reifenberger, D. C. Martin, E. L. Thomas, and R. Apkarian, J. Poly. Sci.:C: Poly. Lett., 28, 399, (1990) F ig .l: The Low Voltage TEM Fig-2: Schematic Device Arrangement Fig.3: LVTEM Image o f PE Single Crystals Fig.4: LVTEM Image o f PE Single Crystals oz 'suoi}E jnuils 8 u is n u o i s p o jd oit?nbapi: qjiM p a p i p a j d uooq jo u o a ih | .T/is ui 'ju ru q s s jb X sqj s e ssoiA op SOIA13 u ! p sA Jssq o s p s j j s s i p -i[0JB>f-[g o j S u ip jo so B MriADMOu -| | | s p o q p u i p s j j s j s j d s ^ ú is n p u i s q j s jb s ju s u is jiis e s iu jB O u p s p pire su o i)R [n iu tg u o n n n d su ! 3 u q -u o ui [ o jiu o s X jljen b ouqnoj u io jj p s p n j s x s a io ja r a q i s jb s s n b iin p s j osn q i s u a u i p s d s o zis ||b u is X[uo s jp u s q o j p s u S is s p u s a q 3ABq p p i j s iq j ui su o ijB ju siu ru js u i I¡ir 'u o |j;p p t: u j m o js o o j SB X jjsn p u i Xq p s j s p i s u o s 8 u p q 1 o) s s n b i u q s s i o so q j S u ip u s jx g [jp s si s u o is u s iu ip £ puB 33B|d s u r e s a q i ib sjq E jB sd sj ;o u 3 íb o s pire S A ip ru js s p s jb 3S3l|l JB3U||-U0U S u p q SB [[3A\ SB "SSJnOO JO ‘pUB p 3 P S P p 3JE }USS3jd SJB JBqj SIU3UISJS [|B JBqj 3JI1SU3 O) SB ARA\ B ip n s UI 3JH33X3 OJ J|tl3IJJip ‘8uiUinSU03 SUIIJ X||BJSU33 3JB S3nll|Ul|33J 3S3q j \ Z \ s u o i sb 3 JJ3UI qjlM ji S u ip jE q u io q Xq s s R jjn s o qi j o u o is o j s [R iju sn b ss s q j s s a j o a u i q siq M ((SIA11S) X d o s s o jp s d s ssb u j u o i X jB puosss ‘( S d X ) X d o o s o jp a d s u o i p s j 3 - o ; o q d X bj-x ‘( S 3 V ) X d o 3 so j]3 3 d s u o j p s p J 3 3 n y S a ) s n b i u q s s j X d o s s o jp s d s so B jjn s b S u tsn p sjn s R s u i s jb s s s q x S 3[l|O jd (EUOIJlSOdlUOS |BUOISU3UIip 3UO SSIjdlUOO s p o q p u i [ESIjXjBUB 3¡qB[lBAB XjJUSJJtlS 3l[ ] ‘uM Bjp S u p q 3 j e SJ3JBAV u iu i ()(){7 puB uiui 00£ J ° S upssj puB u o ip n p o jd 3 l|l j o | s ire |d jnq j s p u r e i p u i uiui 002 J ° s j s j b m 3|puB q sjuB jd j o p n p u o s i u i s s ‘X pu sjjn ^ S3[3 ub o i p 3 j|i) s q Xb u i 3[diUBS s q j 3JSI[a\ puB s u o is u s iu ip s jd u re s s S jb ] u o S)S3J q 3 n s u u o j j s d s 3 jr | o i p33u 3qi Xq p s jE s ijd u io o j s q y n j sjb sjusurajinbsj s s s q j ‘Xijsnput j o p n p u o o i u i s s sq; ui 3SB3 3 l|l SI SB ‘SUOIJEOqddB J0JJU03 XjIJBtlb UI ‘3|dlUBX3 JO.[ 3A ipnilS 3p-U 0U pUE 3JEjn33E ‘JSBJ 3q o i p33 u s iu 3 |q o jd q jo q 8 u ia jo s jo j spo q p [A j X80 [0jp u i j o u o ijE U iu u s p p 3q; puB ‘s is Xjbub |B3jlU 3l|3 JO |B)U3UI3p SAIJEJIJUBnb ‘Sp|OJ OMJ 3JOJSJ3qj 3JB XßpOJ 33EJ 5M SU P jqO jd 3qj_ 3 | q B | iB A B p o q p iu jbsijX jbub 3 J 3 l[A \ 3 |B 3S 3q i si SUOip3JJ3dlUI 3 A I)B J U U E n f) JO io X | j n | n 3 iij t : d 3 I1 3 u 3 e IU pun SR 3JB B J J I 1S JO 3 JO J :S 03 s q j 3 p iA \ X p U B A q l UI J 0 p tip U 0 3 I U I 3 S J O S J U B d o p 3 3 B JJI1S q jM O j3 p ix E jid s j o JO 3 p J 0 p n p U 03 IU I3 S 3 SI S iq j Ul 3 3 U 3 S3 j d JU B JJO d U Il 3 q} UIOJJ JO si J3\B [ JO U 0 J 3 IU I-q n S p A O U ‘3]duiBX3 J O J ’3 JO 3 U 3 I3 S U O I j n q iJ I S ip [EUOISUOUIip 3 3 j 3 U IS U B SDISXqd SI S Is X p U B SJU 3 U I3 3 U B IJU 3 í s u i s i s X s j 3 X B [ ij | n iu 3 l|] JO U O I J B p j d lS J U I 3 u i [ p p 0 u i p u B 3 u ip iI B } S J 3 p u n JB IJ3 JB IU pUE S SU0I3SJ 3 S I0 3 j d 3 q q i s s j n p n j is p s s o d o id X jJ B p s d S S S u ip u E js js p u n o q i o j p u B ‘ 8 u i p n p U 0 3 IU I3 S U I S S J I I P I U J S IA |B I3 I U U I UI )S 3 J 3 JU I ¡B J J U 3 3 J O 3 J O J 3 J 3 q j SI p i[ O S B J O B S JU 3 U I 3 [ 3 q io q s j q B j í n s o u i B q j [ [ B u is o s 3 u i u i o s s q X 8 0 [0 U q 3 3 J 3 3 I A 3 P -s s s s s s o jd 3 |[|B P U J [0 J 1U O 3 3 q j p u t: 'UO[lB3UqRJ 'u3[S 3p III 33 33IA 3 p 3 I U O j p 3 [3 3 3 BJJI1S J B 3 U p U B U O I1E U I U U 3 P P 3 q [ i JO 3A IIISU 3S U O IJB ipB J OSJB 3 JE q 3 [l[A \ J O 31U 0S 3 J 3 q M S lU 3 lU 3 |3 -IJ[tlU I J O pSSO dU IOO 3.1 R 3 S 3 q j_ 3pBUI S¡BIJ3JBUI p A O U UO S IS B q d lU S J O [B 3 p J B 3 j3 B X [[E n b 3 S 3 jn P n j} S - 0 U B U J O SI 3 J 3 l |l ‘3 3 U 3 I3 S [BIJ31BUI UJ [ [ ] UIU 0 0 1 1SOUI JB J O SUO ISUSU Iip [RJ31B| J O pUR 33EJJI1S 3 q j M O p q IUU 0 ^ - 0 1 J ° 3[R 3S 3 q j UO S 33 E JJ3JU I 3 A ip B M O [[E qS l[l[A \ S S j n p tU J S J O U 0 IJB 3 Ijq B J 3 q i 3 J i n b 3 J ||[ A \ U jni UI 3 S 3 q i )¡q O (Z H W 0081 J ° sp ssd s > [3 0 |0 )E 3 u i> [ jo m s d iq o I A J V > I S /I \V > ia S O IA I3 p ’S '3 ) p n d o [ 3 A 3 p s q [ | i a \ u o j o i u i j o - q n s s q j u o s u o i s u s u i t p s s i A s p ‘s j b s X o i - S ix s u 3 q i u i )B q i u o | j s 3 3 3 n s s q ; o ; s p B 3 [ s j í n o j p p s j B j g s j u i j o u o n E S u n j B i u i u i 3 q i u i s p u s j x >[n•3B’5[jo X■uiqo@ 3uiui ) i n ‘a a S O I O A ^J° á ‘VGA jo XjisjaAiun ‘s o m o jp s jj j o lusuijjBdsQ PBUIOQ-I3 jai ^ UOIjn|OS3>I |B!JBcls q§ÎH SIsX|BUy OAIJBJIJUBIlf) H igh voltage transm ission electron microscopy (STEM ), has been used in the past as the prime tool for obtaining dim ensional (i.e. metrology) and crystallographic inform ation at high spatial resolution. The technique rem ains to be so for fundamental research, but is considered less favourable to use in industry and particularly in quality control because o f its destructive nature during the course o f sam ple preparation. In addition, in the STEM , the whole sample thickness contributes to the image formation, m aking the results obtained to be less reliable even with the aid o f deconvolution methods. The use o f STEM s is therefore considered not to be practical in on-line analysis o f large samples. M etrology techniques currently available prim arily involve the use o f low voltage electron m icroscopes (LVSEM ). A lthough there has been a great deal o f instrum ent developm ent in LVSEM over the last decade, and where currently m ost m icroscope manufacturers offer SKM operating around the 1 keV and lower, data analysis at these operating voltages is still in its infancy stages. O ther probe m icroscopies, such as the various forms o f tunnelling m icroscopes (STM , AFM etc.) are very slow and are therefore ruled out for the foreseeable future. Energy dispersive x-ray analysis (EDX) at low incident electron energies is an area o f research which is seeing som e activities. These, however, are again limited to electron energies around (he 5 keV region. The present contribution w ill attem pt to highlight the areas o f developm ents in stirlace m icroanalysis and high resolution electron microscopy. In particular the session is to address the recent developm ents dem onstrating the successful use o f the cathode lens in scanning electron m icroscopes (SLEEM ) [3] and the m easurem ents o f low energy secondary and backscattered electron coefficients from clean solid surfaces for use in both LVSEM and SLEEM [4], O f im portance in this respect is the correlation between the atom ic num ber contrast obtainable in SLEEM and LVSEM as a function o f the incident electron energy. W ork in com bining A uger analysis w ith low energy im aging as a step in the interpretation o f the SLEEM contrast w ill be covered [5]. Recent developm ents in parallel data acquisition in AES w ill also be addressed [6]. »- References [1] El Kareh B, 3rd International W orkshop on M easurem ents and C haracterisation-of U ltra-Shallow D oping Profiles In Sem iconductors. M arch 1993, N . C arolina, U SA. [2] See for exam ple Q uantitative surface A nalysis Seah and Briggs [3] M ullerova I and Lenc M, U ltra m icroscopy, 41, (1992) 399, and M ullerova I and Frank L, Scanning, 15, (1993) 193. [4] El G om ati M and A sa a ’d A, M icrochim ica A cta, (1998) In Press. [5] El G om ati M , M ullerova I and Frank L, Proceeding o f the International C entennial Sym posium on the Electron, C am bridge, UK, Septem ber (1997), In Press. [6] Jacka M, K irk M , Prutton M and El G om ati M, 5th International C onference on C harged particle O ptics, D elft, A pril (1998). h 11mi i'rí i is i >i.»!a Ajisi;.) m?:> m a;sA s a j o d t u p ^ n b a q j^ Il p a A o jd iu a a r e s ju a m a ja ajodaA jaA \; .10 •>|<X1111.in ji s'p[aij ajodiujínnb aq ; o;uo p aso d u iu ad n s aq irea qaitjAV spjatj a jo d n p o paiT?.i .\j|i!i |i!ds' .fnoj jsou! Aq pajusuoduioo aq sXmpB trea su o p io ^sip .iapjo-p.inj; aq ; a q ; u u | 4i a \ kAuj jo q ;ia d aijB u iäiiS B a q ; o ; 3 u i a \ q ' m a ; s As j o j o a f o j d ju 'jo ; a q ; j o imI,is ni.) is a s i ||o ii.) | [H.io) a q i j o a S ire q a a S je j « S u ijq u n a s ^ u a u ia ja S u is n a o j A j3uoj:;s oji> s a jo d n jp r c n f ) si.)|d i.i | a |o d ii.i[n ? n b o m j jo S u ijs is u o o in a isA s j o p o f o j d a jo d i u p ^ t ib 13 a s o d o j d aA\ a p i ! ; s -i|n si 111 pioA n o j p a ; n i i q A jS iioj^s si u ia ;sA s .l o p a f o i d aq 'j j o u o iiT O ijniS B ui jo a S ire j ' 111 .isn.) s 1111 hi u.iA g p a p a a u si a j o d n j p ç n b jT ?uoi;ippi! ire m n i ; a a d s s s o j A S jau a a q ; jo himWimiii a i; m u 3 r ; s u .10} a\o jjt; o j •[g] s a s u a j ju u o iju a A u o a a a j q 1; ;si3aj it? s a j m b a j s u o ij i.m.i.X11? iju h is q ij.n a ir e jd 3 u ip jo a a .i a q ; a t a m q d u o i s j a d s i p a q 1; p tr e a u n jd a S e u ii a i m m • • 11|.>i; .>i( i aiii’im AjaArreiuaijT; irea qanjA\ nia;sAs jo p a fc u d y sasuaj p u n o j aijauStm i ".«i («i 11Manatí in s'isisiioa sadoasoiaiui u o jp a ja jtmoiiuaAuoa jo uiajsAs jo ;a a fo jd aq j u i s ^ s á s jo ^ D B fo jd 8 t[^ j o a u i ^ n o Z ■ s iiia u ia ja >1.1 i.iiuitiAs \[|i!uor;t>'jo.i non ureiuoo Ajijiessaaau jsnm qaiqA \ ma^sAs S iiiS b iiii oiiBuiSrjSB m.' \(| lam a q Apio irea noijipiioa siqjL Aej.re Q 3 3 a q j jo uoisuajxa [Iîoi'ijba a q ; qa;uui s.m q a q ; |i;i|i qans airejd S u ip jo aai aq ) ;ir u iiu p a d s auq v. o;ui autqd u o isiad sip a q ; ;t; 11111.1 laads .)i|i;uiSr;s a q ; uaAiioD o; A.ressaaau o s p si ;i ‘B jaureo-Q Q Q a q i }« sai^isiiajtii . >'.:.i i.-| \ i ti i >1111 pioAt; ojj ;i jo ;.red ;au i;sijj v .laAO j o nm .rjaads aji^ua aq ; .w ao AvapjaAO in: V ïiijiirejqo .10] p ire suoi;Tî;i:)xa jjaqs .iauui ;suoi;isire.i; p treq u iju i put; p u ^ q ja ju i ‘suoi; i; ii.ixa uouistqd si: qans ‘m tu p a d s ssoj ASjaua a q ; jo s u o iS b j a p su a p B Ju q a 8 m ;« 8 i;saAui ,io| A.ressaaan si A|.iado.id s iq x u o iju o ijiu S b u i ajqüiJiïA q;iA \ am qd j o p a p p a q ; h i u o i;iij i is,i l A'W.iana jo sso| jure sn o ijjo isip Ant! ;noq';iA\ ‘.laijij aq ; p u iq aq auüjd iioisjadsip a q i 11: pam.ioj s| qaiq.w ‘m u j;a a d s ssoj ASjaua a q j aSBini AjaAi;i3ii.iajjt! pjnoqs ina';-sAs siq; ■i . i a o . ) , i o | Y a kjhuI) aSximi a q ; Sunaajjt! jnoq^iM noijuagiuSBUi jß^o; a q ; jo saSireqo aS.rej .i|(|t!na o; apir)iuSit?ui jo ja p jo auo ireq; ajoui Aq ajquiJBA aq ;sn u i ma;sAs .io;aa(ojd aq ; I" 1101 nMijmttum aq ; ‘|g| uor;T?aqiu3i!in a ^ ip a u u a ju i p u i;s ip v jb in nijii;do s^.jajjij aq'; jo .i.iiii!in.io|.iad aq; aauig SMopniM A3.iaua aS.rej jo as^a a q ; ni 3iii3üuji ai;i3inojqaB A j;napg ju s i: .loj a \ o | jn o ; ja ju o in suoi;n.ijaqi 3 aij^ino.iqa jjuras baeij jsn n i uiajsAs siq ; ‘ajdurexa io.| |¡ | maisAs .io;aa['o.id a q ; jo sai;jado.id a q ; uo suoi'jij^uoa ji3.iaAas sasodm i adoaso.ia m i uo.riaap noissinisni!.i; i? o ;u i Jaijg AS.iano u o ijn jo saj qSiq n jo uoi;T?.iodjoaui aqj^ ' U 0 I^ A I^ 0 ]A[ I ipV^SVLlVQ US', Í!) !) ■iffmiujny.unj-.mj] ‘fpvjsuuvQ ftpsjaavufi jmiuyo9X ‘soisfii^j pdijddy fo afnpjsuj asoy s o id o o s o H o m v a H x iM - jj ju re u n a q .ia Q ' y\ N O H x o a ia m o is s im s m v h x o n i -iT a x iw -A O H a N a -u n o a F v a x sA S H N O ix v o ia iN O V M o x o a f o n a a x a v i a i o a n n a v r i b an d astig m a tic im aging w ith any degree o f astig m atism (length o f th e line im age). A single q u ad ru p o le trip le t generally form s cith er a first ord er d isto rte d stigm at ic im age or two line im ages. T hese n o n -ro ta tio n a lly sy m m etric first-o rd er d eviations are co m p en sa te d by th e second q u ad ru p o le trip le t. Since th e num ber o f th e individual q iiadrnpoles is larger th a n t h a t required for stig m atic an d d isto rtio n free (first order) im aging, 1Inp a th of rays w ith in th e p ro jecto r system can be varied even if th e m agnification is fixed. O w ing to th is behaviour, it is possible to a d ju st th e q u ad ru p o le stre n g th s in such a wa\ th a t th e chro m atic a b e rra tio n of m agnification a n d /o r th e th ird order d isto rtio n an elim in ated or m inim ized, respectively. For th e recording of th e energy loss sp ectru m , a ch ro m atic ab erra tio n p erp en d icu lar to th e d irectio n of th e dispersion can be to le ra te d , as it only enlarges th e extension of th e im age lines. T h e com p o n en t of th e axial chrom atic a b e rra tio n in th e direct,ion of th e dispersion m ust be elim in ated by ap p ro p ria te ly read ju stin g th e stre n g th of the hoxapoles w ith in th e energy filter. For recording th e filtered ach ro m atic im age of the o b ject or th e diffraction plane, respectively, th e qu ad ru p o les are excited in such a wa\ th a t th e th ird -o rd e r d isto rtio n is m inim ized. A ny u n d u ly large rem aining com ponent o f th e d isto rtio n can be com p en sated subsequently by an a d d itio n a l o ctu p o le field D espite th e fact th a t th e q u ad ru p o le p ro je c to r system consists of a few m ore elem ents th a n th a t com posed of ro ta tio n a lly sy m m etric lenses, its im proved perform ance and v ariab ility outw eigh th is m inor d isad v an tag e by far. In ad d itio n , th e d istan ce between th e recording plan e an d th e filter can be sho rten ed due to th e stro n g refraction powei of th e q u ad ru p o le lenses. References [1] Rose, II ., C orrection of ab erra tio n s, a prom ising m eans for im proving jjie sp atial a n d energy reso lu tio n of en erg y -filterin g electron m icroscopes, U ltram icroscopv 5<> (1994) 11-25. |2 | U h lem an n , S. an d Rose, H., T h e M A N D O L IN E filter a new high p e r f o r m a n c e im aging filter for su b eV E F T E M , O p tik 9 6 (1994) 1G3 178. [3] G erheim , V ., B erechnung eines variablen P ro jek tiv sy stem s für ein energiefilterndes T ransm ission s E lektronenm ikroskop, D iplom T hesis, Fachbereich Physik. Institut für A ngew andte Physik, Technische U n iv ersität D a rm s ta d t (1993). PZ •(¿661) S-inqsuoSoy ‘o¡do>|soj>|iuiuouojj>p[g Jty ¿661 SunSBiJopuB[pjQ ‘jqodç y puB SBZs^pjg q ‘:>puBig s [ 9] (9661) o u jg ‘so n d o o p j j j t y p o S .r e q 3 u i s p u o jj ju o o o y u o (9 6 6 1 ) u 'i q n a (S66T ) lu s s j u j q j ç ‘o s o y J o iiM J J 0 3 [ g u S u o o u n g q j j j ‘o s o y S i z d i o g ‘3 0 a « P § u n § B X h p ir e j o j i o j v h h Pub s u z s ^ ia ij LZ ‘a s o y h p u e « I I Í M ( W t ó l ) s i j b j u o ijA j 'j j o o j g j § u o 3 j u i q j £ ] ‘o s o y ‘s b z s ^ i o j j a q [ç ] ‘JOIWIAI H M H ‘S B Z s ^ p j j a h P ub s b z s ^ o jj [£ ] q [z ] '0SČ-1 iZ (¿661) f8 JJ ^ d S «3313 T IB Is ¥»>d [ I ] :SOOUOJOJOy J o jB J B d o s u r e o q o q j q S n o j q j s u o j j o o p o q j j o o § B S S B d o o j j - u o i s j o d s ip o q j s i ju o u iu S q B 100.1.100 B j o j . t o j B o i p u i is o q o q x 'S q o . i S u i u n j o q j X q j u o u n s n f p B ( B o u j o o p u b X q P o / A o q o j o j j - o i u q p u i n j o s u o j a \ o j B j o Ä o u jn o o B ü b q j i M j u o u i j s n f p B a i d [ B o u r e q o o iu b j o s j s i s u o o o j n p o o c u d liio a iu S i| B o q x J o j B J B d o s u r e o q o q j j o o o u E i i u o j J o d o q j o j n s f i o u i o j o u o 0 |q B U O s o S u c q o o s o q x O o B im o i B i p o i u j o i u i o q j j o u o i j i s o d p u B u o i j B o g i u S B u i o q j o S u B q o q o i q M s j u o u i o p S u i S b u i i j b u o i j - !p p B s B p o s n o j b s o s u o j p p y o q j u o i j B J o d o j o o p o r a s i q j u j j o j B . r e d o s u iB o q o q j q S n o j q j u r e o q u o j j o o p o q j j o ‘( q j S ig ) „0 6 J° u o ijo o g o p b q j iM o S B s s B d o [8 u ts b o j b S ijs o a u i o a \ ju o s o j d j y on[BA p o jB jn o jB o o q j o j o s o [o X jo a s i " n l S O . I o )!UI!I u o q r q o s o j p a in s B o u i o q x 3 V3 S 3Ifl J ° o q o j d u o j j o o p o q j s u i j o j s u o | s i q j d n jo s 1110 iq lo jo o y o p o q j j o o o b j jix o o q j jb p o o B jd s i q o tq M [9 ] s u o j p p q o ijB js o jjo o p o q j S u tjs o j j o j o iq B o q d d B o s ¡b si j u o u io S u b jjb o q x ’[to o b Xq s o jB j d - o io d o q j p u B s u o j O A ijoofqo o q j u o o M jo q x iq i o ijo u S b iu o q j j o j o jB S U od m oo o j ( q ) p ire s o jB j d - o jo d o q j o z q o u S B U io p o j (b ) X jb s so o o u s i jt ‘u i i i n |o o o d o o s o jo iu i p o u o q jS u o ¡ o q j j o ( u i u OOT ~ ) J!111’! u o i j r q o s o j p o jo ip o jd o q j § u i q 0B0j j o g ( b z ' » ¡g ) s u o | O A ijoofqo o q j pu B u io js X s jo s u o p u o o o q j u o o M jo q p o jo ju o o u o o q S B q jo jB JB d o s u iB oq o q j ‘o d o o s o j o ;u j S u iu u b d s 0 9 6 1 AISG 0 3 3 E s ! q o iq A \ ‘q o u o q j B o i j d o - u o j j o o p j q o j o js o j b s y •( i Sig) juouijsnfpB jboujoojo jo Xjqiqissod oqj opiAOJd oj oaoojS q 0B0jo doj 110 po.oiqd ojB sjioo Suiunj jojno pus jouui [Buoijippy '[ç ‘p ‘£ ‘z] sojBjd ojod oijBjpBnb pjp-red -ouiqd OMj jo sooBjjns jouui oqj uo soaoojS ojui pooBjd ojb qoiqA\ sjojduj [too jn o j Xq po/qBO.i 0.1B sp p ij o|odip oqx uoijooyop- 0o 6« pu^ SuiSbuii oijbuiStjs opiAOjd qoiqM spjoq o p d ip oijou -Sbui jo uoijBjnSquoo oujouiuiXs XjqSiq b jo sjsisuoo jj uojBJBdos ujBoq oojj-uoijBjjoqB ub jo uo|jBJodjoou| oqj sojBjissooou ojnpooojd uoijoojjoo siq x JOJJiui oijbjsojjoojo ub jo suboui Xq po)B uuu|p ojb sosuoj uojjoo p oqj jo uoijBJJoqB |B3uoqds pus oijBUiojqo oqx '[ i] („ssnbiuqoox Iubao[o>] |[ y jo j odoosojoip\[-ojj03ds(l) XHVWS oqj jo jJBd [Bijuosso ub si JojBJBdos lUBoq oqx ÂUVWJ9Q ‘ipniSUUVQ (iXZPl) - ( l '9 ^(fi>Jtspn¡3si¡30jj ‘ipvjsuunQ Ájisjantufl jnoiuif.iaj ‘sJisÁijj paijddy fo 3fvii¡su¡ osoy h pub jq o d s y ‘sbzs>[io jj a ‘F jjb h y W 3 3 3 /W 3 3 d a s u a y y o D v y o 3 a o .i.v x v d a s i w s e v j o x s s i I4U m in m id se c tio n v ie w c ro s s s e c tio n A -A mam coils coils hig. 1 - M idsection view and vertical cross section ot the beam separatui a) T est o f the electron-optical bench b) Test o f the beam separator e le c tro n g u n a n d c o n d e n s o r s y s te m electron gun and condensor system beam separator beam separator field lens o bjective cham ber o f the L E O D SM 960 Fig. 2 - T est facilities for the beam separator field lenses objective cham bci o f the LEO D SM 960 .) A O .id u i| o ') . ia p . io ni p a p p o jd , ) | ä u is j o u o i j B . i S a í m p i r e so}v>[d p u i r e i p d iq a - u Q a r e ‘ . la jn d r a o a B ja u r e a - f lQ Q ( B u o s . ia d •o i j b j a s ; o « - o ; - [ B u S i s a q j « n i S u is s a a o . id a S m u i p u B ‘s j u a A a ir e a s a \ o [ s p a | o o a b o j p a i a j s i r e . i j / í | p ? 3 i j d o j a q y p a p u a s u a o m j X q p a i j ; s u a | i i ; ' s u a | a | o d n . ip B n b j i j B j s o J i a a p ir e Á q p a u - i i i S u u i s ; u j a j j B d a a u a j a j j a j u ; Á . r e u n . i d a q j^ - s a j n i n i u 0 5 : s b 8 u o | s b s a u n j a . m s o d x a o j s p u s ] ‘( , _ 0 I ~ ) p a u u o j a . r e s a 8 u u j a a u a j a j . i a i u ; a q j a ia i| A \ a | 3 i r e á u ; i a q i o j u i p a n u u a s t i o i j o 1110 .1 .1 1 0 a q i j o jB | iiS u B j o p u ire ip i . i t í d |[ B U i s X j s a a q i 's s 0 [.)t||.i 0 A ,) \ ; jo d s a [8 u ;s b o ju ¡ 3 u ; n ; u j a - o . ia j . ia j u ; p i r e B jo ja m o s u a a jjs u o ; u a J A \ ja q aqj uo s i a o . in o s a q j aq Á ju o a a .iS a p *u o i) B . r e d a . id X | ; j B . io d u ia i p a j j a s u ; p a jjo jju o a ir e .) l u a j j B d s i ip iq .w iio is s im a j si q a tq M j n o q a j o .ia ia u iB ip .ía jjy '( i ' 8 1 3 ) la ja m M a ij is u a j u i a S m u i a jB [d s ji ‘u o ijB .r e d a id Su nng M d j a i u o . i a j . w j u i a q j n i n j i s - u i p a . r e d a . i d s i " x a d B a q j j o a .m j b a . i u j j o s m p B J j S . i b j X p A ; j B p . i e s b i| ip iq M ‘ d ; j u o is s i u ia p p y u a j s S u n j p a j iia ; . io - ( j j j ) b u o s u i o j b i ia j s S u n j j o .la q u in u [ ¡ b u is d i j j a d n s . p a j B a j j X | p ? p a d s b a s n aA\ ' a j j n o s ‘ [9 ] S u iis is u o j b jo u o i s n . i j o . i d u ‘ 'a - ; ^ d i j j a d n s , a q x liia . i a q o . ) a q j d '/ i u i i X B U i o j . l a p j o u j ‘s u o jp a p \j ¿¿ o j uo¡ p p q q ji.u u o ijB . ia d o S u u n p a q j Á q p a jjiu ia p a m . io j . i a d a q U A \o p p a p o a s i i o i - +a j j j o x n jj ir e j s j i j d o j a ja iu o . ia j. ia j -111 a q j ) o j u a u i u 8 i| B a j o j a . i a q j ‘ a ; j B j s o . i : p a p a .re j a j a u i o . i a j . i a j u i a q j j o s j u a u o d u i o o [ B a i j d o [|Y u o is s iu ia a jjiio s u o - ip a p u o j-p p q p ir e u o ; u a a A \ ja q p a ip jiA \ s a q i r e j j u a u m j j s u ; a q j u i p a } B . io d . i o a u i a 8 ir e .i u i d a q j u ; a .re s u o ; .1110 j o s q i 3 u a p A B . u a q j •y aq j s q j S u a p A 'B A \ q j i A \ s i u u a q * ¿ | q « js X | p ? j i u o j j j a p - ¡ ( B j q i A 0 1 a A i j j S u a s u ; ‘ p a 8 8 n .i Á '[ ; j n u i p . i o B . i i x a a q o } p a A O . id s b i| i p u p w J ilo j o a d Á ) p a q ip o u i a q i jo |i i j j j ||o j u o ii'e . r e d a s j] j o ,ia p .t o a q j u o [ B u u a q j q j i A \ 8 i i i > | j o a \ s j a j a i u o j a j j a j u i 11101« o j p a . r e d u i o j ’ a o u is j a j a u io j a j j a j u ; u o ; u b j o j a jq B s u a d s ; p u ; a JB s a .m jB a j a s a q j u o .ip jp sasn liio j j d A B M e s; i; [ B J is Á q d ‘a j u a s s a a n .ii b - p a A J iip B u¡ Á q a ia q M si a ja d s u isu d iq p u B 's u o ‘ Ig l .ia j a u io . ia j j a iu i 3aba\ u o i u i s } j> p iíd jB J ijd o uoi ir e Á q ' 3 i j ) s u o ; j o j . ia j a u io . ia j . ia iu ; is .ii j a q j ju a s a . id aA\ j a d a d ’( ' i u o is iA ip s ;q i u j • s u o . iia a p su s a p ii. r e d j u j o d , s s a p . 1n i J i 1.11s j o j s b a i u u s a q j s ; .10 ’ s u o ; i p ; j - a j n p i u } s [B iu a ju i u o s p u a d a p s p jiiu a jo d J o p a A (sa j [B u lu j a q j a q j jo u io p a a jj jo JJB J a q j j o jd a o u o D j o ’p p q J i i a u S a i u o j p a p a q j 0 1 a [ d n o a (tre iJ o d u n a jid s s a a jS a p J ija u S B U io J ia a p a í| p a s ire a IJiq s a s a q d a q j ja q ja q M u b j a u o • } u a u i i . i a d x a u i q o g - A O i i o j B q y j u i o i i r e q i ¡ A \ \ ) , i i i p n , i i s [tí 11 p iq ju o a -la ju i su o i a q i 01 a u Q tnuo-fv p»ß.imp A iiA iiis u a s p a j u a p a . ) a .i d u n q j]A \ s j o s u a s [ B i ij a u i j o l u a u i d o p A a p a u re s a q i ui padopA ap > |,)B | a q i o j a n p [{?] a y ja u io ja jja ju r :o p s .ia ia u io ja jja iu ; i n o q u a A [ o s o j p a p a d x a a .i a M s . i a i a i u o . i a j . i a j u i 1101 uaaq ‘l a ^ ‘Ä | | B U o ; i ; p p y •[(;] s p a j p a [ j i i . r e d i i [ i i i u ‘Á j i A i | B p j p i r e s a ; u B q a a i u u i n j u B u b j o s j s a j [ B i u a u r e p u n j IIIO JB s b s u o i i s a n b |B q i jo jo u ’s j e o / Í q S 11 ‘. l a i a i u o j a j j a i u ; suq u o ; a [q B js Á ;q 8 iq i r e q j a j o u i j o j a [ q B ¡ ;B A B u a a c | s u q u o i} B p id iir e a i j o a s s a 8 u ip u o d s a .u o j a q j i[jia \) s a p ;i.r e d .ia q io a q i u q e (a sa q j jo p a S .r e ip j o j s a i j d o ¡ n jja M o d ‘p u isq [ B J i n . i u j o j s j u a u o d i u o a | B a i j d o [ n j . i a M o d d p p A a p 0 1 A 'j E s s a a a u Á S o ] 's a p i j j B d - o u q a a j a q i j o > pB | a q j u a a q s u q Á u p p S u o ; s ;q i jo j a s ire a a u Q a q i JB X | u o u o j i B . i . K i o u ; j n d X .ia A o a s ip s j ; [ 3 o ,if[ a p a ja M r[ j a j j B s .ia ia u io .ia j.ia ju ; i u o i b X jjjo q s [ [] p a z q B a .i [(.] a p B a a p s ; q i j o 3 u ; u u ; S a q i s . t q a q i '/ C i q B n p a p ; j . r e d aA B A \ j o uaaq SBq s u io jb jo u o ; j a T 3. i j j ; p a [;q ^ s u o t - + á j j ijjiAY A .rj,)u io .ia j.ia jiii m s u d i g •j HumiUiQ 'uißuiqnj^ <)L()(iL~(¡ 01 >lpisu3ß.iopy .tap f n y udßuiqnj^ i o ftsjsa iu /) .u p y /s tii/j tfpuvaiäßu y j n f fnftfsu] j a r e j ^ a .\\: ] p i r e p s a ; \ ¡ A H X o m o H a jH a x iM i W s r a d ia - N o u x o a ia -n o i q n v p |B . i B [ [ - q a u q p s s u j j z u e j j n i s a o N V A Q V x N a o a n In sum m ary, Fig. 2a shows diffraction a t th e edges of th e b iprism filam ents, and Fig. 2b shows b ip rism interference fringes of H e+-ions. In o rd er to reduce noise th e in te g ra te d in ten sities I n of a b o u t 50 successive lines p e rp en d icu lar to th e fringe direction are given in Fig. 2a,b. No ad d itio n al filtering was applied in th e d iagram s on top. All b u t one of th e crucial sta b ility req u irem en ts for ions w ith sub-pm w avelengths are m et by th e in terfe ro m eter. T h e only excep tio n is for th e ion source whose em ission site tends to m ove u n co n tro llab ly in la te ra l d irection durin g th e long exposure tim e. L ateral cohe rence is destroyed an d , w ith it, th e fringe visibility. Im provem ent of source stab ility and b rig htness are th e n ext im p o rta n t goals on th e way to an ion in terfe ro m eter as a research tool. im a g e intensifier Fig. 1: Schematical set-up of the ion interferometer 0.9 _ i 0.6 0.3 i i * i i n i A A” \ i i_ i N ^ i i i 5 10 15 20 25 30 35 Pixel n u m b er 0.9 _ i 1 0.6 - 0.3 1 1 A 1 1 A 1_ A A" 1 'T ^ l 1 1 5 10 15 20 25 30 35 P ixel n u m b er Fig. 2a: Ion-diffraction at both edges of the biprism filament. Top: Original data. Bottom: Smoothed. L 0.9 J. 0.6 - / 0.3 V ' Tn V l\ i_ \ A A / \ A / \jv VV V vv 5 10 15 20 25 30 35 P ixel n u m b er 0.9 i —T---- T 1 1 1 1 _ \ ~ /„ 0.6 v \J \ J V v 0.3 \a A A f\f I 5 10 15 20 25 30 35 P ixel nu m b er 2b: Biprism interference fringes of He+-ions ■ T S I-m l(e 6 6 t) 8 ť v ->P>N "¿I tp e q p s s E H -6 W -Ÿ .W ‘(8 8 6 l ) T 2 J3K W p a s u a p u o j - 'a 3 u sz • * % / " W s n ^I g - s ü t/j z “'3 'P«qi>>«SRH [s] ' 09¿ ’(¿661)82 t m n a y s K y j ‘-\e p y J3tI37 ;9ť 0? ’(¿66T)8¿ 1 P 1 '» K y j ‘■VW qai.ABSBM " d jaÁnog ‘ q x u o s a b ís iij) \ZL7,-Z9Z ‘(8 8 6 l)lQ I H votsfiyj ‘X ’f iw irejo [*■] ‘(Z6 6 I ) s s a jg ji iu a p B jy ‘g ç i ’d ‘Jo ijp a u B u u a g >| ( [ ‘.Á jp iu o j a j j a j i q u i o j y , ui ‘- j n z u iq q g [g] £695 ‘( 1 6 6 1 )9 9 t m •«»V 's f W ‘ 3 0 P '^ 'P H H ‘ V t ) a j p q a j n x ■‘H MO mo.i|s>|;.| ‘-¿yy-Q qi[a>[ ¡6892 ‘( l 6 6 l )9 9 1 m a o y '*&*I d ‘T M3uA'lIA¡ ‘‘O fe] '5 6 ‘(0C6 l ) T9 sH yd Z ” 0 UI3>S ‘’I u B u u a js g [j] s a o u a ja ja y •y B q a s u p u ia S s S u n q a sjo j a q a sjn a Q a q t u io jj >[Jom s i q x lu a iu a S p a jM o u jp y j j o d d n s Á q a j q i s s o d a p i e u i sbav •S uiíunóa a a u a p p u io a js b j j o A'Sojouqaai a[qB[reAB Á jjuasajd pire ja p u io ja jja } U i u o j p a p jn o qiiAi ajquAjas -qo a q p jn o q s s u o j p a p j o S u iq au n q iju B ‘u o is n p u o a iq u reaq u o .i p a p i n a ja q o j e ui sa a u a p p u io a uiopuB J j o u o i p n p a j a q j sasrrea s i q x 'a j d p u u d ¡[riEg a q j o í arip saAu.re au o p u o a a s o u u o j p a p ire jo j e a u j e a q i j a y e s ^ ^ o i ^ sjq aq^ uiq^iM a ju is a ju j a ju a p p iq o a u io p u e j paanpa.i fr_ o i ■I Æq h a jn s e a u i o í p a d x a 8a\ ‘Á |uo s o i_ o t jo u o ijrq o s a j e S u ia iíjj 'a u n ) a a u a ja q o a a q i uiqjiM 3a lijb s u o j ja a p o » } o u iB q j aas ÁqEaj o i ja p jo ui ° i a iu ij a a u a ja q o a aq^ Áq uaAig uoi^rqosaj p a jm b a j Á [fB aipjo aqj a q j ueq ') ssa| ap ruiuS E iu jo s ja p jo f Áq si qaiqA\ ‘[o£ ‘61 ‘8 l ] s Oi - 0 I J ° Ja p io a q j jo a q ||iay a a u a p p u io a j s e j a q j j o u o iirq o s a j a u q j a q x ’s u o j p a p j o sauii^ |E a ijjb a q j j o sa a u a p p u io a ajnsB aut ja p u io .ia jia ju i a q j jo auE |d a a u a ja jja ^ u i aq} ui s j o p a p p u o j p a p o a \j ‘lu a u ju a d x a jn o uj • ju a m u a d x a s s im x u m o jq Ájn<|ire][ |B aissB p a q i ui bicieiibab sba\ j o r e q j qi|M A[<|Kjiioabj a jin b sa je d u io a p u e ja S jíq a p n jiu S e iu j o s ja p jo o a\j Áj.iRau si S_ 0 T • S )n o q « jo ÁaBJauaSap u reaq a q t ‘À ^ u a n b a s u o ^ 'a iis q e a j su ia as ¿\a>[ \ }B aAOq« u sa iS a d o aso jaiu i a q j jo j se j a p j o a a re s a q j j o s s a u iq S u q « unS u oissiuia p p y a p o ip u o i ^ jj a q B moj jn o q ^ t ^ T_JS ?_iua v S0T ,_JS ¡._uia v „01 A3 £'0 A3 £’0 A3f0I A3eOI Q-OI•fi 9-01 adoasojaiui unS uojjaap uoissiuia pjaij pjBpirejs apoip si adoasojjiui uoj jaap uoissiuja p p g pj-epuBjs b u i g ssaujqSijg JV ÁSjaua ÁaBjauaSap :[o[Jrrem.iaA[ig ■<.[•[,\j oj SuipjoaaB uiiíaq u o jjaap aqj jo y Áa-BjauaSap ui'eaq aqx ( ,_ J S •z _ u i 3 - y ) ( A s ) 5r ? (A 3 ) 3 60 [ V .- e = 3 V 3 (eV / ^ f ) = xvm a [ l i ‘0 1 ‘6 ‘ 8 ‘¿ ] ( s u o i p a j i p u i d s a j i s o d d o q t i M s u o i u i j a j j o j o m j s i | p a j a d u o i i B d n o a o u i n m i X E U i a q i a ¡d p u u d u o i s n p x a s j j n B j Á q) xvmg s s a u j q S i j q u i n u ip c B U i [ B a i 'i a j o a q i a q j o j ( a a u d s a s ^ q d u i [ p o j a d j a q u i n u u o ijB d n o D o ) j a 'n i u i a a q j j o s s a u i q S u q y e n \ 3 e a q j j o o i ^ b j a q j s u ^ a u i ý Á a ^ ja u a S a p u rea q a q x ' [ l ^ u i s Á | s s a p d o q a j B s a a j n o s a |q B ][R A (! a q i j o s a p u j a i i a á a p t u B a q a q j s a p i y n d j a i A B a q j o j asn B D aq [ ¿ j 'g j - ç j ‘g l ‘g l J s u o j ^ D a p s i S u i q a u n q i j u B u o i i u j a j a A O jd o ^ a j E j i p u u a Á |u o a q x 4iia u n .ia d x a S u i q o u n q p i r e u o i p o p u y Ég [6] Hanson G.R., Siegel B.M., •/. Vac. Set. Technol. 16(1979), 1875-1878; Börret R., Böhringer K., Kalbitzer S., J. Phys. D 23(1990), 1271-1277. [7] D. Gabor: Light and Information, Progress in Optics 1(1961), 109, Ed. E.Wolf, North Holland, A msterdam. [8] M.L.Goldberger, H.W.Lewis, Iv.M .Watson: Use of intensity correlation to determine the phase of scattering amplitude, Phys. Rev. 132(1963), 2764. [9] E. Zeitler: Coherence in scanning transmission microscopy, SEM, Chicago (1975), 671-678. [10] E. Zeitler: Zusammenhänge, die mit der Kohärenz Zusammenhängen, Optik 77(1987), 13. [11] H. Rose. R. Spehr: Energy broadening in high-density electron and ion beams: The Boersch effect, Adv. in Electronics and Electron Phys. Suppl. 13C(1983), 475. [12] M .P. Silverman: 124(1987), 27. Fermion ensembles th a t show statistical bunching, Phys. Lett. A [13] M.P. Silverman: Distinctive quantum features of electron intensity correlation interfero metry, II Nuovo Cimento 97B(1987), 200. [14] M.P. Silverman: Second order tem poral and spatial coherence of therm al electrons, II Nuovo Cimento 99(1987), 227-245. [15] M.P. Silverman: On the feasibilitity of observing electron ant.ibunching in a field-emission beam, Phys. Lett. A 120(1987), 442. [16] M.P. Silverman: Application of photon correlation technique to fermions, OSA Procee dings on Photon Correlation Techniques and Applications 1 (1988), 26-34, Eds. J .B.Abbiss, A .E.Sm art, OSA W ashington DC. [17] M.P. Silverman: Q uantum interference effects on fermion clustering in a Fermion interfe rom eter, Physica fí 151(1988), 291. v' ■ [18] S. Cova, M. Ghioni, F. Zappa: Improving the performance of ultrafast microchannelplate photom ultipliers in time-correlated photon counting by pulse pre-shaping, Rev. Sei. Instrum. 61(1990), 1072. [19] S. Cova. M. Ghioni, F. Zappa: Optimum amplification of microchannel-plate photomul tiplier pulses for picosecond photon timing, Rev. Sei. Instrum. 62(1991), 2596. [20] S. Cova, M. Ghioni, F. Zappa, A. Lacaita: Constant-fraction circuits for picosecond pho ton timing with microchannel plate photomultipliers, Rev. Sei. Instrum. 64(1993), 118. Oř (8661 03IX3JM -unoireo) t? [ IAI33I oj p ajy u iq n s ‘h W X pue H » Isp u g jO H ‘f Bufen ¿ '69 ‘¿661 lo isu g - p n S u iq sq q n j j q i ‘£SI o n « S J ucO 'S^Md 1SUI ‘L6DVW3 Ï Bufen '9 9S ‘(066l)86Z V SSX U W u¡sui P nN ‘O >IU[[3ssi A\ pue g b a o o u sj ç 6L ‘( 686 I )¿8 ¡ o u i / o s j[ p s J D A T T I M u o s d u i o q x ‘H P V J S J K a q g ‘j j i 8 b j b a \ b s ‘H B J B q B s e » ">[ B J B q iy 1 8 ‘8 8 6 1 I° 1 S!J H ‘ P i l 3 u a |S i [ q n d d 0 I ‘8 8 ^ 3 ) 1 / 1 3 ‘H 3 S 0 >J p u e f q o B Z 68 £ ‘( ť 66 l ) s n / f l l 8 ť 0 1 ‘( 1 8 6 1 ) 6 1 m W P S DDA « W p c W O M i p y " \ > [ u b j3 p u B i B A O J 3 [ [ n ^ 'Z T ‘f X o ^ s e j o j ‘y y q s a i r e i u u B J i s s b s j ', * a a n E A ' 1 'sj[n s 3j jssq s q j s 3 a i§ p i 'S i j u io jj u S issp aqj jsq j p su u y u o o sba\ ji pun ‘[ ¿ ' 9] IA13S 3i|l ui pajsoj puB jojoojap g § g sq j uí p sju su isjd u ii s js a \ ssp o jjo 3[3 '( a p o jjs s p suoo psJsdBj aq; j o ssbo a q j ui Á[[BP3dss) s ju s p y ja o o uoijBJJsqB 3[jjq ÁJ3A sso u srq ju i (p) puB (a) SU0ISJ9A uí ajSuB suoo S uisbsjoui ub jBqj puB (B£ S i j ) jspiU B ip ajnjjsdB 3uisb3joui qjiA\ sd o jp ju s p ijjs o o uoijBxiaqB [Bousqds sq j jBqj oos ubo '£ p u s z ’s^ x j uí UMoqs 3jb s jjn s s y S3SU3[ JO SJU3PIJJ30D UOIJRJJSqR JBOUSqds puB OlJBUIOjqO oqi JO SUOlJBjndlUOO IOJ puB P[3IJ [BIXB UB puB |BlJU3J0d [BIXB UB JO UOIJTiqUJSip B JO UOIJBnjBAS UB JOJ pasti SBM UIBjSojd sq J [çj sjBijusjod jo uoijnqujsip b guijnduioo ,ioj p o q p u i juouxop ojiuij oqj uo pssBq si j¡ pssn SBAN uoqB punoj so p d o sp iJJB j y p Q sqj uio y pauiBjqo uiBjáojd (u 8 issq su sq 3ijbjsojjos[3) G 3 3 3m S u q p p o o i [Bousainu Áq psxiuojjsd sjsav sasusj jo sJSjsuJBJBd j o suo;iB[no|B 3 ■spojjosp jqS u oqj u io y 'z oouBjsip b jb psoBjd u su ip sd s sqj uo pssnooj 3JB Xjibuij puB S3pOiP3|3 U33A\pq p[3IJ SuipjB pj 3qj UI S3IJ0P3fBJJ 3I|0qBJBd SuOJB 3AOUJ Á3ql JX3U 'JAJ3S nqi j o SU3J oipuSbui b Áq pssnooj ÚBUiiuipjd ‘uiBsq ju38j3auoo b sb s p o j p s p y o | aqj qoBSj Xoqj s s p o jp a p ui ssjrqjsdB qSnoiqj jqSu sqj oj spis ya] sqi uio y saoui su o ijo sp X jbiuijj ■psipnjs 3J3AV (p) JB3IUOD pSJSdBJ pUOD3S 3qj pUB JB[J 3UO pUB (o) JBOIU03 pU033S 3qi pUB 1B[) 3UO ‘(q) ¡B3TU03 OM1 ‘(b) S3pOip3J3 JBg OMX UMOqS 3JB UI3qi JO S3A]Bq Á|UO pUB XjpUIUI/Cs [BUOIJBJOJ B 3 A B q S3 p O j p 3 [ 3 - SU 3 J UO ISJ3 U IU II UB J O S3 p O j p 3 ] 3 J O S S d B q S SAAOqS [ 3-111 o l j •p 3 JB § lJS 3 A U l SBA\ s u 3 | 3 q i j o s j u s p y j a o D u o q B jjsq B u o s u s j u o is j s u iu ii u b j o s s p o j p a p j o s d e q s b j o s o u s n y u ; UB Kpms lU3S3jd 3qi U[ -JSBJJUOO [BU3JBUI pUB OiqdBjSodoj UIBjqO OJ puB SSjSuB JJ03>|BJ M O[ p u B q S iq jb ' j s g j s s j s p o j / í j q ; q i s s o d b s s a i S p u B s u o j j a s j s p s j3 jjB 0 S ? (3 B q j o s u o i j 3 3 J i p j b i j i u i j o 3 iiU E q 3 JOU S 3 0 p U O Ijn[O S J3JJBJ s q j ' [ p ‘ £ ] U 3 U II3 3 d S 3 q j J3A0 3 3 B d s 3 3 J J - p p i J B ŽUIAB3J pUB SU3J 3 A |J3 3 fq O 3 d 0 3 S0 J3 IUI 3 q j MO|3q SU 3 [ DIJBJS0 JJ0 3 [ 3 UO ISJ3 UIUJI u b S u P B | d Áq JO [ g ‘ [ ] u s u i p s d s s q j J3AO s u s ] spoqjBD B S u t u u o j puB 3 S b j ] o a 3AIJB83U q S i q B q j i M u s t u p s d s s q j S u i s B i q Á q :SÁBA\ OAAJ UI 3 U O p 3 q UBO JI X V 3 S U í p 3 S I[B 3 J 3q UBO p u B 3 ] d u i I S ÁJ3A SI U O IjrqO S J3JJB[ o q j u su ip sd s sqj j s a o jo u u i r q o o s d o o s o j o i u i sqj u í p p i j 3ijBjsojj03]3 u b Áq á S j s u s a \ o j o j psjBJsposp Ápusnbasqns s i u i B s q sqj p u s (y\>[ 01 <) s S b j j o a qSiq Á[3A|JB|3.: j b pojBJ3do s i unS s q j u o q A \ p s A S i q o B sq u b o juauisAOjdun sq x s u n 3 o i u o i u u s q j q j i M p s d d i n b s s s d o o s o j o i u i j o s j o j 3 iU B J B d 3AOjdu.ii o j s p B U i S u p q os[B 3.1B SJJ0 J J 3 j n q ‘sunS u o issiu w -p p y jsjq S u q q s n u i qjiA\ p3dd;nbo s s d o o s o j o i u j u í p s j o n p u o o á j u i b u j s j b s s i S j s u s u i B s q a\0[ jb s u o i j B A J S s q o S3 3 b j [ o a sjíBduii 133JJ3 s i q j p u B p3J3A\0[ sssujqSuq y L U Bsq m o [ jb u n S b q o n s q j iA \ p s d d i n b s j A j g s a Ml J ° s j s j a u i B J B d s | 3 3 b j ] o a S u i j B j g p o o B u b u s q M S3 SB3 J 0 3 P u n 8 u o j j o a p o i u o i u u o q j b j o p u v jo j ‘íHtipcům q¿ £-oç ‘ç z o8s!ysMoijDn¡oius ‘/Gío/ oul/^ j j fo ¡UiSMMufi ¡wpouM 'sotunijjafAj p3i¡ddy puv aoudps ¡DustopjIo 3jniiisu[ B u fsjj f IAIHS H O V n O A M O T 3 H 1 >IOH > IO X 3 3 1 3 d 3 S 8 3 H 1 NI N OIS3Ü SN 3T N 0IS>I3H W I NV 3 0 N O U V Z M IT d O Fig. 1. Shapes o f electrodes. Thickness of the second electrode in (a) is 0.1 mm and the aperture diam eter changes from 0.1 to 1 mm. Thickness o f all other electrodes is 1mm and the aperture diam eter is 1 mm. The distance betw een electrodes is 5 m m in (b) and 10 m m in (a), (c) and (d). Plots (a) -h (d) in Figs. 2 and 3 refer to versions (a) + (d) in this figure._______________________ z, /mm C. [mm] Fig. 2. D ependence o f the spherical aberration coefficient on the distance from the right electrode for lenses from Fig. 1. Param eter is the aperture diam eter in (a) and the cone angle in (b) to (d) z,/mm <d) Fig. 3. D ependence o f the chromatic aberration coefficient on the distance from the right electrode for lenses from Fig. 1. Param eter is the aperture diam eter in (a) and the cone angle in (b) to (d) Zî \0Z- eól'dd ‘SI ‘£661 ‘Supuras "1 ‘W-U "I HAorannro '[Z] p -I'dd ‘XI ‘6861 ‘Suiuubds :'3 a ‘¿of [i] saouarajsy Dtiqndajj qssz;;) aqjjo S3DU3I3Sjo Aureproyaqijo aqjjo XouaSyjubjqsqj Xqpajjoddns si £0¿£90ZV'°Npafojdsiqx S U M O p > |B a iq p S I J J S S p JO U O IJU 3A 3jd 3 q j p u s S S l J J S d o jd [B D p d o p O O § JO JU SU JSA SiqSR s q i JO J s s iu io jd u io a v. s i 3 p o j ] 3 3 [ 3 p a p u n o j S p u n u a u i p a d s u a a A v ja q a s u B j s i p u i u i ç p i r e g j j o j s S e j j o a 3 u |J E J 3 p 3 3 E A ^IO I J O 3 s n 3 m ( P A 3 I U 3 U II3 3 d S OJ )3 3 d S 3 J a q j q iI M pSjnSB SLU SI 3 [§U B JJ0 -3 } [B J 3 q x ) s u o j p a p a q j j o 3 [ S ir e j j o - a > p j a q j X q X j j u b o i j i u S i s p a a u a r q j u i s j e g § u b g s g q j o q j o s 3 u o ) 3 3 Í b j j ‘s u 3 [ a p o q j B S a q j u i p p y s u ja a p S u o jjs j o s jid s s Q jb u S is s q j o j a j n q u j u o o j o u o p puB j o j B [ | i j u p s 3 q i u i 3 J o q [BJ1U33 q S n o j q j s d u s s s ‘/ \ 3 ¿ - z u a a M j a q s 3 i 3 j 3 u s q jiA \ s g s j o u o i j o b j j s q x '( P ‘£ § ! 3 ) s g s a q j i r e q j s j o u i q o n i u u o i j e s j o [ e u S i s s q j o j a j n q u j u o o s g s g a q j i n q j a j B j j s u o u i a p SSUOpaÍBJJ UOJJ33[3 [BuSlS 3qj JOSUOIJBinUIIS OS[B SUOISUSUJip [BOTJUOJOS|U3lU3inSB3UI aqj joj p3sn sq oj pspusjui sí suaj apoqjEO y suoijbSijssaui jsqynj sqj jo psfqns sqi sq (JIMsiqx 3IOJUIBJJ33EXB[dXiiAipnpuos >[[nqpire aoBjjns sqj lEqi 3|qEqojdsi j¡ paonpaj si jsbjjuodoiqdBjSodoj aqj puE‘u33s si sjijojduiajjBd‘ouiby ooj sauioaaqaSBunsqx' JEspjouoje siqj joj SU0SB3Jsqx 'suoiiEpsdxs sssqj jaaui oj qnoijjipsí ji sjsXb[ puBspuajBui amos joj jng uoijbujjojui 33Ejjns sjoui Xjjeoppoqs sSeuji puBaqj ‘psonpaj X|je3j3 U3qi sí qjdapuoijBjjauad 3qj ‘|[buis si á3jsus g¿ 3qx XjdiBqs sjoui suopipuoDSuiSiBqououdnps o¡ sdpq puBsuojpsp |bu8is sip spBjjxasus[ 3poqjE3sqjjo pprj oujoap3uojjs sqx A30£9 sba\ gj jo XSjauaSuipuEj’ sqx suoqipuos SuiSjEqououjspun aoBjjns jy uo ujsiiBdjsisajojoqd SAijisod sqi sMoqs z § ! 3 suoisnpuoo pus sjpssy • S U O j p a p [B u S lS JO S 3 I J 0 P 3 Í B J ] p u B p p i j s i j E j s o j p s p s q i j o s u o i j B j n u j i s sqj p s s n 3JSA \ 5 [ u q 3 S S i/\\ p u B E A O s u s g X qs p E u i SÂSVîîX p u B cng S a^IOI \ g j S [ S 3 [3 s q j susuipsds PSA JS S ( - o p >S‘IV) S30EJJH S 1 U S J3 JJIP u o p a j B o i j q s j u j s u E d zO!SPUB jsisajojoqdS A i jis o d j o s 3 [ d u j E § [£] ‘(j sqi Xqp s d d i n b s p \ [ g s ppjauiuioo y jo j s u ib j o jj S i g ) 5 (U B jg p u B B A O J 3 [¡n i,\ sea jo j Xqp s u S i s s p s e j oa u ijb j oob s u 3 ] s p o q jB S se sbm spoqpj/v sj3Xe| jsisajojoqd 3qj joj Pjoui jo sjjoa psjpunqauoXqssnjEAzg aqj s8uBqs SuiqspBuisEjd jo uoijEUB|duii uoi 35JTJuoijBJsdo [EsiSopuqss] lusnbssqns sqi ‘osjy [j] ajSire j[ij uo puadap sarqEA?g suoqipuoo 3ui3jBqsuouaqj uiejuibui Xemsiqj ui pus XSjauaSuipuEj gj jo asBajoap jo 3SE3J3UI |B30| ssiiBDssEjjns aqj ui saSjBqa 3aije33u jo aAijisod [B30[ ‘[[bujs - japEJEqs ajqEjsojnB jpqj jo asnEssq apEsijddE XjjBOipBjd ajBsanjEA Jg aqx (gj jo XSiaua aqj sa ppiXUOISSIUI3[E)0| 3qjjo qdBjSaqj ui ‘zg jo 'g X3jaug) asEjjns usufpsds aqjjo juiodqsBauo‘[ oj pnba si ssBjjns aqj uiojj uoissiuia uojjsap aqjjo ppiXuojjaap |bjoj aqj jEqjjapjo ui XSjaua SuipuEj gg aqj qajEui oj XjBSsaaau si ji ‘uoissajddns 3ui3jBqs jog "saoiAapjojonpuoanuas jo soijsouSEip sqj joj jooj juBjjoduii UE si Xdossojsnu uojjoap Suiuubos SuiSjEqouofsi uoijanpojjuj jijqtida}! 1/332J ‘oujg P9Z19 - ZD ‘¿PI p^lodoáo¡r?j)f 'jijqnda}] ip s2j aiji/o ssouB psIo ¿w apvjy ‘sjuswnujsuj Jifjtuapg/o aimiisuj JBjriH JE^bjo sganiDfiyis yoiDnaNODiwas jo AdcosonoiiM oniohvhdnon LIGHTGUIDE POLE PIECE YAG - SCINTILLATOR HOLDER (INSULATOR) ELECTRODE SPECIMEN SPECIMEN ELECTRODE Fig. 1. D esign o f the cathode lens Fig . 2. Im age o f the positive resist pattern on A1 surface. PE landing energy 620cV Fig. 3. The B SE trajectories . E = 500eV T ake-off angles 30, 35, 40, 60, 82, 86 degree Fig. 4. The SE Trajectories. E = 5eV Take-off angles 0, 40, 50, 60 degree tí oqqndoy q a a'O sqj jo s s a u a p s jo AuiapEoy oqi jo Aoua3y juejq aqj Aq pajjoddns si £0¿£90ZV '°N p a fo jd siqx jsBjjuoa s S b jio a aqj aauEqua jou ssop S uissB iq p u 3 s a i j i s o j '(p ü i¿ ) [Bijuajod puS ( y \ 8 _ b o o ) s a i j e S s u ApqSqs Aq uinuiixBui aqj saqoBCU j j 'js B jju o a 3§ b j]o a aqj oj A jia ijisu s s poo8 b jiq iq x a s jo p o p p q jo g u au ip sd s sqj u jo jj S u iiu o o n 3 S Put! I3S 3lD J ° ssn sasq Asiou aq uno o3blui oqj o s b o siqj uj p assB iq ApAijisod si puS aqj uai|A\ asEa u i saatd oyod papjoS aqj uiojj psjjiuis n i 3 S J ° „P3JJ3 u o ijB oyi[dujB „ aqj jo suBaui Aq jojaajsp jEjnuuE ui usas aq u b s ji ‘Aa>|2 = ° 3 A \opg • a 35(Z = °3 °1 dn paqsinSupsip aq u b d uiajsAs u z / n j oq) j o j j s b jju o s [BuajBui s q x sqnj [B jjuaa sqj oj s g g g jo sd sass sssp sn aqj sssnsa sauBjsip 3 ui>(jom jjb u is aqj asnsaaq j o p a p p j b ( p u u b oj sjBduios ja^BaM si jbuS is aqj ‘jojoajap jBUBjd aqj j o j ■(£ S i j ) pauiBjqo si j s b j j u o s siqdBiSodoj aqj puB jo jB jjiju p s aqj jiq s g g g ssoj m o [ aqj ‘jojoajap JBUBjd j o j u i u i j j o [ oj jojaajsp jbjduub j o j uiuio ¡ u i o j j ‘aairejsip SuppoM moi aqj Ag jsBjjuoa [BijajBUj b A jjbd Aaqj p u B pajaajjoa s j b s g g g SS0I q§’q aqi ‘sauBjsip S u i^ jo m jaqgiq aqj Ag spoui g s g ui sjojoajop asaqj jo sireaui Aq pauiBjqo aq irea jsbjjuos aiqdBjSodoj puB fBijajBui q jo g % (Z Sig) Ajisuap puS aqj uo A ju ib u i spuadap pire ‘AOOZ~ o:> A 0 0 1 ' UI0JJ AjjBDidAj s b ijb a sg § aqj jo uoijEJBdas aqj j o j [Bijuass-a si qoiqM aSBjjoA pu3 aq x a3Ej[OA p u 3 uo aauapuadop ui ‘sjojasjsp g s + g s g j o g S 9 Ja q jp se pajEjado aq ubs qaiqA\ sjojaajap aSBjjOA m o| aqj ajE sjojaajap JBUBjd puB jB jnuuy su o isn p u o a puB sjfnsay ajnjijsui jiio ui je ja ?)ipiuq 3 Aq padopA ap v i g o y a x pui; x O d lA ^ g suiBj3ojd aqj 3u;sn pajnduioa su o jjo ap [eu3is jo sauojaafBjj aqj puB p p ij aijEjsojjaaja aqj jo suoijBiniuis jo sjjnsaj aqj qjiM pajBpjJoa ajaM sjjnssj asaq x ssjim jp q j jo jajaureip aqj pus Ajisuap pu3 ‘g g jo A3jaua ‘sa§Ej[OA JOjEqijups puB puS se qans suopipuoa >(jom aqj uo saijsuajaBJEqo [euSis pus a§Bim aqj jo aauapuadap aqj pajsSijsaAUi a ^ £Z0‘0 s! anjEA jsBjjuoa jEijajEui pajB[n3]E0 a q x ASjaua g j aqj jo juapuadapui jsouijb sjb Aaqj pus ‘ApAijaadsaj 8 1£‘0 PUB 11 £‘0 sjuaiayjaoa jajjBos^joEq aqj qjiM ‘(0£ = Z) 3UÍZ PUB (6Z = Z) Jaddoa jo sajBjd u io jj apBui sba\ jsbjjuod [BuajEui aqj jo uoijBn[BAa aqj jo j u au ipad s [Bpads y suauipads jsaj sb pasn 3J3M sssiAsp jojanpuoaixuss jo sajnjDnjjs a q x 'A008" °) dn bSbjjoa SuijEjapooE spoqjEa sqj jo Suijjss [Bnuijuoa sqj Aq psddinba ‘[Ajgs iEpj3uiuio3 e uo p su u o jjsd 3J3a\ sju su iu sd x g spoqjaj^ s’s i j j s d o j d 3 sppoui u i3 e u ji si p u 3 sqj o j ‘p u o 3 3 s ‘s u o j j a s j s ja B jE jjn y A35II ° 1 d n ‘g ¿ a q j j o a S u E j AS j s u s m o [ s q j u i Apnjs s q j j o j p s s n 3 J 3 m s j o j a s j s p o m j s s s q j j o p u B s u is i u B q s s m S u iS b u ii s q j j o s q x A[uo s g s g A |3 a ¡ jb 3 3 u s q j A q p s jE S J O s i ji - J o jB q iju p s jb u S is ui s p u S a q x Aq p a s o d o j d s S b u ji sq j SuiSuiduii ssbo s iq j u j s u o jja s p s q j p u s g j s q j s o u s n jju i o j puB 3 u i j B J 3 p 3 S B Aj i s u s j u i q S i q j o j o j a s js p q jo q |b u o ijB J js u s d s q j I'S ig ui s jo ja s js p (AOOl- B03) A jjuspyjns p s s s E i q s g s a q j a jE JE d ss je u 3 is sqj j o je [ |iju |3 s ju a A S j d o j ‘j s j i g u io jj sq j :s ü o ija u n j u io jj om j p p y a u jo sp aA E q siuajsAs p a j B j j s u o u i a p a jB u o p a u n j j p q j j o s a j d i a u u d a q x p\jgSA3 u o i j B [ |i j u p s s q j s jb '[Z'l] s j o j a s j s p jE U E [d p u B j B [ n u u y uoijsnpojjuj ‘Dl]qnd3}J 1/.7J2J jtiqnday 1/332j ‘ouug P9ZJ9 - Z 3 ‘LPl vysjodoAojvjy Jo S33U3PS fo Kiuspvsy ‘SJU3UWJJSUJ 3lfl}U3pS/o 3¡mysu¡ B jE jjn y J io p n y yV N V X d QNV a V J ÍlN N V NI ‘J E j n n Je >[e j o S íIO X 3 3 1 3 a S N O Ü I3 3 3 3 A H V G N C 03S d O N O U V M V dSS 3 H 1 References: [1], Autrata, R.: Scanning M icroscopy, 1989,3, pp.739-763 [2]. Autrata, R., H ejna, J.: Scanning ,1991, 13, pp.275-287 p o le p ie c e \ light quide ITO lay er+ 1 0 k V s p e c im e n YA6 r i n g g rld |-1 0 0 V )' GUIDE GRID {-100V) GRID HOLDER SPECIMEN ITO LAYER TUBE J_ Fig. 1. T he annular ( le f t ) and planar ( r ig h t) detector for low voltage operation •is : U scint;= lukg 5 1« 15 se , e » 2-500V 20 25 I . . . . i . . . . I .........., Fig. 2. SE trajectories in annular and planar detector with a negatively biassed grid (-100V). Fig. 3. Topographic contrast in BSE mode. A nnular detector ( le f t), planar detector (rig h t). IC surface covered with the passivating S i0 2 A PCV D layer. E0 = 2,2keV. Fig. 4. V oltage contrast in BSE + SE mode. A nnular detector. Transistor KFY 18. W ithout passivation. U BE = + 5V applied. The rest o f the circuit is grounded. V oltage contrast is visible below IV. ib ■ p o A O jd iin s i j s B j j u o o s S b u ii o iq d B jS o d o j s q i p u e s o e j i n s u s u i p o d s s q i s o u s S j s u r a j o S [ 3 u r j p q j u o s p u s d s p X ¡§ u o j j s s u B j d u o i p s p p o q ; u i s u o . i p s p X i E p u o o a s j o 3 3 U B )S ip JBIXB o q ] 0 SB 3 S l i p UJ p 3 A3 iqO B 3 q UEO S U O j p 3 [ 3 AJB pUO O SS J O J3JSU BJJ 3 ^ 1] U U O JSU BIJ j o u n o j B 3 3 3 [d 3jod o ip u S b u i s q j j o uopisod s q i puB jB p u s jo d uiurqoo sqj j o u o ip s p s jsd o id B Xq p q j UMoq si j] uiajsXs B q o n s j o saiy sd o jd p js ire jj 3qi ssX jbub o j u o ijB (n u n s jsjnduios S u io B jj Xbí b p s s n 3 / \ \ u o p s p p s u 3 [-ui üb ojuo uisqj ss S b u ii ji inq s u o j p s p XiBpuosss sp3[[03 is n j jou SU3J 3Aip3fqo IN IW 3 0 /3 0 G 3 W sq} . i o p s p p Xsjm oqx jreqjSAg u b qjiM p 3JBdui0 3 ¿ u d i u u s q ‘u a t j j o ^ j d q Q 9 p p £ ¿ ‘H ^ D a id a q s o jy ttu u a u o jp ia jg 0 3 7 * ÚUDIUU3Q 'i¡ 3 s u o q £Ç Q pQ '£ u j s S m p n j ‘S u i i j n s u o j u s z u v f * J 31U 13^ g p u B U 3 Z U B f >J SNOÎU3333 ÀÎIVGN033S ÍIOJ SN33 3AI133faO INM30/30Q3H VJOS3IItf3dOHd NOII33I3CIJOAdOLS OUTLINE O F AN ELECTRON MONOCHROM ATOR W ITH SM ALL BOERSCH EFFECT F. Kahl and H. Rose Institute o f Applied Physics, Technical University Darmstadt, Hochschulstr. 6, D -64289 Darmstadt, Germany. The attainable inform ation in electron microscopy and holography is ultim ately limited by the chrom atic aberration. For round lenses this defect can only be reduced by decreasing the energy width of the incident electron beam [1]. To push the information limit below I A at vol tages higher than about 200 kV, the energy width must not exceed 0.2 eV. Unfortunately, the energy width of field-em ission guns lies in the range between 0.6 eV and 0.8 eV for beam cur rents required in TEM . As shown by experiments, about 30 % of the electrons have an energy deviation from the mean value sm aller than 0.1 eV for an em itted beam current of a few //.A. If the rem aining 70 % o f the electrons could be filtered out by a m onochromator, one would obtain a nearly m onochrom atic source with sufficient beam current. The acceleration volta ge at the location o f the m onochrom ator should not exceed 3 - 5 kV to achieve a dispersion which is sufficiently large for filtering. Hence the m onochrom ator must be placed immediately behind the source. Due to the high voltage to ground (a few hundred kV) in a TEM , a purely electrostatic design is mandatory. Such an electrostatic m onochrom ator was first proposed by Plies [2], Unfortunately, his design consists o f a large num ber of elem ents and requires a large extension of the height o f the m icroscope. The electrostatic Si-shaped m onochrom ator propo sed by Rose [3] is significantly shorter. However, a com m on disadvantage o f both designs is the formation o f several stigm atic interm ediate im ages of the source within the system. The high current density in the surrounding o f these images produces a large Boersch effect [4,51 which significantly increases the energy width of the beam. To minim ize the Boersch effect, we recently analyzed the feasibility of i2-Jhaped mo nochrom ators with astigm atic and virtual stigm atic interm ediate im ages of the source. The line-shaped astigm atic im ages produce a much low er current density than stigm atic images. The schem atic construction of this type o f m onochrom ator is sketched in figure 1. To avoid a loss o f lateral coherence and brightness, the m onochrom ator m ust be free of dispersion at the exit plane. H ence it is useful to m axim ize the dispersion at the sym metry plane z, and select the energy there. The line im age in the energy selection plane is perpendicular to the direction o f the dispersion. The dispersion shifts this im age away from the axis by a distance which is proportional to the energy deviation. By properly adjusting the width of the selection slit, all electrons with too large energy deviations can be filtered out. To allow for an accurate filtering, the second-order aberrations, especially the aberrations caused by m isalignm ent of the source, m ust be kept small in the direction o f the dispersion. To preserve the diam eter o f the source, the second-order aberrations at the final im age plane z* must also be negligibly small. Owing to the sym metry of the monochrom ator, the aperture aberrations and the distortions vanish at this plane. The dipole field o f each deflector curves the optic axis, focuses the electron beam in the iz -s e c tio n and defocuses it in the yz-section. In order to focus the beam also in this section an additional quadrupole field m ust be excited within each deflector which overcom pensates the defocusing refraction of the dipole field in the yz-sectio n and reduces the focusing effect in the other section. The required quadupole field can be obtained by an appropriate curvature of ST I (KÓT) 6EI "stíHJ Z “H q o sjso g ç (£861) s s a y pBoy ^ d ‘Cd s3>ia\bh *q psjips) J £ ¡ -jddns s.iisÁyj u aipajg p u v SDíuoupajg ui ssouvA py :u¡ ‘ y jqodg ‘ j j 3S0>[ 'p 56 (0661) 98 ‘W dO ‘ H aso y £ (8Z.6T) OS d ‘I l°A ojuojox uotyq W 0 JU0J >UI DMd ‘'3 so!ld 'Z n I (LP61) Z ‘W dO ‘ O -iszjsqss I S33U3J3J3X •(L U O ])O q ) -z x sqi UOIJ3 3 S - 2 /Î S q j p U B (doj) U O p S S S psusjqSiBjjs s i x b opdo iBjusuiEpunj sqj jo sqjBd- Z 'O ld sqj S u o |B S u o )n s Xb j s i y i í opdo sqj S u i u i b j u o s j o j e u i -ojqoouotu sqj jo u o ip a s -s s o j^ - \ o j j o j u o ijB [n u j|s o p B Q -sju o jA j B iu o a i3 [d u ii 3 * ‘u o p ip p B u[ X p A is n p u t jo p j o p j i y j a q i o j d n su o -pExisqE s q i S u p n d u io o j o j X o bjiissb q § iq X p u s p y jn s qiiM [E p u s jo d s q j j o ssApBAUsp [EijJEd s q j j o u o |]B |n 0 |B0 b ss [q B u s a in p o o o jd s i q x 'X[[BopX[EUE p s s s s i d x s s q ubd jE p u s jo d S u ip u o d ss a - jo s o qj s s e o s iq j U| 'p o u jn ssB s i o o n jjn s o qi j s a o X jisu sp s S js q s p s j n q u j s i p Ä|JBOUt[ b 3 [S u e u j qni’o j o j -sajSuBU i j o s s q s s u j Aq s s p o j j o s p s q j j o s s o b jju s s q j S u p B u n x o jd d B Xq p sjB in sje o s jb s p p y o q x 'S j o p o i p p s q j j o s p p y s S u u j s q j j o u o is u s jy s a jiu ij o qj junoooB o ju i s>[Ej p u s u o fiB o iix o jd d E X d O D S .4° u o p r q o s sjq B jin s b lu o jj jjb js s a \ ‘u S is s p sp s q E S j r p u ij o x •pspiOAB X(3P[duiOO OJR SJ3AOSSOJD s p E iu S p s ‘s n q x 'lE njjiA s jb s s j n o s s q j j o 3z s S r i u i SJB 3 A 3 J 11í i jix s s q j puB ° z sS b u ii s s u b j j u s s q j q io q jBqj puB a x sX bj [bixb iB ju s u re p u n j s q j j o qjRd 3 q x |BJU3lUBpUnj sX bj S q j JO U O p B n jB A S s S u u j j j Q - j n o d iB q š s q j p o sn u 3 is o p o | q is B o j b sa\ [BOpX|BUB UB SM O pE 'S U O p E J J S q E .I0 p j 0 - qOiqM pu033s 3qi JO puB (dXODS) U O p B U I I X O jd d E p p g u S is s p srq j j o u o p B jn d u io o s q j j o j z sjnSy u i p s jjo jd s íb j o sX bj [Eiu3UJBpunj a q x 33-inos 3q) j o opsuapB JB qD u o is s iu ia p u n o j 3 q i j o u o ij B A J 3 S3 i d s q i S U B 3 U I sssu p u n o j 3J 3 [ { ' 3 U B | d p s fq o 3qj JB u o p B U i a i n p i sq j jo sssu p u n o j sq i q u n o j s q x o u p iu u iX s jo x iiu i s q js n u i Xej u o is js d s ip s q i j o q p d s q j ‘3UE[d jtx a a q j S| u o p i p u o o j e q s iu B A p u B 3UE[d s iq j je 3nJB[ s q p jn o q s u o is ja d s ip s q j s s u i g s u js u iu jX s jo x iiu i dfí, p u s q j| A \ o u j s u u u iX s su E [d u o p o a p s s q j o j jo s d s a i ju io d s q js n u i n x ‘u o p ip u o s X jjsuiluX s s q j o j 8 u ia \ o suE|d siqj j e s s q s i u B A ' f!t í Xej Suipuodssxioo sqj jou jsX ‘ ° x Xej j b i x e sq j j i s u E |d u o p o s [ s s s q j p su u o j si u o i s j s d s i p sqj o j jE j n s ip u s d is d s s j n o s sqj j o s S b u ji s u y y -ss sE jjn s s p o j j o s p sqj je DIFFERENT WAYS OF ADDING THE ABERRATIONS Robert Kolařík and Michal Lenc Dept. ofTheor. Physics and Astrophys. Kotlářská 2, 611 37 Brno Czech Republic In our paper [1] the main idea was to get a general expression for the resolution o r (when considering unavoidable axial aberrations - spherical and chromatic - and the finite source size) in terms o f wave optics. The resulting expression enables to choose an arbitrary criterion for the resolving power and to seek for the maximum resolution (optimization is being performed with respect to defocus and image aperture angle) in an analytical way. Our predictions for the resolution were compared with the results o f Mory [2] and Barth [3]. Hammel and Rose studied similar problems in [4], The discussion in fl] did not concentrate on another result - a form o f the intensity distribution function I (ct) (ct being the radial coordinate in the observation plane). This function depicts the probe profile in the observation plane. The main effort o f our present work has been directed to study the possibility o f verifying the validity o f I (a ) experimentally. Basic idea was to design an appropriate optical alignment, whose optical parameters would enable us to measure the probe profile on the screen (the CCD camera is supposed as a detector). In order to get a sufficient magnification within the optical distance, where disturbing effects can be neglected, we have to work with a multi-lens system. We have considered a column with three lenses working in different modes. Using the computation program ELD [5], we were trying to design lenses suffering from very large spherical and chromatic aberration coefficients for given focal distances and magnifications. In such case we should obtain measurably wide probe spot close to the diffractionlimited situation, where our I (a) form is exact as a consequence o f used approximation. We assume that it is possible to derive similar formulae for the other experimental configurations, where only one aberration term becomes dominant. [1] R. Kolařík, M. Lenc: An expression for the resolving power o f a simple optical system. Optik 106(1997) 135-139. [2] C. Mory, M. Tence, C. Colliex: Theoretical study o f the characteristics o f the probe for a STF.M with a field emission gun. J. Microsc. Spectrosc. Electron. 10 (1985) 381-387. [3] J. E. Barth, P. Kruit: Addition o f different contributions to the charged particle probe size. Optik 101 (1996) 101-109. [4] M. Hammel, H. Rose: Resolution and optimum conditions for dark-ficld STEM and CTEM imaging. Ultramicroscopy 49 (1993) 81-86. [5] B. Lencová: Computation o f electrostatic lenses and multipoles by the first order finite element method. Nucl. Instr. Meth. A363 (1995) 190-197. (lAIVH OIA] Zl punojE Xjuo spsau uaqj uiBjSojd aqj) sojnunu o í puBsnoqj OOI PUB ‘s 0£ poou sjuiod puB snoqj 91 q jiM soqsoui ‘3 J Z[-JIA¡ 99/98t? (o jo jo s q o mou) uo s 8 j s n f spoou sjuiod 0008 m!M qsoui o q i ¡sojnuiui 0Z WoqB pspsau sjojnduioo XV (zhim 8) IsojsBj oqj uoqi uo 0008 jo s ju io d jo joquinu 3[qissod mnuiiXBUi aqj ‘puiuioj isnf sn jog -p o jd o o o B A[|Rjaua3 aq q jiM ¡j i m soqsoui ui 8861 u i 5[DBq u o i j B j n d u i o o oqj soqsoui o3.ro[ S u i s n jo copt aqj roq) joodxo 3110 ‘Dd ZHJAJ 002 B uo spuooos 09 Xjuo sjsb j qsaui jBjnSoj Á[[Boi3o[odo) b jo u o ijn jo s o q i 1! jEqj w ie j i auij) uoijE jnduio.i jjo q s oqj jopisuoo sn jo[ jsjíg [3 jsnui ¡ XjjBjnjEU p u B ‘joofqns ojuoabj Xiu si ui jB q j p [n o o suop B n b o OOOOOI ‘j u o m d o p A o p ouios pBq seq ‘[ a j j j jopjo js jy oq) ‘JV3.JCM poqpui ju s u ia p a jm ;j • [ 9 ] UIOJJ pOOBJJ o q UBO JOUJOJUJ u o s a j i s j u B A o p j j a q j o o j s > [u i( j s o j ^ o o u o n b o su o o b s y š ij) [g ] d n jo s sb m s o p d o o p i j j s d j o j s u r e jS o jd j o j s q o jo jd u io o j s o u i a q j ( j b u i u i o s j u o j j n o o q j j o o s o q j s b X p s n b o ‘o jq B jr e A B X j a p iM j o u s i s S u i p o o o o j g u o i u n U B o d o j n g X q p o j o s u o d s s b a \ 1 1 1 ^ 6 6 1 u ! 1JJ0 Q u i p [ o q s b m u o p B j n d u i o o s o p d o o p i j r e d u i POAJOAUI o d o j n g j o |[B u j o j j a j d o o d j o q j o S o j S u i S u u q [ ^ ] d o q s í j J O M j u B j J o d u i i u y ■ p o p o u B o s b m g i g s j o O d D s .je o X s iq x [ £ ] s o o u o j o j u o o jo q jo p o ztu E S jo g i d S s j t ¡ d ( ) 9 / o i j j v j p g i i j m / j OUIBU o u res o qj U0A3 j o j e p u n s J o p u f t p a u o p u a u i o q [ [ im o jo q j p o s s n o s ip sjo o fq n s o q j j o a iu o g o o u o j o j u o o o q j jb p o jB jjsu o u io p o j o m q z JSOUIJE puB ‘jb o X s iq j u o p u o jjB jo ju o o o q j jo sb jb o q p jn o q s s u r e jS o jd jo jn d u io Q ‘s s a [ u n ) o [d o a d jo q jo o j 5([bj o j j o so jn jo o j jjb (p o o n p o jju i o j b s u o i s s o s pjjB JB d ‘o u iij s iq j o j u o js q o j q S n o u o ¡ [ b u i s s i S u i j o o u i o q j j o o zis oqj p u B ‘d n M o q s jo o fq n s s iq j u i poA pA U i 0 [dood jso p v J J P Q u i 8 6 6 1 I!JC*V ‘o u o j s b [ o q x oq j jb ooB[d > [o o j ‘ç o d D [ z \ s[BAJ3jui jb o X p u i p p q ‘s o o u o j o j u o o s j í j d Q a p t j u v d p a S j m i J [ b u o i j b u j o j u | uoAiS si s o p d o u o jjo o p j o j o j b m j j o s u i s p u o jj ju o jjn o o qj O A jo s q o o j X jiu n jjo d d o u y d n o iS s iq j o jo q jn B o q j Xq u o jjijm jo u ojom jBqj su iB jS o jd Xub s u o iju o u i XjpjBq ji XjojBunjJO jun íso o p o j u n j ^ g Xq s w s i s K g j v j í j d Q a p t u v j p a S u v y j j o i i S i s s q j o / s a n b i u i f o s ^ j n u o n m n d w o j u o [ J O jd s q ^ sj[ s p u o jj o jb m jjo s j o m o ia jo a o ju o o o j js o u i o qj opiAOjd p jn o q s [ j ] s s o jg 3 > ¡3 Xq p o q s q q n d s o p d o u o jjo o p u o 5)o o q jsom ou o q x U01JBUIJ0JUI JO S 3 3 jn « S o j b m j j o s X u b j o jo X n q [ B p u o j o d j o j o s n ‘jo q j n B X u b o o u o n y u i o j p o p u o j u i j o u o s |B s i )[ u o i s s n o s i p S ui> [O A O jd j o o s o d i n d o q j o a j o s o j S u i d o q ‘p o q s q o d u n X[[BU0IJU3JUI s i j x o j o q x sppy p u B s [ B i j u o j o d j o s u o i j B j n d u i o o o q j u o s o j b j j u o o u o o M o p q u o i s s n o s i p " o q x '8 6 6 1 u í s j u o u i n j j s u j o y ij u o p s j o o jn jp s u i o q j Xq p o z i u B § j o ‘u o i j B j u o u i n j j s u i s o i s X q g o o B j j n g p u B s o p d o o p i j J B g p o Ž J B q 3 u i s p u o j x ju o o o y u o jb u iu io s q j9 o q j j o j s o jo u j o jo s e s ju o s o jd o j jo d B d s i q x u o ip n p o jju j o q q n d o y q o o z ^ ‘o u j g p g z i 9 ' L V \ p ) ( S [ o d 0 A0 [BJ>i o i j q n d o y q o o z ^ o q j j o s o o u o p s j o X u io p B o y ‘s j u o u i n j j s u j o y u u o i o g j o o j n j y s u j B A O ou og B j iu in q o g S D íx d O N O H i o a g g h o j a a v M u o s n i s a N a n x a\ j n Surprisingly, it is still possible to find references to problems with the use and accuracy o f the FOFEM with small meshes (e.g. Tsuno in his chapter on magnetic lenses in [ 1] or K hursheed in 1997 in [3] or at C P 0 5 ). The same argum ents hold for the use o f graded meshes: if most users see that the axial field behaves strangely at the places w here the mesh step change abruptly, the m ost natural solution is the use o f sm oothly graded meshes. Another fact that nobody uses the value o f the integral o f m agnetic field along the axis and/or around the lens as a check o f correctness o f the m agnetic lens com putation is really difficult to understand. N ext question is that o f com putation accuracy. The accuracy of any ‘m esh’ method depends on the type o f mesh and the num ber o f mesh points used. 1 will in this respect briefly mention an im portant but overlooked aspect o f checking the accuracy o f FEM computations, the extrapolation to ‘infinite num ber o f points’; the first exam ple o f that for m agnetic lenses we published already in 1994 [4], and I have discussed this in detail at C P 0 5 . In the practical application o f any program, the aspect o f user friendliness and user interface becom es im portant. W e have devoted to this aspect a lot o f attention in Brno as well as in D elft in our softw are packages, that use a unified approach to magnetic and electrostatic lenses and m ultipoles. The com putation times are reasonably short, and cheap and available personal computers are used for the computations. In the user interface graphical editing is used, the generation o f graded fine mesh is done autom atically, and all results are shown or exported graphically. The program packages thus meet most requirem ents from a user point o f view, in spite o f leaving som e space for im provem ents, because the interfaces were written in a preW indow s time. The numerically obtained results are accurate enough to allow not only com put ation o f paraxial properties and aberrations from axial potentials or fields but also ray tracing. SO FE M by M unro group was introduced 10 years ago, and it is often put as a competitor to FOFEM . This seems to be the case of their program SOURCE for calculating guns and space charge lim ited beams. In spite o f the considerable span of time since the introduction o f SOFEM, hardly any attention is given to accuracy (an exception being the discussion o f the com putation accuracy of axial potential in a two-cylinder lens by Munro in [4] and later by me at C P 0 4 where it could be shown that the FO FEM produces competitive results). Electrostatic lens computations seem to work, although the mirror results in [1] are surprisingly inaccurate (as discussed in 1996 at this sem inar). In magnetic lens com putations with SO FEM no lifhit o f m axim um number o f points is ever m entioned (but it is known that it is im possible to calculate on large meshes). No integral along the axis is computed, so the very basic check, if the result is correct, is missing. Som e o f the SOFEM results on saturated lenses look strange [7]. W hat is published by Munro on the com putation o f m ultipole com ponents with SO FEM is even ridiculous, and the same error since [4] is in [1]. The FO FEM im plem ented by M unro does not w ork properly for the computation o f hexapole field component in deflectors, in particular with small number o f points and w ith large m esh step change at the place where the field is still strong and varying (the com putations in meshes where the problem is stated last less than 1 s on obsolete 486 PC), and th eir program does not w ork for 5th harm onic com ponent at all. It does not mean that this is a problem that cannot be handled by FOFEM accurately [8]. As a sum mary I do not see SOFEM as the ‘com petition’ o f FO FEM , and I would like to see more accuracy tests o f the method. ZV IA IG 3 °MJ SB N O I I M I S p u t; X M 3 3 ‘I M 3 3 ) s u i B j S o j d Q £ o i J B j s o j p a p j o j [ z \ ] X p u a o a j u o s u R d i u o o b q o n s 3 > (b u i 0 1 p o u j aA R q o , \ \ j s a j o y p a d s u o a ; 8 e q jiA \ s s i j j n a y j i p aA R q X b u i s o n d o a p i j j R d j o j U 3JJU M K U IR jS o jd U0A3 lUOSUBdlUOO JO J 3SI1 O) S U IS jq O jd JBIJAV ST UOIJSOnb j s q j o u y s js jn d u io o j o p s s d s a q j ssnB O sq P o u B jjo d u n u o S u iso j si juauinS jR jsb j a q x JSBJ ÄJ3A s a v o jS pou iR jq o a q u r o s j |n s 3 J a q j js b j A\oq puE ‘ s j|n s 3J o y p s d s ii3Ai§ p S o j si ji X s s a M oq ‘u ru Xaqj s ja jn d u io o qoiqM u o ‘u o ijE ju a iu n o o p j p q j ‘ s s n (o j u jb 3 |) o j s j e X a q j Aseo A\oq ‘a jE d m o o o j jy n o y jip X[[Bnj3E o je jBqj sjo ad sE u iB iS o jd a u io s 3JE 3 J a q x s p o q p u i puE stU E jS ojd jo q io j o aouBUUOjJod a q j qjiM ji o jE d u io o o j ä j j jo u o p X a q j s n q j puB ‘s a A p s u is q j p o d o p A o p X a q j s u o a q j o j X jjso u i ‘[E iju o jo d S u ijn d u io o j o p o q ja u i u s a iS b o j p ajaip p B s j e O[doad u a jjo jEqj u o is s a jd o n X u i s i ji s p o q p u i . i o q j o q j i v\ u o s u B d i u o 3 •passnosip SBAV [ Xl] | eu 3jbui oijsuSbui sqj ui IAIG3 qiJM JM33 Suiuiqiuoo poqjaui puqXq e ç o d D IV (OlJ suoijBjnduioa j3u8euj joj pasn osjb sem w g a Js'Rd 3MJ ui S u ija a u i s iq j jB Z3UIJJBJAJ j o j j o j ja q jB j j0 3 fq n s siq j j o j X jy iq is u o d s a j a q j j o js o u i 3AE3[ o ui j a g p a u iR jd x a u n j o u o p p iq jj3 [ ‘sjo q jn B u s i s s n y qjiM jE nsn se ‘o jo a \ s u ia [q o jd X u e jv 30BJJ3JUI UE s e Q V 3 o j n y 3 sn :qoBOjddE S u ijs a ja ju i u e isq jE J u o pasB q u iB jS o jd siq p o ju o so jd A o u rq x a o u a ja ju o o o u ie s a q j j y ç o d D 1® p a jE jjs u o iu a p bjsav jadsE >¡ j o su iB jS o jd je jiu iis j o snjB js jsajB | a q j puB ‘(jR u iu ias jsb j a q j a a s ) S E z s ^ ia jj Xq os[R p a s n p o q ja u i b ^ u o i j E p i u i i s s S j e q a , jnoqE >[|bj 3m ‘s a p o j jo a p a p is u i u a p p iq ajB sa o jn o s p p y a q j u i sa iju B jn S u is a q j JI [?] PE3>I j o s u iE jS o jd o d 3 Xq p a jp u s q s j e aSjB qo a o s d s j o u o i s n p u i a q j qjiM su o ijB jn d u io o O E P UB Q Z ‘( p o q j a u i X jis u s p a ä jB q o pa[[BO u a jjo si ji s n q j) s o ;jB js o jjo a p u i X [jsoui p a s n s; j| o s puE ‘u o ij n q u j s i p a o jn o s a q j SuijR[n0[R0 u o p asE q si i ^ g a u ! u o ijE jn d u io o p p y p o q p jv )U3UI3|3 X jBpunojj (A \o |o q a a s ) ç o d D !R p a ju a s a -id ajaA v s p o q ja u i j ^ g a ö £ Js u ib S b X o b jh o o b s j i >[oaqo o j s j d u i a j j y ‘X p jE u n jjo ju n s o o u a ja ju o o O d D lE u o ijB U ja ju i j e jo a o s e a \ s jo q jn B s j i u io j j X p o q o u X jiJ B jn d o d u i s m o j S a s n s j i ‘a o B jja ju i S A v o p u i/^ (B o iq d R jS [njjO[Oo' b SEq j i s b puB ‘ s u o ijE o q d d E ( X d o o s o jjo a d s s s b u i ) u o i u i p a jjE js j[ s d a js X q p a jE u iix o jd d E a q o j aAEq s jo a fq o a q j q S n o q jjB ‘Q £ u i o s jb 9 5 6 j a o u is s i j i t [ ç ] NOIIMIS s ! W G d u o posB q U iB jS o jd J E jn d o d y suiBaq pajiuiq aSjBqa aosds jo suoijBjnuiis ureaq uoi ui uoijBoi|ddB sji juaAajd jou saop XpjEunjjoj siq x '3 u p sjj Xbj pus uoijEjodiajui ui suiajqojd jqäqs paAvoqs pRoy jo uiBjSojd iM ga G£ Pub NOIIMIS JsuibSe sjsaj XoEjnooB joujs juaoaj puB ‘pado[ 3 Aap qonui jou sba\ ji uaqj aouig qoEOjddE 3UIBS aqj p3juauia[duii SBq (jEuimas 955 j osjb aas) [6] o u jg n x 1B uajjuA\ uiBjSojd [AjGrl G£ jn O sap o jjo sp puB ssiJBpunoq Xq jno sauq qssui jo uiajqojd aqj paAjosaj X[injssaDons osnoy [ X] surejSojd j/^Qg Q£ S 3 3 W UT uoijejujes jnoqjiM suiajsXs oijBjsojauSBUi jo siuajsXs oijBjsojjoap ui jEjnoijjBd ui ‘suoisuauiip a a jq j ojui öS oj Xbm aqj si jAJOd sq x ([ç] jaîjoag Xq pajuauiajduii os|B sbm ji uaqj aauis) ja j q j juiod ([£ I ui jadEd ¿661 osjb aas) [j] £ 0 d 3 lE JadsE^ suoisuauiip 5 jo o a vj saSBjuBApE aqj paquasap ui juauiajdui; oj j|n o y jip ajoui ajB (uoijEjnjES oijauSEUi jo soujoajaip) saiyadojd |BuajEiu qgnoqjjE ‘XsBa SuiuiBjSojd so>|eui qsaui jBjnSuEjoaj jo asn aqj se ‘auiij Suoj b j o j saijdo apijjBd ui pasn si ja j q j aqx p o qjaui 30U3J3JJIP a jj u ij program ) for three problem s where analytical solutions are known: spherical analyzer, thin aperture betw een tw o regions o f constant field, and a two-cylinder lens, where com putation accuracy was given against computation time. The results in 3D computation were added for the presentation at C P 0 5 . One test was actually left out, which can be used as an ultimate test o f any electrostatic program: the dipole mirror o f Preikszas and Rose (see the notes for 1996 seminar). Conclusions Even the best software for electron optics cannot solve all problems. A ‘dedicated’ user can produce ANY result - including often the biggest nonsense. Sometimes this is a consequencc o f the usual ‘hum an’ approach to computers and programs: some people tend to trust any result produced by a com puter if it keeps them from thinking. Are there any ways how to prevent this? A nother fact is that in the places where the actual research is done into com putational m ethods and extrem e applications o f programs, nobody is actually interested in having a nice program as an output. Should the universities do more to finish the software into a commercial product? Everyone implicitly requires a full range o f services (W indows interfaces, on-line help, full docum entation, many options im plem ented in a program), but is there som ebody really w illing to pay for all these features? W hat should be in a good software for electron optics? Acknowledgment Supported by a grant o f Acad. Sci. o f the Czech Republic No. A 1065804. Software for FEM is distributed by Delft Particle Optics foundation [5] - cooperation with G. W isselink, M. Lene, J. C hm elik (and recently w ith J. Zlám al) acknowledged. F. H. Read and D. Cubric from U. M anchester were involved in the comparison o f electrosatic programs; the project was supported by a grant o f Royal Society. Let m e also mention recent fruitful discussions started with R. Becker, U. Frankfurt, and G. M artinez, U. Complutense, M adrid. References [1] Handbook of Charged Particle Optics, ed. Jon Orloff, CRC Press, 1997. [2] Proc. o f C P 0 3 published in Nucí. Instr. M eth. A 298(1990), C P 0 4 in NIM A 363(1995). [3] Proceedings o f SPIE 2014 (1993), 2522 (1995), 2858(1996) and 3^55(1997), respectively. [4] W orkshop on C om puter Assisted Design of Particle Optics Instrumentation, Delft, June 1994. [5] http://cpo.tn.tudelft.nl/bbs/cposis.htm. [6] http://chaos.fullerton.edu/mhslinks.html. [7] K. Tsuno, U ltram icroscopy 72(1998), 31-39. [8] M. Lenc and B. Lencová, Rev. Sci. Instrum. 68(1997), 4409-4413. [9] J. Zlám al, M Sc. Thesis, TU Brno 1996 (see also 1996 seminar). [10] K. J. Binns, P. J. Lawrenson and C. W. Trow bridge, The analytical and numerical solution of electric and magnetic fields (J. W iley & Sons, 1992). 111] A. von der W eth, D issertation FB Physik, U. Frankfurt/M ain (1997). [12] D. Cubric, B. Lencová and F. H. Read, Proc. EM AG97. Inst. Phys. Conf. Ser. 153, 91-94. S ja q p p p H ‘ 8 e [J 3 a js S u u d s ‘qd[opn>[ q ‘qrmquifi -g ‘iqB unps o ‘suraiqx T : SP 3 ‘A doosojoiiuojpadg puB Xdoosojoij^ ábj~x :u! psqsqqnd sq oj jsrrag g pire ‘jp iu n p s 3 X ‘joizo^i j ‘dure^praijig 'O [£] 102 (¿ 6 6 1) t S usqd | 3y •asojjosds u o jp 3 |g f ‘jpiuiqos q x pire dure^uoqiq q ‘ | o i z o > | 3 ‘jgnBg -g [z] S68 ( 17661) ¿S soisA qj 'S o jj da>j ‘ja n e g g [[] spoui JAIHH1 ‘A flA u o ij b j io x s ) ui u opnjossj ou\\ y\9ui g ireqj js jp q ‘uopnfossj XSJ9U3 A 9UI00t7 jnoqe (m ^ I uiu gz - apoui uoissiura /Crepuooas sip ui uoijrqosaj jB tjB d s :s i j e j o s p a u r e jq o u o ijn jo s o j s q x u irl 1 i u o j j (s u ja jjB d u o ip B J jj ip u o j p a p o j o q d se [ j e iu s s e s p a f q o § a ) s tu s u B d u o ip B j jji p j o u o p is in b o B - IS3J3JUT J O B 3JE p 3 p 3 [ 3 S B J O L ü n j p o d s Á 3 i3 U 3 UB J O UOIJISITlbOB |3 [[B J B d :a |q is s o d m o u o jb s o p o u i j a q y n j u jg jjB d u o i p B j j j i p a q i j o S u iSb u i i p u B ■3u ¡ 3 e u i i p r u o ) [ i j X 8 j 3 U 3 ‘ A d o o s o j o i u i - j o u i u i ‘ p [ o q s o j q i j b s u Á d o n s o j o i i u u o i s s i u r a o j o q d " s u o jp a p p o j o ii E o s .<([(b o i i s b | 3 j o Su iS b u it : u o i) B J 3 d o j o s s p o iu u M O iD j oqi s a p is s g ■3 U B [d 3 A IS J 0 d S |p 3ip 8ui3euji j o Xjqiqissod aqj puB ‘(sinyadE m s | a jo p[3ij) 3 [d ix iE S oqi uo lS3J3ju¡ j o B3JB u e S u ip 3 | 3s j o Ajqiqissod oqj ‘uoijrqosai ASjsua paxy b jb u o i s s i u i s u b j i posiujijdo ‘Aa/mrl oí/ jnoqB j o uoisjsdsip X3í3U3 psAOjdun :sje j s i j i j mou sqj uio jj siy su sq o q j V »1 1 3 1 3 jo 3 u i ] u iE 3 q 3S B qd s b 3 o q i ib iq S q - A f lA H l!M u o p B u i u m u ; J o p u n p 3 A 3 iq o E u o o q O ABq s q n s o jí j s j i j p u B p a i j B j s u i u o o q s s q 3 [ 3 u e u o i p a g a p o0 8 1 l P ! 'v' j a H ! í p s A O j d u n u e Á p u s o o y \C z \ 1SJj .[ í(q u ! p s q s q q n d u o s q 3A Bq js q y s u o jp o p P3J3JJB3S aqj jo ,< [[B 3 U S B [3 U ¡ OOUEJSU] JOJ JSBJJUOD 3 ld 0 3 S 0 jp 3 d S JO u o i s j s a o p B j s o j p a p 0Q 6 o | d u q s b q j ¡ A \ s q n s o j S U O J p 3 j0 - J 0 3 n y ‘ S U Q jp S p O J O q d J O S u iS b U J I d t l S U 3 d o J31JIJ A 3 iO U O O IJ E J S O J p S p u y ■3 3 p a q u 3 S 3 p U 3 3 q O ABq ( [ A I H 3 3 ) s d o o s o J o q A I u o j j 3 3 ¡ g á S js u v ] A \ o g b j o [ [] Ul s s ijq iq B d B O s q j Ñ nU ‘3)saux ZIOPÍ 'ozziAOSvg ‘g £ g j uo¡ f ¡ s s ‘9)S9UJ 3uouiomu/(s 'V V 11313 £ o issn y ‘Ü jnqsjaiB j ¡S £01861 'U0i¡0iu3uinu}suj p o tiú p u y uof 3injiisu¡ ^ KunwjaQ p p p a j p z - p m s n o u s¿98£ O > Msziuqw7 ‘¡oifisnDU []£ usp m iis u j ss i/jsu m /isfy j ¡ , J 3 n B g -g p u B ^ o u u j >[ ^ o ^ u s q o j E s s V P!1111!3^ 3 1 ‘ , d iu B > ( U 3 q r ] q H dO D S O yD M N O > ll.3 3 3 3 A O »3N 3 M ()3 HH1 H1IAV ONIOVW I 3 Id O D S O H 1 3 3 d S OPTIM AL SY NTHESIS OF CHARGED BEAM FO CU SIN G SYSTEM S G M artinez(a), A D Dymnikov<b) and A H. Azbaid(J> (a)Dept. Física Aplicada III, Fac. de Física, Universidad Complutens, E-2H040 Madrid, Spain ^ C.I.KM.A.T., Avda. Complutense 22, E2H040Madrid, Spain One o f the main characteristics o f contem porary Science is a quick creation o f knowledge that is frequently associated to the appearance o f new or more refined measurem ents There has been a continuous im provem ent o f the existent instrum entation and a developm ent o f sophisticated new devices that has made possible this outstanding progress. To go on this tendency we need to prepare appropriate tools: m athematical and physical models to sim ulate the behaviour o f a system and the w ay in w hich this behaviour can be optimized. In this talk I will present a scheme o f w ork that w e are applying to the optimal design o f electrostatic lenses. Even if this is a small area in Charged Particle Optics the schem e could be extended to other beam guide systems The direct m ethod for finding the optimal design would be to com pute simultaneously the field and trajectories o f the particles through the quadruplet, but these trial and error tests demand a huge am ount o f com puting time that is not possible to do in practise To overcom e this problem w e use tw o models: an analytical model and a numerical field model The first one utilises analytical functions for the axial electrostatic potential and its partial derivatives W ith these functions it is possible to obtain the analytical solution in matrix form up to the desired order approximation, in our case up to third order. In the analytical model the initial approxim ate differential equations are replaced by the linear equations in the space o f the phase m om ents with the same approxim ation accuracy. Thus w e can use all the advantages o f linear differential equations over non-linear ones, including the independence o f the matrizant o f the choice o f the initial point o f the phase space [ 1 ], An interesting finding is that placing tw o slits at the appropriate place before entering the lens allow s to shape optim ally the initial beam and to obtain the minim um spot size aM he target By this w ay it is possible to find the optimal param eters o f the system with minimum com puting time At the second stage w e apply an accurate version o f the boundary elem ent method which sim ulates the geom etry o f the real system and perform s a very precise calculation o f the field In fixing the initial conditions for ray tracing, w e use the inform ation provided by the analytical model Thus, the com bination o f both techniques allows tfle synthesis o f the best lens in a straightforw ard way. As a first exam ple let us consider the optim ization o f electrostatic axisym m etric lenses consisting o f multiple coaxial cylinders [2], A new analytical model o f the axial potential distribution is applied w hich corresponds to realistic multiple cylinder systems. Using the version o f BEM described in reference [3] to solve L aplace’s equation we obtain the param eters o f the physical model that has the sam e axial potential distribution as the analytical model The param eters o f the physical m odel are lengths and radii o f the cylinders, the gaps betw een them, and the applied potentials. Figure 1 shows the com puted axial potential for a 3-cylinder lens and the corresponding analytical function The coincidence betw een the tw o profiles allows m atching the focal distance and the dem agnification within at least three digits. To analyse the beam spot size w e find the matrizant (or transfer matrix function) for the linear and nonlinear equations o f motion using the effective recursive com putational method L661 ‘v s n ‘o 8 3 !a UBS ‘¿6<3MS scud ‘zsu ijjb w o ‘AOJjiuuiXa Q V ‘PjeqzV H V [?] m i (S 9 6I) 6 ( v s n ) soisAqd qosx sAqd ao$ Moaba b a S Pue ao^ uuiAq q V 0 ] l d ‘ 1 6 6 1 ‘V 0 A M 3 N ‘s s s j j o i u r a p B o y 18 |OA ‘ sAq(| u o jjo s jg £ 6 1 ( 8 6 6 1 ) £01? V pus u o jjo s jg A py ‘( p a ) S 3)) m q P I M PUB J j s u i p n j s i ‘p i B q z y ÍZZ ( £ 6 6 1 ) 0££ V P ^ bh d : u ! ‘o q o u B S h V ‘z a u l j j B w -U su i p n ^ 9 ‘& i o q | p H 1M ‘z s u i j j b j a j o [£] ‘a o ^ u u i A q y q y ‘a o t h u u i A q y [z] [[] S30N'H>IHJ3>I siusjsás Suisnooj j o sisaqjuAs [Buiijdo sqj j o j |ooi ju a p ijjs u b aq u b o jaqjaSoj spoqjaiu q jo g p p o u i ¡BDuauinu aqj ui punoj azís jods jsaq aqj qjiA\ oouaptouioo pooS A j s a b pBq p p ou i |B3iiA|BUB aqj ui psum jqo szis jods [Buiudo aqj ‘s s s b o psipnjs o a \ j aqj j o j ‘uoisnpuoo u[ saouBjjiiua qStq j o j UBqj ssaj si spoj j o jajauiBip uinunjdo aqj s s o u b j j i u i s a a o | j o j jBqj A\oqs sqn ssj j n o jods uiBsq |B u i j sq j uo ‘so|odrupBnb aqj jo a jn jjsd s u s a i S b j o j ‘spoj aqj j o aouanyui aqj p s j b S i j s s a u i p u E s s o u b j j i u i s ju sjsjjip j o j uoijorujsuoa [Bunjdo 3qj punoj 3ABq a,\\ [g] u o ; s j 3 a pV30 sjBjnooB u b paqddB 3 M uoijtqos |B0iJ3Ujnu sq j j o j aAijEAuap puooas sjí puB juaipBjS p p ij oijBjsojjoaja jb i x b aqj j o j u o ip u n j ajjq-dajs b pasn aA\ Suqjapoiu |boijA|bub aqj u] pasn A j u o u i u i o o jsoui aqj b j b spoj jo suoipas j o sp o y saujauioaS juajajjip aABq u b o s p p ij a|odnjpBnb SuipiAOjd s3 p o jp 3 [g [p] p|dnjpB nb usissn-y pajBJEdas v S u i u i j o j sajodnjpBnb oijBjsojjoaja jn o j jo S u i j s i s u o o aqojdojoiui b japisuoo sm a|dujExa puooas b s y aqj j o sjuauioui aqj j o o // / sojBuipjooo asBqd aqj j o AjqBjoj ajoqM aqj j b a o uoijouty uoijnqujsip aqj Suisn uiBaq aqj jo snipsj aSBjaAB aqj auiuuajap 3 av u o i j x u jb u i ( h l zMiauafaj utojf uayvj^) /ofjuafod ¡vnuautnu aiji jqfst aut/ pai/svp 'ppom poiirnuaijimu .10/ v / ,? //// xnonuituoj 'xuaj japiii/Xs-f d joJ pa/n/ni/na so ¡miusiod jvixy 7 puniíiq (u i)z 087. - B z im ijd o jo 3 u in |O A sqj jo j 0L SL L S9 L L 097 u o i j B j S a j u i [ B o u a u j n u a q j j o d a j s q o s a j b p a A j s s u o o A |j o t j j s 3 q u b o l u s a q a q j ssBqd sqj poqjsui siqj SuiA|ddy 1 [ ] j s d s d s iq j j o s jo q jn B s q j j o suo Aq p s s o d o jd THE M ICR O A N A LY TIC PROSPECTS OF A HIGH RESOLUTION PEEM M .M erkel(1), M .Escher(l>, O .Schm idt<2), C h.Ziethen(2), G .Schönhense<2) (,):Focus GmbH, Am Birkhecker Berg 20, D655I0 Hünstetten-Görsroth, Germany (2>: Universität Mainz, Institut fü r Physik, Staudinger Weg 7, D55099 Mainz, Germany Using synchrotron radiation at BESSY or a M ercury lamp we perform microspectroscopy experim ents w ith a photoelectron m icroscope (FOCUS IS-PEEM ) equipped with an electron energy analyser (FOCUS M ICRO -ESCA ). In this arrangem ent we are able to determine the chemical com position o f solid surfaces with a high lateral resolution down to appr. 250 nm. Sample x/y adjustable via piezo drives | Objective Contrast aperture size and X/Y adjustable via piezo drives Stigmator/Deflector Iris Aperture size adjustable (mech. feedthr. ) First Projective Second Projective Channeltron J | 0 Energy Analyser Multi Channel Plate Fluorescent Screen Im aging Device H um an Eye, Foto, Video o r Slow Scan CCD Camera Figure 1: FO C U S IS-PEEM equipped w ith the H-ESCA energy analyser The experim ental set-up is shown in F ig .l: The PEEM is used to get a lateral image o f the chosen sam ple region w ith a resolution o f today down to about 20..25nm. To get chemical inform ation o f a certain feature this region o f interest is centred in respect to the actual field o f view by m eans o f the piezo driven x-y sam ple stage. N ow the field o f view is to be limited using the iris aperture located at the first im age plane o f the m icroscope objective lens. The iris aperture can be closed giving an effective field o f view o f down to about 250nm depending on the actual total m agnification o f the PEEM . The deflecting potentials o f the analyser have to be sw itched on and choosing a suitable pass energy the energy spectrum o f the selected region can be taken. M ore detailed inform ation is given elsewhere [1 j,[2 J . For dem onstration o f the recent perform ance w e show in Fig.2 an example: This PEliM m icrograph w as taken with a photon energy o f 95 eV at BESSY I (U ndulator IJ2 com bined to a m ultilayer optics). The sam ple consists o f 20x20|im Pt-Co-Pt m ultilayer squares deposited onto a silicon substrate. There are plotted three valence band spectra taken at different p-spot 9 1 W I Ï ■(¿661) W°d3ÍI À SS3H ; tóUHOSJí^-f ‘japiauips’W D ‘s3[[|o r ‘J31uiqjj >i ‘asuaquoqos’O ‘1P™H°S'0 ‘U3MJ3!Z'HD tlJ ( 8661) ss aid ui iq jo j^ n s u j'p n ) ^ P su o q u o q o g Q ‘uuB uizupH Tl ‘Bfnqva ‘3jaqaupixn ‘a>[uaiAia ‘U3qj3i'/ q3 ‘jpiunpso M a u d s 'H [£] 6 8 6 -E 8 6 i (8 6 6 1 )1 6 ^ 8 8 uaqd p H M d S ï a 'f ; jouqosii'xf ‘qoBjpuno H ‘qoaiMSM ‘ouBuisuunj Q ‘p[SM05[Bpz.ir)}i ‘ja p p sp ^ ja ju ia ij^ i ‘asuaquoqos'Q ‘jappuqosjA['3 ‘J3lP 3J H O ‘jp iu n p s o ‘uoqjaizq;) [ z\ ťl0I-600l ; (SóóO TFM usiU iayosdS iaT iasuaquoqoso ‘uuBuizupHTl ‘3jaqaup|>in ‘a w a ‘wqosg ^ ‘p>[J3JAm ‘Mqoaj H O ‘uaqpxz’qD ‘jpiuiqoso [l] :S90U3J3J3^ ■(2VIA[niS9S0 p u t : ¿ v w n m s o ) a a w e A'q p a p u n j a j a M s j u a u i u a d x a o q j s a j d u r e x a o u i o s j w o q s j j i a \ s m q o B O j d d e s i q j j o j o s j y ’X S i a u o u o j o q d j q 3 u o q j o ju o p o u n j a q o j X ju o SB q jo jB iu o iq o o u o iu o u q lU B o q u o j j o i q o u X s a q j s ju a u ia p a q j j o s o 3 p a u o i j d J o s q B X b j - x J O a a u a s a j d a q j 3 u ; s n ( „ S u i d d B i u [ B j i q a o ,, ) i a j O B J B q o 9 u i p u i q j p q j p u B s ju a u ia p jtio q jiy W |B o i L u a q o a q j u o u o i j b u u o j u i j a A i p p o j a [ q B s i [ A j y y j a q j j u a u i d m b a p u o i j i p p B aub : [ ^ ] a n b i u q a o j p j B p u B j s b X p B a i p s i u o i j b u u o j u i p o i u i a q o j o 3 o j X j i j i q i s s o d a |i j B S J 3 A y [ £ ] U A \o q s a q | [ i m s j j n s a j j s j i j a u io g ( „ X d o o s o jo iu io x jo a d s ,,) |BJU3UI3p |BJ3JB[ J O p p ij aqj S u id d B u i S J3JJ0 JBqAV s a 3 n iu i j ^ a a d o i J B iu o i q o o u o u i is E n b ja S s u o iS a i o j o iu i p 3 |[ a q E | j o B j p s d s X §J 3U3 q jiM j a q j a S o j u o D q is o j u o p a ji s o d a p a jB n b s W-OD-ld alrl OZXOZ B JO qdEjSojDmi j^ a a d -Z 3Jn§!i OJ a jq B ,< p B 3 J [B 3J3A V 3A\ p u B q j o q j o a q j u o s u o iS a j ja 3 a jd u r e s u ib jjo o j o B Jjo a d s oj p o q ja u i jq 8 i(j-jo -a u iij a 8A!jB|ay aqj jo > j o o j 3AV ( „ s a q o u n q j s a o j n o s u o jjo iq o u X s l^ a a d Sl (A3) (A 3 ) Ä ß j s u g U0J P 8 I3 o ijX [B U B O J O ta i j b [ iu ii s p u B q s u o X 3 jo u a je s S c ju B A p B jq 3 i| a q j 3 u iq s i[ d u io o o B O S [B puB p o iu q o a j jo 3 p o iu ia q o jo a jn jo r u js a u iij X y r p a j j o d a j X |j j o q s B oj s is Xjb u b o jo iiu q o B O jd d E puooas y U A \oqs a q |[ i m s jr e ja p s a jd u r e x a a jo u i ■ y \a iu o o l A \ o p q j p M aqj jo u o ijr q o s a j a u io g a q o j u ia js X s X3 jo u o ub JS B 3 [ jb S 3 J B J J S U 0 U 1 3 P „ o ,, p u B „ q „ u a a M j a q j j i q s X S ja u a S |q j [ p u is jo p a jp q E ] a o u a ia jjip aq j a p n jiu 3 B iu u o ija u n j îjio a v b X q p a j a j d i a j u i s q o j SBq / \ 0 £ j n o q B j o „q„ puB X 3 ja u a a 3 n q „B u u o o w jo q y i q s 3qj a \o ) B j jo a d s a a i q j jB q j j o j j o j n o X 3 j3 U 3 aq I 3 u ¡M o q s J0 |d puooas 3qj Xq U 3 A |3 SI 3 3 U 3 J 3 J J I P O A I J E J I [ E n b B OJ JU iq js q jjn j y JB s u o ijis o d U sS X xO JO ju a ja jjip o a \j 3 s a q j U O IJB JJU 3 0 U O O oj sq sq j q jo q s u ia a s 3 A IJ0 3 d S 3 J u js js X s js X B jijjn u i p n jis o d a p sq i aqj jo a o u a ja jjip js is u o o p p i o q s u ib u i a u re s s b o i b s i q j S B a jo q M uq u p i r e „ b „ s u o i S a j j o a q j u i s a o u a a a jjip ju b o ijiu 3 is SA voqs u o s u B d u io o j s i ij y u o ijis o d u io o p o iu ia q o a jd u iB S a q j j o s u o i j i s o d ( u i r l [ x p j d d B ) A C O H EREN CE FU N C TIO N APPRO ACH T O MULTISLICE THEORY H. M üller and H. Rose Institute of Applied Physics, Technical University Darmstadt, Hochschulstrafie 6, D-64%89 Darmstadt, Germany. T he sim ulation of high-resolution electron micrographs is a valuable tool for determ ining the atom ic stru ctu re of objects by m eans of electron microscopical techniques. A lthough a number of different sim ulation m ethods have been proven useful, a q u antitative correspondence between HREM sim ulations and experim ental images has not yet been reached. To take the step from qualitative to q u antitative HREM image sim ulation, a theory of image form ation which is solely based on th e propagation of the stationary wave function of the scattered electron proves to be insufficient. To avoid this shortcoming, we have proposed a theory of im age sim ulation based on the propagation of the stationary m utual coherence function [1 ] Tc (p,p',t) = {'¡/{p,t)'¡>,(p',t-T))T. ( 1) Here 1 is the electron wave function and (.. denotes the tim e average over the recording tim e T of the m icrograph; p, p' are 2-dim ensional coordinate vectors perpendicular to tinoptical axis. T he recorded intensity in the image plane is given by I(p) = Tc(p , p' = p ,r = 0) — (l'í'íp ,i) | 2)r- T he coherence function approach correctly accounts for the partially coherent n atu re of the electron optical im aging process and the quasi-elastic and inelastic scattering processes w ithin the object. The propagation of the coherence function through the object can be calculated efficiently by a generalized multislice formalism [1,2]. In this formulation the scattering properties of each thin object slice are approxim ately described by the m utual transm ission function M (p ,p ',r) = exp (i(p i(p ) - Pi(p')) ~ g ( M p ) + M p ') ) + Pn(p, p \ r )) ■ (2) T his transm ission function depends only on the first and second stochastical m om enta of the projected slice potential considered as a tim e-dependent stochastic process. T his approach considers the fact th a t for weak objects the ideal inelastic image represents the variance of the projected potential [3]. The term s in the exponent are explicitly given by p\{p) = (x (p ,*)) t , M p) = Mil (P,ff —PiT — 0), (3 ) pn(p,p!,r) = ((x(p, t) - pi{p))(x(p', t - t) - p x(p')))T ■ The second relation ensures th a t our form ulation does not violate tKS optical theorem as it, is th e case for th e conventional multislice theory which uses an absorption potential to account for inelastic scattering. The inform ation about th e stochastical measures p i, p-¿, and p.\ \ can be calculated from sim ple analytical models describing the elem entary quasi-elastic and inelastic scattering processes w ith a sufficient degree of accuracy. C urrently we employ the Einstein m odel of lattice dynam ics for therm al diffuse scattering and a modified R am an Com pton ap proxim ation for inelastic electron scattering resulting in electronic excitations [1 ,2]. To dem onstrate the feasibility of our calculation m ethod we have sim ulated unfiltered diffrac tion p attern s of Si (110) for different crystal thicknesses. The calculation considers the influence of elastic, quasi-elastic, and inelastic scattering processes w ithin the object. The results are com pared w ith experim ental diffraction p attern s of specimens of com parable thickness. The OS uoipm unm m o'j yfva u d ‘jap o /l-in j> ]irej¿ ‘j j j j ‘ia p u B A u p g j pire niay; Q ',\\ k\ •(^86x) S I MoDsoMiutvjpß ‘ascry C (S66l) 0 9 ädoosouotuivjfjß ‘a so y y pan saSuiQ Q ‘.laSjay y g (8661) ‘0 6 1 fi-dojsoMiffl fo p ru n o f ‘i p s j o i p g y pm; a so y y ‘« lU M h I :S 3 0 N 3 H 3 3 a E |)uno.iS>[:H;q uouoijd p a ^ n u n s :p¡íh.í mo'ffoq ‘ajqisiA puncuSspBq uouoijd tpi.w u.iav)Kd utH'j.nMjjip p n iiau iu ad x a papeosaj .7/ 3; uiotfoq ‘uw jiB d u o ip-ejjjip pajBjnuiis p a ja q g u Q :fyßu do'l ‘u.iavjtîd u o rp ru jjip [f;')Tiaun.iadxa p a ja q g u ß .7/ 3; rfoj; uiu OOC °? OSI u a a ^ a q ssaujpiq:} i|)iA\ ( o n ) !S Io s tu a ^ ß d u o ip B jjjip pajxqiunis pire p ;ja a u n ja d x a jo uost.n;dmoQ a jn S ij [{?] áutíulioq ‘japo/îJn}5(ux!jj ui soisa'ij j jcypnpuoo -¡11i.>s .1° annijs’U] at[4 iiiojj japtreAupg y pin; tre y Q 'M ■'■(1 p a u u o jja d uaaq 8At:q s^uauiuadxa VARIA BLE M ODE RETA RD IN G FIELD ELEM ENT FOR LOW ENERGY S E M I.M iillerová, L. Frank and E. Weimer* Institute o f Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic LEO Elektronenmikroskopie GmbH, 73446 Oberkochen, Germany Today's trend tow ard low electron energies in a SEM is motivated by reasons connected solely w ith the specim en itself. A t low energy electron impact, the interaction volum e dim inishes so that the information is better localized, the total electron yield is generally higher and the specim en charging-up can be suppressed, and m oreover many new types o f contrast appear. C ontrary to this, although significant progress has been m ade in designing low voltage guns and electron optical colum ns, principal needs for keeping the beam energy at least at few keV throughout the colum n cannot be avoided. These include suppression o f influences o f both the external stray fields and the mutual interactions o f the beam electrons, and extraction o f a sufficient current from the cathode. U sing the SEM designs em ploying variable electron energy along their trajectory betw een the gun final anode and the specimen can com bine both demands. O ne im portant possibility is to use an integrated beam accelerator or booster [1,2] w hich holds the beam, betw een the gun extractor and the objective lens, at an energy higher than the landing one, w hich is given by the cathode potential with respect to the earthed specimen. An im m ersion electrostatic lens, com bined with a normal objective lens, closes the booster. The com bination lowers the aberrations and they even decrease with the increasing im m ersion ratio or decreasing landing energy. A lternative is to apply a high negative bias to the specim en and to low er the beam energy im mediately above the specim en surface with the help o f a cathode lens [3,4]. This com bination is capable o f preserving a nearly constant im age resolution throughout the energy scale and even comm ercial SEMs can be adapted to this mode, provided a special detector is fitted [5,6]. The operation o f the booster is limited by a m aximum reasonable immersion ratio o f its closing lens - otherw ise it becomes too strong to form the probe [7], For a 4wo-aperture lens w ith the aperture distance D and "sharp" field transitions in electrodes, we get, from a sim ple analytical calculation [8], the lower focal point lying at the distance D below the lower aperture already at an im m ersion ratio o f 7. C om puter simulation [9] brings the ratio o f 36 for both aperture diam eters equal to D while the field strength on the specimen reaches already 5% o f the full value. The focusing pow er is further increased by the magnetic lens so that one can consider this principle viable down to electron landing energies p f 200-500 eV only. I his energy range brings already m ost o f the advantages m entioned above. N evertheless, principally new contrasts appear below 50 eV w here the electron reflection yield acquires a vector character, dependent on the specim en crystallinity, and w ave-optical contrasts become possible. In addition, the probing depth starts to increase again, weakening the vacuum dem ands. This range can be reached only with a cathode lens with the full field strength on the specim en surface and difficulties connected with the specimen biasing. A booster equipped SEM colum n (Fig. la ) offers a very efficient way o f com bining both described m ethods. W hen insulating even the low er im m ersion lens electrode from the colum n body, one can simply switch the retarding field to the cathode lens mode but with the advantage o f the specim en earthed (Fig. lb ) - in-lens detector is then available only. Furtherm ore, an insulated specim en holder enables one to use also a highly efficient (retractable) anode/detector assem bly (Fig. lc). The variable m ode arrangem ent m akes the full energy scale accessible with the possibility to adjust the electric field on the specimen. ZS ■LIL ‘£661 ejuEuv ‘soidox P°MIV Pub A jjsuiojjoads s s b ^ uo ju o 3 SWSV pj£fr ' I W Y O !0'9 u o is js a q £ NOIPMIS [6] ' 68§ ‘2 £ 6 l is S u u d s ‘>|ndou3uojppi3 Jap uoSeipuruQ u ss b jo m [8] OIS ‘¿661 ss3Jd ‘( 0 ° P 0 T P3) so jjd o spjW Ej p sS jB q o jo îjooqpuBH ui ‘BAOOUSTa [¿] [9] [g] [ť] [£] [2 ] [1] ' 68£ ‘£ 1 l / H I (ť 66 l) BPV iuigooj>[iiAj q ‘BAOJsnnwi £61 ‘£1 (£661) SuiuuEog ^ u b j j i fA o ra n n w i ' 6£I ‘£t- (3661) AdoosoJDiuiEJijß ‘?Aoran 0W I ‘a u ^ T N £¿1 ‘21 [ iddns] (2661) EPV iuiipoj5(!JAl ‘o i m t w ‘BAOJ3nnpMi ¿9 ‘I ÏOA ‘ť 66 l sP«d ‘£1 N 3 3 I ‘u i y e w d 'f ‘wuipAV H ÍP ‘82 (W>6 l) sisÄ p u y puB Xdoosojsijrç jn g ‘oiU B qs ‘u a is o ij f ‘J3 iui 3 /v \y ‘u iy E jM jf ^ (u e iu p e d s ) pasEiq u s u i p s d s qjiM p uB j j o p s ip ji/A S jojsooq sqj qjiM opoui suo| opoqjE 3 -d p sqyE S (u s iu p s d s ) III3 MJ'M III3 Pub n a uasMiaq p auuoj suo| spoqjEO ‘uoipauuoo jjg aqj 8 u iip jiA \s Xq psuiEjqo a p o u i s u s ] 3 p o i]iB 3 -q SU3[ U O IS jaiU U II 3L|1 U U O J 1 1 3 p u B 1 3 ! p 3 } B 3 ip u ; s p iju s jo d p s jid d B p a d d in b a js js o o q q jiM b jo u u in io o j^ jg s s u i s i p s p d p u u j *B I S lj (u e im o e d s ) / III 3 II 3 S 1 "A (ja p o o q ) 13 , jo p e je p Ajeiijxne x jo p B jp c e I “ ■ J . 1 jo s s e jd d n s - _ X -z n _ n - ‘A e p o q je o SH ORT N O T E ON LO W -EN ERG Y S E M CONFIGURATIONS I.M üllerová and L. Frank Institute o f Scientific Instruments A S CR, Královopolská 147, 612 64 Brno, Czech Republic There are good acknow ledged reasons to low er the landing energy o f primary electrons incident onto a specim en in the SEM down to hundreds and even tens and units o f eV. B ut there are equally good reasons to produce the prim ary electron beam at a high energy o f tens o f keV. To satisfy both, SEM designs are desirable in w hich fast prim ary electrons are decelerated som ew here in front o f the specimen surface. M odifications o f this general principle, proved to date, can be divided according to w here the deceleration field is applied. It can simply be between tw o bored electrodes o f an electrostatic im m ersion lens fitted into the m agnetic objective lens so that the fields overlap. A nother alternative is to replace the final electrode w ith the specimen, i.e. to use the cathode lens. B oth approaches differ m ainly in the electric field intensity on the specimen surface. A higher field causes a m ore effective collim ating o f the em itted electron tow ard the axis, which affects the detection conditions. On the other hand, the specim en geometry, tilt and surface quality becom e m ore critical. Some specimens can be even intolerant to a high electric field. The m ain difference is that the aberration coefficients keep proportionally decreasing down to the low est energies for the cathode lens [ 1 ] while for the im m ersion lens, it falls only down to values sim ilar to its w orking distance [2,3]. B oth versions can be treated in the dependence on the w orking distance w o f the electrostatic im m ersion lens, so that the cathode lens is for w=0; this is sim ilar to the system atic approach in [4]. Fig. 1 shows the electric field on the specimen surface, as a function o f w/D, w here D is both the diam eter and distance o f the electrodes. Obviously, the surface field can easily range in tens o f per cent o f the m axim um while the aberration coefficients still rem ain in tenths o f w while for the cathode lens they are roughly equal to D divided by the im m ersion ratio. This speaks in favor o f the cathode lens w henever it is applicable. A further aspect is that for a compound lens com posed o f electrostatic and magnetic lenses, both aberration contributions are generally comparable. For a cathode lens, the focusing lens influence dim inishes at very low energies and the resolution is mainly governed by the axial electric field (see Fig. 2). Consequently, if a cathode lens can be fitted into an existing SEM , good results can be obtained irrespectively o f the original SEM performance. Furtherm ore, the effect o f such an adaptation is enhanced due to the favorable property shown in Fig. 3. If the beam aperture is kept constant at a value aligned for a certain landing energy, the im age resolution rem ains acceptable and m oderately offset from the ultim ate value throughout the energy scale. From the practical point o f view, the landing energy is defined by a (sm all) potential difference betw een the gun cathode and specim en w hile the (high) colum n energy can be reached either by biasing both negatively or by biasing positively the w hole microscope colum n. The second case is discussed elsewhere in this book [5], the first [6] can be even applied to com m ercial SEMs. In a cathode lens, the full electron em ission is, in the anode plane, collim ated to w ithin a diam eter o f 4w (k-l)',/2 where k= Ep/EL is the ratio o f primary and landing energies. This enables one to employ, for the cathode lens based configurations, both the ED O L-type in-lens detection [7] w ith electrons passing through the anode opening, and an anode/detector com bination w ith a very sm all central bore (m ade e.g. from the YAG crystal). The latter type has a very high efficiency but needs a working distance o f 8 mm at least. D oubts have been m any tim es expressed as regards restrictions, put onto the specimen surface properties when the specim en serves as the cathode in a cathode lens. Particularly, the '682 ‘(9661) El h ddnS] Bl3V luupoj^iiAj ‘BAOjanny\n ‘jizBjpBZIM [ 8] 18 ‘I 1°A ‘8861 ‘£6 ‘°N ’« S J uo3 s¿Hd lsuI ‘3 S0>I'H ‘« P ^ Z Í [¿] £61 ‘(£661) SI SmuuBOS ‘> [ u e jji ‘BAOjannjM‘1 [9] sS uipaaoojj asaqi ‘ja u ip A \g ‘>]UEJjq ‘BAOjannp\n [ç] ' 6¿ I ‘(S661) 001 W dO ‘a s o y 'II ‘s B z s J ip jja M çjd B q o ‘¿661 s s o jj 3 >io ‘( j jo p o 'f pa) so ijd o apiU B j p aS jB io j o >poqpuBH ui ‘BAOOuaqe [e] I £ ‘(2661) 26 ^!ldO ‘s B z s > jp jja ‘aso-gH [2] 6SI ‘(2661) S f XdoosojoiuiEJim ‘eao jo h tiw I ‘™ q 'W [l] IXe] Aßjeue ■saiSjaua papaps auios jo j uinuiqdo sanjEA oj p ax y si ji uai[M jo (z S y ui sb) auo uinuipdo aqi laqiia si ajnjjadB ureaq aqi uaqM (uiui 01 sju a p y ja o o uopBxiaqB jo j) Z 'S ij ui sb uoijrqosaj a q x '£ S y <7 jajauiBtp ajoq apouB aqi pus M aauBjsip apouE/apoqjBD aqi Xq ja jjip saAjna ‘ja q y n j uiui 0 0 l °J puB (sauq ja ip iq i) uiui o i oi qioq p n b a sua[ Suisnooj aqi jo siu a p -tjjaoa uoiiBjjaqe oiiEuiojqo puB p a u a q d s aqi jo j ‘suaj Suisnooj B qiiM uouEuiquioo ui suaj apoqiBO aqi j o uoiinjosay j Siq aouBisip puB jaiauiBip a p o jp a p ([Enba XiiBninui) aqi jo siiun ui pajnsBaui aouBjsip S uijjjom aqi uo aouapuadap aqi ui ‘sapojioap aqi uaaM pq ati|BA uinuiixBui aqi oj XpAi)Bpj passajdxa ‘aoBjms uaujjoods aqi uo p p y o u p a p pixB aqi j o Xitsuaiu[ • [ -S y A3 01 M opq oj UMop paŽBUii |p M oje uirl g 0 1 dn qidap b j o sdais aoBjjns uaAa iBqi paiBJisuouiap siuauiuadxa iuaoa>| aAijisod X[]nj si [s] aoiAap paddinba sua| apoqiBO b ui p au u o jjad p'JHS SuiSjBqouou aqi qiiM aouauadxa aqi ‘ssajaqijaAaf^ passajpps ajaM suauipads qioouisun puB aAipnpuoouou j o sasBO A STUDY OF W AYS OF IM PROVING THE SPEED AND ACCURACY OF C O M PU TIN G FIELDS, TRAJECTORIES AND ABERRATIONS IN ELECTRON OPTICS E. Munro, X. Zhu, J. Rouse and H. Liu Munro s Electron Beam Software Ltd, 14 Cornwall Gardens, London SW7 4AN, England. Tel. & Fax: (+44) 171 581 4479 e-mail: [email protected] The m ain objective in the com puter sim ulation o f electron optical systems is usually to predict as accurately as possible the im age blurring and distortions o f an im aging or probe-form ing system. This essentially involves com puting fields, trajectories and aberrations. The traditional way o f doing this is to com pute the electrostatic and/or m agnetic field distribution along the system axis and then evaluate the primary aberration coefficients with a set o f aberration integrals involving the paraxial rays, axial fields and their axial derivatives. A lthough this traditional m ethod has served electron optical designers well, the design o f som e o f the latest instrum ents is straining the capabilities o f the standard simulation methods. Exam ples that are hard to sim ulate by traditional m ethods include LEEM systems, aberration correctors, electron m irrors, curved axis systems for beam separators, W ien filters, etc. In LEEM system s, im ages are formed w ith electrons em itted from the sam ple surface with low energies and large angles. A t such low energies and large angles, conventional aberration analysis may becom e inadequate, the energy spread can dominate the initial energy, and the concept o f chrom atic aberration coefficients may become alm ost meaningless. In aberration correctors, analysis o f high-order and asym m etry aberrations may be needed, and this is very com plicated using conventional aberration analysis methods. In m irror systems, conventional aberration form ulations break dow n near the reversal point, and very involved theoretical treatm ents are needed unless direct ray-tracing is used. For curved axis systems and Wien filters, the expansion o f field functions, paraxial rays and aberrations o f various orders about a general curved optical axis involves great com plexity and enorm ous scope for mistakes. To help address such problem s, the aim o f this paper is to investigate methods for improving the speed and accuracy o f num erical field analysis and direct electron ray-tracing. The aim is to identify areas w here im provem ents can be made in the sim ulation techniques. In particular, w e aim to try to com pute field distributions very accurately (off-axis as well as on the axis), and to see how fast and accurately we can directly compute rays through these fields, without resorting to aberration theories. We then compare the results o f these sim ulations with conventional aberration results and try to assess the relative merits o f the various approaches. The m ost difficult task, by far, in m ost electron optical sim ulations, is accurate field analysis, since if the fields are know n accurately the trajectories can be computed with negligible truncation errors, using high-order Runge-K utta or B ulirsch-Stoer methods [1|. For high accuracy field analysis o f structures with rotational or m ultipolar symmetry, second order finite elem ent m ethod (SOFEM ) [2] is in principle an attractive candidate. Isoparametric second order finite elem ents use biquadratic basis functions for both the elem ent geometry and the potential. The biquadratic elem ent geometry allows the elem ents to be curved, thus allow ing accurate geom etrical m odelling o f structures w ith curved cathodes, electrodes, polepieces, grids, etc. The biquadratic potential functions allow a closer fit to real potential distributions than linear basis functions do, for a given num ber o f grid points. psjnduios oq ubs sp p y oqj ‘jsasm o h sjuiod-qssui ju su isp sjiuy sqi jb spijusjod 3 i|) jo SupUSJSJJip |B3U3lUnU Xq psjnduios ssoq) qjiM 90 I Ul JJBd [ UBqj JSJJSq OJ SSjSB ‘S[EIUIOUX[Od uo|]B|odj3 iu! 3 i|j qjiM psjnduios ‘uoiSsj sqj jnoqSnojqj sjusuoduios p| 3 ij [EipBj sqj jEqj Moqs s j s s 1 ’XsBjnssE q3iq b oj suoijsunj XjBjusuisp Xq psjjy XpjS|dui0 S sje ‘jssjsjui jo uoiSsj sjijus sqj jnoqSnojqj (sjusuoduios p| 3 ij puB) pijusjod sqj ‘subsuj siqj Xg uoijssjip z sqj ui sjij suqds sijumb jo siqns Suisn ‘uoipsjip (z) [bixb sqj ui ‘s|BiuiouX]od [BipBj sqj jsqjsSoj jy 3M USqj 3UB|d (z) |BIXE q3B3 JB Siqj Op 3,/\\ U0 ;jB|0 djSJUI sSUBjSBq SuiSn ‘UOIJDSIip ( j) (BipBJ sqj u; jy |BiiuouX[od b qons sjnduios 3 /^\ '(,.N)ZJ ssjSsp jo 3 q |Jim jy [BiuiouX|od sqj ui uusj ssjSsp jssqSiq sqj snqj pus ‘XjjsuiuiXs (BUoijejoj sqj jo asmîooq ‘psjinbsj sjb u jo SJSMod usas X|U() sjuiod ,v sssqj qSnojqj V jo sjsMod ui ‘[BiuiouX[od b jy sm pus ‘y = u oj o = •< iuojj sSuej sqj Sumusds ‘(9 * j\[ X]|BsidXj) u oijssjip |BipEJ sqj ui sjuiod yy 1B s|Bijusjod psjnduios sqj s>(bj sm •" suB|d qsES jb usqj (ssuojssfBjj sqj sjnduios oj qsiM jsjb[ |[ im sm qsiqM inqjjM sn;pBj isoujjsjno sqj Supq y ) sixb sqj punojB y snipEj jo uoiSsj |Boupu}iXo jejjuss b 111 \iuE|d ( r z ) sqj u; jE pS uE jssj sjinb jnoXBj qssui sqj qjiM '[AIHJOS Suisn uoijnqujsip p p y sqj sjnduios jsjij s ^ suoijsunj sijXjbub Suisn sixb [Boijdo sqj jbsu sjusuoduios p |sy puB |B|jusjod sqj S uiju sssjd sj joj spoqjsai SuijeS ijssaui ussq SABq sm ‘uisjqojd siqj suiosjsao o j aupBjj-X Bj js s jip Xq u o ijb u u o ju i uoijB jjsq s sjBjnssB uiBjqo o j p s p s s u sq Xbuj s s u o js s Ib jj j o spuB snoqj j o su sj sjsqM ‘suisjsX s W 3 3 1 j o uS jssp sq j jo j m o]s X|qBjdsssEun sq Xbui s iq x ),] p ss B q -u in iju sj z p jN OSl B u o 11111 01 J ° XoEjnsoE ub oj s jn d u io s oj s p u o s ss £0 jnoqE a>|Ej u e s X jo jssîejj su o ‘p o q jsu i siqj Xq p sjn d u io s sjb s s u o js s Ib jj uoq a,\ m o |s si p o q jsu i sq j ■ jsasm o h ()01 u ! JJBd [ oj psuiBjqo sq ubs sju su o d u io s p p y - sjBjnssB si p o q jsu i siq j SMoqs sj[n ss j |sp o u i s;jX|bub sq j qj|A\ u 0SiJEdui03 (sju io d p u S ( , p S u ia jo a u i) s ju s u is p § u ip u n o jjn s jn o j j o ssp o u je [Eijusjod sq j puE ju s u is |s s jiu y s q j uiqjiM ssp o u je s p iju s jo d sq j uas.w jsq su isq o s u o ijE |o d jsju i ub Xq psuiBjqo sq ubs sju su o d u io s p js y sq j ‘ju s u i s p s jiu y b uiqji^V ■pspssu SJE SJUjod SIXB-JJO JE SJUSUOdlUOS P[SIJ sq j JO SSnjBA SJBJnSSE ‘3upB JJ-\E J JSSJip JOJ ssuBjsip s jiu y b jb ssuBpunoq Xq psjB uiuusj si U0ijB|ns]B0 p p y sq j u sq w p o q jsu i ju s iu s p sjiuij sq j ui p ss n p o jju i sjo jjs uoijbsuüjj sqj X p s p s jd sssssb oj sn ssjqBus s i q j (|b j3 sju i p s s s g - j s u n o j b § uisn) u o ijs s jip [bixb sq j ui X jiuyu; oj o3 Xsqj sjaqM puB (s s u s s p s s s g - j s u n o j s js js s ip b S uisn) ssuB jsip s jiu y jb sjbuiuusj sjb s s p o jj s s p sus[ sq j sjsqA \ ssbs sqj qjoq X|jsexs sjpuBq ubs p p o u j s i q j sixb sqj uo sb ]pM sb sixb-jjo ‘s p p y p sjn d u io s sq j j o XsBjnssB sq j > p sq s oj sus] [Bijusjodiq b jo j p p o u i sijXjbub ub pssn SABq Sy\\ p s ju s s s jd sq |[|m sjusuisA O jduii s s s q j qjiM psuiBjqo s j p s s y Xem p s y iu n e ui jsa jo s suies s q j Xq psjpuEq sq oj (jEijusjod jo js s a sq j jo j ssuBpunoq jsiq siJiQ puB (Eijusjod jejess s q j jo j ssiJBpunoq iiuB iunssj S s ) sixb s q j je su o ijip u o s XiEpunoq snouBA puE ssuB|d XjjsuiuiXs sjqE us oj •ssjqBUEA siq isso d sb ‘ssp o u XiBpunoq ]|B S u ip n isu i ‘ssp o u sq j ||E §uijbsjj ( j ) puB ‘XsBjnssB jo sso| jnoqjiA\ p ss d s uoijE jnduios ssbsjsui X jjubsijiuSis oj suiciuios ||B qsiqM ‘suoijejsji jo jsqu in u p s jin b s j sq j puB ‘uoijE nbs j s d s u u s j j o jsq u in u sqj s s s n p s j puB '% çz Aq suoijBnbs j o jsqiunu sq j s s s n p s j siq j - ju su isjs js p jo -p u o s s s qsES ui ssp o u jbujsjui s q j j o uoijBuiuiip -s jd ( | ) s p n p u i s s s q x su isiq o jd s s s q j su jo sjsao oj js a |o s 0301 JspJO-puosss jn o ui sî(bui oj SuiXjj sjb sm sjusuiSAOjduii su io s ssn ssip sm ‘jsdE d s;qj u j suiij u o jjn s s x s puB Xjouisui qjoq u; jso s qSiq ss a |o a u i qsiqM ‘uoijB u;uiqs UBissnBQ Suisn u s s q ||ijs SABq sm ‘sssbs q sn s u | [(E jb jou jo X]mo|s p sS jsau o s ssu iijsu io s SEq ji sjsqM ‘( s jin s jp sijsuSbuj sus] sijsuSbui jo j) sisX|bub |Eijusjod jo jssa sijsuSbui qjiM ss ij[n s y jip su io s p s js ju n o s u s SEq jnq ‘(|E ijusjod je |e s s susuSeui Xq sisX puB ss s id s jo d s u s | sijsuS bui puE ss su sj sijb jso jjss|s) suisjqojd |BIJUSJod JB|BSS SIJJSUIUIXS X|[EUOjJBJOJ qjiM |[SM S>|JOM JSA[0S 9331 js p jo -p u o s s s j n o [Aj;-|-lOJ M1!M in js s s s s n s os psAOjd SEq qsiqM ‘p o q jsu i 0031 ol|l SE M3ns sjsa[os uoijE nbs jsbj Suisn ui s s ij|n s y j;p sjoui u ss q SABq s js q j puE ‘(JAJ3JO.-I) po q jsu i j u s u i s p s jiu y js p jo jsjij uBqj uiB jSojd oj psjBSi|dui0S sjoui q sn u i s (ji jsq j si PV3JOS X q n sy jip uieui s q x m uch faster with the interpolation polynom ials. The field com putation and the resulting direct ray-tracing are both speeded up by at least a factor o f 20, for the sam e accuracy. A typical trajectory can be com puted in about 0.016 seconds with less than 10 nm truncation error. This enables 10,000 trajectories for a LEEM system to be computed, and the results plotted, all in < 3 m inutes. Results illustrating the technique will be presented. In general, using the above method, the potential near the axis o f a round lens is expressed in the form: O ( r ,z ) = c„(z) + c2(z )r 2 + c 4(z ) r 4 + ... + c 2</v-i>(z ) ''2t^ l) c'o(z) represents the axial potential, cifz) is related to the second radial derivative at the axis, C4(z) to the fourth radial derivative, and so on. These functions have been plotted as functions o f z and are very sm ooth, w ell-behaved functions. A ssum ing the potential obeys L aplace's equation, both the radial and axial derivatives o f the potential, at the axis, can be directly derived from these functions: Radial derivatives at r=0: d^O/dr2 = 2co cf<t>/drA = 2Acn Axial derivatives at r=0: c^íVdz 2 = -4co d4<I>/3z4 = 64c4 db<S>ldrb = 12()ch 5 6<t>/3z6 = -2 3 0 4 c (, etc. etc. These functions can all be obtained directly from the radial polynom ial fits. Since the axial derivatives are exactly the functions needed for com puting aberrations by the ordinary integral m ethods, these functions can be used to evaluate the aberration integrals directly, w ithout any need for integrations by parts, which greatly simplifies the formulae and their program m ing. The aberration coefficients up to fifth order, or possibly even seventh order, should be able to be com puted accurately in this way. We are in the process o f com paring the aberration integral results with direct ray-tracing, for ordinary im aging systems, and hope to present results o f this at the meeting. Techniques for im proving the speed and accuracy o f the direct ray-tracing itself are also being investigated. Instead o f using a standard fourth-order R unge-K utta formula, we are evaluating a fifth-order Runge-K utta form ula due to Cash and Karp [5], which involves six field evaluations per step. This form ula is accurate to fifth-order term s in the Taylor series expansion, but sim ultaneously also allows an estim ation o f truncation error on each step, using an em bedded fourth-order Runge-Kutta formula. This can be incorporated into an adaptive step-size control algorithm , that optim izes the step size to produce a fast ray-trace with the truncation errors contained below a specified threshold. This typically enables < 10 nm cum ulative truncation error over an entire trajectory in < 100 steps. We are also trying to apply the above techniques to the analysis o f m ultipole and curved axis system s and hope to also present some initial results for these cases at the meeting. References: [1] W.H. Press et al., “N um erical Recipes in C”, 2nd Ed., Cam bridge University Press, 1992, 707-732. [2] X. Z hu and E. M unro, Journal o f M icroscopy 179 (1995) 170-180. [3] B. L encova and M. Lenc, Scanning Electron M icroscopy 86/111 (1986) 897. [4] B. Lencova, Nucl. Instr. and Meth. In Phys. Res. A 363 (1995) 190-197. [5] J.R. Cash and A.H. Karp, A CM Transactions M athematical Software 16 (1990) 201-222. ■OSZ-IZZ (¿661) t>8 j p s d s J P 3 I H T IB P > P ! J [¿] (9661) o u j g ‘sondo o p n jn j po&iRiQ ui s p u o jj juoooy uo u io s juj qjg ‘aso y j[ pire ‘_io[[niAl H ‘snzs^io.y q [9] (9661) u!iqna '-»IN J§uo 3 jn g qi 1 1 ‘a so y h Pu r ‘JaiiniAI ‘H ‘SBZs>[pJd q [g] (S 66 I ) S iz d p q ‘g o a J3P SunSex ¿ j ‘a so y h Pu r ‘JOIIDIAJ H ‘sB z s^ p jj q ItO ( 17661) SUBJ joijai ujoojg j 3 uo 3 p j q ie i ‘^ o y h P™ s e z s ^ o jj a [£] 6-1 (¿661) I '*>M J P a ia f ‘ss o y h PUE SBZs^pjj Q ÍZ\ S i e - i o e (S66 l) £9£ V sp o q p w uinjjsui - p n ^ ‘s e z s ^ o jj q puB osoy h [[] :s o o u o jo jo y uoTjBjjoqB pou o q d s oqj puE oijEiuojqo oqi jo uoijESuoduioo oqj ajnjjsuouiop o] ajqissod oq pjnoqs ]| oseo siqj u[ XjqEJopisuoo poSusqo oq ueo uoijeoijiuSeui oinipouuojui oq) ‘suoj OAijoolqo oqj puE jo p o [p p oqi uooMjoq oqojd oqj jo o3euii ub SupEjd A51 po/;u u jd o oq ueo jojoojjoo ojoqM oqj jo juouijsnfpn oqj ‘suoijBjjoqB juEuiuiop oqj soonp -o.id jo jjiu i opojjoj oqj juouioSuejje siqj ui oouig 'pojsnfpE jojnjndos uiEoq aqj qSnojqj uiBoq popoyoj oqj jo oSESSEd puoijippB oqj puB poppB oq [jim jo jjiu i uo jjo o p oqj dojs puooos aqj u] uojBJBdos ureoq oqj jo oouEiujojjod aqj ajnsBaui 01 pin; oinpooojd jiiouiuSip oqj dopAap oj ajqB ajE 3 « ‘joaoojojaj 'XpjBjnooB pouiuuojop oq uno jojooyop oqj jo soijjodojd oqj qnsoj e s y ’odoosojoiui Suiuubos oqj jo suoijBjjoqB oqj qjiM poJBduioo oSjej oje jojoogop aqj jo suoijBjjoqB oqj X y VIAIS 3lP 111 asno oqj oq |[ia\ ji se ‘suoj oaij -oafqo oqj uiqjiM suojjoo p aqj ajEJapaap jou soop 096K S Q 3LH a:)u!S ’o06 J° uopooyop e qji.w jojnjndos ureoq oqj q3nojqj uinoq uo jjo o p oqj jo o3nsssd 0| 8uis b ojbSijsoaui om dojs jsjg oqj uj •jo jo o j jo o j o j j i u i a q j j o s ju o u i o j i n b o j p o n d o u o j j o a p o q j o j o d o o s o jo iu i 3 u iu u e o s o q j jdB pB o j p o s n o je so su o j o s o q j jso j j n o u j jo j -s Ae j j o q j s d o ijj o u iu i As b 3 u ijs n fp B j o j o o g a p s iq j j o s a o n j j i x a p ire o o u b jju o o q j j e p a o B jd o je so su o j p p y o ijE js o jj o o jg a A ija a l'q o a q j p u n tu a js Á s jo s u a p u o o o q j u a o M jo q p a o E jd s i JO jBJEdos u r e o q o q x suoj q o uoq p o ijd o —u o j j o o p u e se o d o o s o jo iu i 3 u iu u e o s 0 9 6 I A lS a 0 3 3 B 3Sn 3AV ‘j o j j i u i o q j S u ijs o j j o j -Ap j b j e -d o s p o js o j o je s j u o u i o p p n p i A i p u i o q j ‘o d o o s o jo iu i p o jo o jjo o o q j j o A jix o |d u io ó o q j o j 3 u i m o • [¿ ] SUOJJ - o o p pojjiuio-uoSjuoy j o j odoosojoiui-ojjoads pojoajjoo b j o uoijonjjsuoo oqj qjiM poujoouoo si q o ii|A \ (^sanbiuqoax j u E A o p y [jy j o j odoosojoijAj-ojjood^^ j joofojd-xyVIAIS SLIJJ° )JB d jb ju o u i - E p u n j b o s p si j o j o o j j o o j o j j i u i oqx '[ 9 ‘£ ‘p ‘£ | Xjsnouojd pouqjno uoaq XpBOjp OABq sjuourop j u o j o j j i p oqj jo [z ‘ [ ] sojnpooojd u o i j e p o |e o pun sojnjnoj aqj pus ucJpaojjoa oqj jo jdoouoo oqx u o |j o o [ j o p - 00 6 m ]A \ JOjBJBdos ureoq e j o s u e o u i Xq odoosojoiui uojjoop u e j o uuirqoo oqj ojui si j o j o o j j o o s i q x sosuo[ uojjoop jo uoijBJJoqB pouoqds oqj puB oijnuiojqo oqj SuijEsuaduioo jo ojqEdBO si qoiq v. pou3isap uaaq ssq j o j j i u i o i j e j s o j j o o p u y p a j u o u i o |d u i | j o j X |s n o a u E j|n u iis i(uviuj3Q '¡pnisuunQ (i8 ZP9~ ( l 9 9^bJtsjntfDsif30jj ‘jpviswuvQ faisjíMUf] ¡n3¡uy.~i3ji ‘s j i s t y j pai/ddy Jo ainjpsuj a s o y h P « b J q a d s y ‘p j j e h d ‘s n z s ^ p j j a H O lD H H yO D >IO»>IIlAI V 0 N U S 3 1 H O d H D N 3 9 l V 3 I l d O - N O Í I 1 3 3 1 3 NV 3 0 N O U D fiy X S N O O U LTIM ATE RESOLUTION: W HAT ARE THE NEEDS FOR FUTURE M ICROSCOPES? Harald Rose Institute of Applied Physics, Technichal University Darmstadt, D-64289 Darmstadt, Germany To fully understand the properties of solid objects, a detailed knowledge of the atomic structure, the chemical composition and the local electronic states is necessary. The atomic stucture of nonperiodic details can be determined in principle by means of tomography provided that the resolution limit can be lowered to about 0.06nm. In order to achieve quantitative information, a high-performance imaging energy filter with an energy resolution of at least 0.2 eV at a voltage of 200 kV is mandatory. If such a filter is incorporated in a combined STEM-TEM, it will become possible to elucidate the bonding of segregant atoms and the local distribution of electonic states near interfaces or defects. For achieving sub-angstrom and sub-ev resolution, an entirely new generation of electron microscopes must be developed. The ideal future microscope will be a combined STEM-TEM operating at voltages between 150 and 300kV. It will consist of a field emission gun followed by a monochromator yielding an energy width below 0.2 eV. The condenser system must provide genuine Koehler illumination for the TEM mode and a spot size of about ,2nm for the STEM mode. This system also enables selected-area diffraction with variable cone angle if the diameter of the illuminated area is large compared to the diffraction-limited spot size. The spherically corrected aplanatic objective lens will consist of coma-free round lens and an integrated hexapole corrector. The formation of a spatially extended energy loss spectrum is performed by the highly dispersive aberration-free MANDOLINE-filter which has by far the highest transmissivity and the best overall performance of all filters proposed so far. The filtered intermediate image or the energy loss spectum are imaged onto a CCD array by means of an aberration-free projector system consisting of several lenses. For obtaining sub-angstroem resolution it is a "conditio sine qua non" that the incoherent defects resulting from parasitic mechanical and electromagnetic instabilities are reduced to such an extent that the information limit is pushed below 0.06 nm. The realization of this ambitious task is b y far the most difficult problem encountered on the route towards sub-angstrom resolution. sjjAJcI IBUOIJU3AUOO jo j 3|qBjnoABjun si siqi ‘Xjejjuoo aqj u o 'aXa uBUinq aqj joj ajqBjnoAEj Xjoa s| siqj put: ‘uoiSaj uinjjaads MOjpX aqj ui jqSlj sjíuia ji ‘spjsX ja a[3urs pajE§ijsaAUi jaqjo a^ iju n 'uoiiBAJOsqo p o jip joj suaajas 3 3 joj ajqEjms si jRqj [BJsXjd ajguis X[uo aqj si 3 3 :0 V A 3MX uoiSaj uinjjaads oabm jjoqs aqj ui xiMd jo Xjiaijisuss |EJja3ds M0 [ 3qi S3SI1B3 JEqj MOpUIM 30UEJJU3 ssb[3 aqj jnq jp sji apoqjBaojoqd sq j jou si Il MopuiAV aauEjjua zjjEnb aqj qjiM x W d 3lH Suisn Xq pasEajoui X|pa5[JBUi aq pjnoa a 3 :d V A jo SuiqajBiu jej pads aqj ‘jb a sm o jj 'pasn xW d 02 S olH ° l ‘XpAijaadsaj ‘SuiqajEin pujoads bsjom aqi put; ]saq aqj Moqs sjbjsXjd 3 [Suis 33:<JVA Pu r n3 :‘j R3 aqj lRqi ajqEj aqj ui pozuBuiums s]|nsaj aqi uio jj sm ojjoj jj j 3]qEX u’ usaiS 3 jt> ‘ j j s oj se j[3 m sb ‘pasn apoqjBoojoqd 02 S 3I0 oj SuiqajBui [Bjjaads aqj jo anjEA aqj qjiM jaqjaSoj (i^HAVá) uinuiixEui j[Bq aqj jo qjpiM Iinj aqj jo anjBA aqj puE puEq uoissiuia aqj jo uinuiixBiu aqj jo uotjisod aqj ‘[bjsXjo ajSuis qoBa j o j a|qissoduii saijisuajut jo uosuBduioa aqj saífBiu auiij auiBS aqj jb jnq spuEq uoissiuia aqj jo uoijisod aqj jnoqE uoijbuijojui jajjaq ssaiS siqx anjBA uinuiixBui sjí oj pjEŽaj qjiM pazipuuou si qoEa puB pasn jjajj aqj jo XjiAijisuas [Bjjaads aqj jo j pajaajjoa ajB Bjjaads uoissiuia aqx 2 S ij u| pajuasajd ajB pasn sapoqjsaojoqd 02 S PUB II S J° saijiAijtsuas [Bjjaads aqj pire ‘j '3;j ui UMoqs ajB s[BJsXjo ajSuis ng:zj t >3 puB i\,¿ ‘33:dV A ‘° 3 :OVA J° EJjaads uoissiuia X 3 aqx e jp a d s u o i s s u u j i sa ix aa d o a d s x v x s a h d aao N is xo a s a h íis a is B g pu B j b d s e j o q jn x sa§Bn§UE[ SuiuiurejSojd u i uajjuAv s e m suiqjuoSiB uoijaajjoa p a u iB ju o a qaiqM s j b m j j o s Suissaoojd pus SuunsBOiu a q x J a j n d u i o a [Buosjad e Xq pajjojjuoa s e m sn jB jE d d B SuunsBaui aqj p u E ‘(881^3331 ‘g id O ) sncI a a E jja ju ; asodind [EjauaS a q j oj pajaauuoo ajO M sjuauinjjsui jBnpiAipui aq x Jajau iJiO A O ireu ui->po[ e Suisn p a j n s s a u i puB ‘jojBuiojqaououi siqj jo jijs jndjno aqj j e xi^Jd B dn p a p id ‘JojBuiojqoououi j o j j i u i b Xq pasoduioaap X[[Ejjaads s e m jb u S is o aqj ‘juauiajnsEatu jBjjoads j o j [i] snjEJEddE 3 3 pajsxssB jajnduioa b Suisn pajnsEaui ajaM pajESijsaAui sjojE[jijups aqj jo saijjadojd (3 3 ) juaosauiuinjopoqjB3 -suoijEai|ddE IA13(X)S JOJ s3uo Suijsajajui j s o u i aqj sb uasoqa aja/A (+ín g :zjE 3 ) ap u o n y uinpjBO pajEAijoB u inidojna puB '(LPd Joqdsoqd japMod aqj oj spuodsajjoa XjiEOiuiaqa qa;qM ‘+£a 3 :sO!SzA) ajBaqis uinujjX pajBAijas tunu aa ‘(+í33 :tOIVA - 33 :dV A ) aji^SAOjad u in u iu in iB uinujjX pajBAijaE t u n u a a ‘(+t33 :ílO íIV£A ' 33 :OVA) 1 0 u jb 3 uinuiuinjE uinujjX pajBAijOE uin u aa jo sjBjsXia a[§uis ‘asaq j j o p a jn s E a iu o jo m s jE ija jE u i 3 3 jejsXjd ajSuis j u a j a j j i p jo s u a j auios ‘XjojBJoqEj jn o j y XN aiM aoNvanv x v x v a iM H a d x a o n y s iv x s a h d a a lv o ix s a A N i (XlMd) 3t|nl Jaqdijinuiojoqd aqj oj SuiqojEui jBjjoads aqj joj aijsuajaBJBqa juBjJoduii ue si uinjjaads uoiss;iua aqj puB ‘(HÖa) XouapijjauinjuEnb aAijaajap qStq b joj aijsuajaEJEqo aAisiaap aqj si auiij XEaap jojEj[ijups aqj ‘X auapyja jojBijijups aqj sapisag 3 3 jo sisXjbub paisXqd aqj joj os| e jnq IM3(X)S u! uoijsaqddB sjejsXjo ajSuis aqj jo Xji|iqEjins jo uoijBuiijsa aqj joj X[uo jou juEjjoduii ajB Xaqx 'W 3(X)S - adoasojaiui uojjaap uoissiuisubjj SúTuubos e jo/puE adoasojaiui uojjaaja Suiuueds b joj jojaajap uoijE[[ijups e jo sjajaurejEd jojE[[ijups aisBq aajqj ajB auiij Xt:oap puB ‘(Xjisuajui uoissiuia) X auapyja 7 3 ‘uinjjaads uoissiuia (3 3 ) juaasiuiuiniopoqjEa aqx N O ix a n a o a x N í (23 oiuqm @ u¡3d) Jtjqnday ‘:> tiq n (b y at/j f o sso u a p s /o Kwapvoy ‘o iu g pg n g - 2 3 '¿ P l vysjodoA ojpjy ‘siudiurujsuj o i ß i u s p s f o ainjijsui BjEjjny d P1"3 JanBqag j S H O X 33xaa iMa(x)s a o a s iv x s a h d x io n is j o saixaadOHd XNaDsaNiixrmoaoHXVD Emission Spectra of Single Crystal Scintillators for S(T)EM 400 450 500 550 GOO 650 of PMT Photocathodes 700 450 wavelength (nm) Figure 1 N orm alized cathodolum inescent spectra o f single crystal scintillators fo r S(T)EM . Table I 500 550 600 wavelength (nm) Figure 2 N orm alized spectral response o f the sensitivity o f the photocathodes used. Spectral p roperties o f single crystals fo r S(T)E M spectral characteristic maximum" FW H M ' S 20 PM T S l l PM T (nm) (nm) m atching'"’ (%) m atching'"“ (% ) Y A G :C e 560 122 73 45 Y A P:C e 366 52 60 58 P47 420 77 85 80 CaF2:Eu 426 30 92 88 single crystal ‘position o f the m axim um o f the m ain em ission band. " fu ll w idth o f the h alf m axim um o f the m ain em ission band ’“ m atching to the spectral response o f S 20 photocathode “ "m a tc h in g to the spectral response o f S 11 photocathode with alkali photocathodes. In the case o f YAG:Ce, it is necessary to use the S 20 photocathode (its long wave spectrum region differs from that o f S 11). All other single crystals investigated can also w ork w ith the S 11 photocathode. In addition to the characteristic broad yellow em ission band w ith a m axim um at 560 nm, the YAG:Ce shows a very weak em ission in the blue, violet and U V spectrum regions. This weak em ission w hich is more m arked for specimens with a low activator concentration has a sharp m axim um at 400 nm w hich is superim posed on the broad em ission band w ith a m axim um in the UV region, i.e. beyond the capabilities of the measuring device used. Efficiency For all applications in S(T)EM , high C L efficiency is required. The relative CL efficiency o f the investigated single crystals is shown in T able H The values o f this quantity are always related to the corrected value o f the Y A G .Ce single crystal. The as measured integral (spectrally non decom posed) efficiency includes the influence o f the PM T photocathode spectral sensitivity. This quantity is interesting from the view point o f application in scintillation detectors w here the su ç,p X[uo si a m p X s a s p p s j n s B s u i sqj ‘3 3 :< J V A J 0 d '% Z °1 sjunoure (uoijB jpxs jo p u a sqj j s j j e s r l ç psjnsESUi) a v o jS js jje sqj putî su o í I si 3 3 :0 VA J ° 3UIP P paJtisuam s q x -XpAijosdsaj ‘s ri z 'I p ire su \p jo ssuiij Xnosp poinsBoui qjiAv ‘ssajüd XEoap [Bijuauodxa ajSuis 3AEq sjbjsXjo s j S u i s n g : zj B 3 puB LPA ‘puBq ja q jo aqj u o ssijsuajOBJEqo Xsasp [ B i j u s u o d x s i jjn u i 3 ABq ( 3 3 : d V A pue 3 3 : q v A ) s jb js X js 3 [3 u is ajEuiuirqE uinujjX q jo g srl o i seav uoijEjnp s s j n d uoijE jpxs [ESldXj 3qx n 3[QBX UI U 3A l8 3 JE M 0[§J3IJB pUE 3UIIJ XS33p 3 q j JO S3tI[BA 3 q X £ '§ !X UI UAVOqS 3JB s jb js X jd s jS u i s n g :zjB 3 pus LPd ‘3 0 :d V A ‘a 3 :0 V A -PI sopsuapBJBqo XBSsp 1 3 (BoidXx a U IIJ  B .1 3 f[ srl 01 uofiEjnp asjn d u o n e ip v g w e Q J S aq) Joj sjejsXjs ajSuis jo saijsuajcrBJBqa Xb33(J £ ajnïilj (si!) oui!) ‘SOEjd 5(001 U0I)BpBJ§3p [BUOIJippE OU pUB ‘pSUIEjqO 3J3AV ‘p o u s d ami} ja y o q s b uiqjiAv jn q ‘sjjn ssj JBJIUIIS ‘J3JBJ p3JB3d3J SBAV)U3UI3JI1SE3UI 3qj U3qAV ‘OS 'JU3JX3 JE3JŽ B OJ [EJOdlUSJ X[UO SBAV 3SB3J33p X ouapijja aq x g 3[qBX jo uuirqoo isb [ sqj u iojj JU3pIA3 SE %£ UBqj SS3J SEAV XoU3piJJ3 UI 3SB3JD3p sq j ‘sjn o q a s jq j j s j y sq j SuunQ psAJSsqo SBAV p3JtlSB3U I SJEJSXJO 3[§UIS [(B JO X sU S p iJJS 3qj jo S uiuuoj sqj ‘z.ui3V 8-01 x t7 J ° ^Jisusp juauno b pire / \ 3>( o í jo XSjsus ue qjiAv su o jjo sp jo g A\0[ XJ3A SBAV XsUSpiJJS JO UOIJBpBjSap aqj ‘SJBU3JBUI X3 jbjsXjd 3[Suis ¡[B 10g n a iq ^ ljo p uuirqoo ui UAVoqs SB ‘apoqjBsojoqd jsq jo auios jo uoijEoqddB ub qjiAV uoijssuuos ui p sjssd x s SSSuEqS JO U0IJBUIIJS3 SAVOIE JI pUB ‘AV3IAJO JUIod jB3isXqd sq j u io jj S u ijsajaju i si pasn apoqjB sojoqd 0Z S j o XjiAijisuas [Bjjoads sq j jo j p ajoajjoo X o u a p y ja sq j ‘siqj oj jsejjuod uj -pspioAE 3q JOUUB3 3p0qjB30J0qd XW d JO SJ33JJ3 '(3n[E A |BI)TUI s q j O) P 3 JE |3 J) 3U11) U 3A I§ S u ü n p 3 u i S B 3 J 0 3 p X 3 U 3 I3 IJ J 3 ........ p a s n 3J3AV 3pOq)t!DO)Oqd J [ s s l f) J ! p3)BLU!)53_ ^ j o )JE )s a q ) J 31JB u n u 0 £ p a in s E s m t p a s n a p o q )B O O )o q d OZS 3lJ) J ° a s u o d s a j [ E jja a d s a q j j o j p 3 ) 0 3 J J 0 3 u n >>< p a s n 3 p 0 q jB 3 0 ) 0 q d o ^ S 3 lP J ° a s u o d s a j | E j p a d s a q i j o j p a j o a u o o ^ 33 :O V À £8 ZI ¿01 101 80 0 ZI SU VI l£ l ClWd OZS) (iW d IIS) ( %) ÍL Sfr 8Z S8 £ jnijB ^auaprjja S u iu ijo j J ° a n p A p a j o a j j o a o q ) o j p o )B | 3j_ 9ZI ^psjnsBsuj s e >>>ip3jEuipsa sjnoq zn 001 naXd®D LPd 33 :dV 330V A XWd “ j __p3)33JJO O |BJsXj3 3 |Ž U IS 3 a i j b |3 j WH(l)S “ J sjbjsXjo ajSuis jo Xouaioijjg jj a jq c x Table III D ecay properties o f single crystals fo r S(T)EM tim e characteristic single crystal Y A G :C e decay time" corrected decay tim e " afterglow ” ' (ns) (ns) (% ) 110 103 2 Y A P:C e 45 38 0.5 P47 41 34 u n m easu rab le C aF 2:E u 1200 1200 1.3 'u n co rrected fo r the tim e response o f the m easuring equipm ent "c o rre c te d fo r the tim e response o f the m easuring equipm ent " 'in te n s ity m easured 5 p s after the end o f excitation and the afterglow amounts to less than 1 %. In fact, with respect to the fall time o f the pulse o f the excitation electron beam (5 ns) and the fall time o f PMT (2 ns), the short-term decay com ponent m ust be corrected by subtracting approxim ately 7 ns o f the fall tim e o f the measuring equipm ent. The short-term com ponent o f the CL decay o f both yttrium alum ínate single crystals depends only negligibly on the duration o f excitation. On the contrary, the long-term com ponent o f the C L decay depends strongly on the duration o f excitation, so that for a very short excitation the afterglow o f YAG:Ce and YAP:Ce can be one order and at least two orders lower, respectively. This is advantageous for applications in S(T)EM electron detectors operating at the T V rate, because the im ages w ith a rich topographic content can be o f higher quality. CONCLUSION U nfortunately, all single crystals that have their CL decay tim e shorter than 100 ns (which is the condition when the TV scan frequency is used) contain oxygen and just thiS*group o f single crystals belongs to those with the least efficiency [2,3]. This means that calcium fluoride, which is the m ost efficient o f the four chosen, has only limited applicability because its decay time constant is 1.2 ps. The greatest advantage o f Y AP:Ce single crystals and P47 is that they are the fastest (38 ns and 34 ns, respectively). Especially, they have no such a m arked com ponent o f long persistent lum inescence as the Y AG:Ce single crystals have. The only disadvantage o f YAG:Ce single crystals is their speed which can be behind the lim it for the'T V rate in som e cases. It is therefore necessary to search for a way to shorten the decay tim e o f YAGtCe scintillators. REFERENCES [1] Schauer, P.; Autrata, R.: Inquiry o f D etector C om ponents for Electron M icroscopy., Fine Mechanics and Optics, 42 (1997), 340-342. [2] Robbins, D.J.: On Predicting the M axim um Efficiency o f Phosphor System s Excited by Ionizing Radiation. J. Electorchem. Soc., 127 (1980), 2694-2702. [3] Lempicki, A .; W ojtow icz, A.J.; Berman, E .: Fundam ental Limits o f Scintillator Performance. Nucl. Instrum. Meth. Phys. Res. A, 333 (1993), 304-311. sua] piinoj v. jo ppg oujonioiÄs A[|i¡u()('4t;'4().i a g i oju o p p g ajodip paimoj X p íB u d o id d u ire sasodum adns gaigM (isua[ sixi;-.)|(|iu.n;A., puioiiuaAuoa a g i u-eg; sixe agi jo sju auiaaeidsip ja S jB ] sajq^ua ma^sXs a g i iu,)in,)3mu.re agi jo Æj^auiraXs jçiioi:(i3[sire:i:} agi oj Suimq 'ppg suaj Suisnaoj agi pire sixn ag i jo ijigs aiureuXp îs iy v . aajire.renS s^uauodmoa ppg alapap X p m d agjL 'p94jii|s si s m ; a g i uagM paA.iasnoa si SuiSbuii ai^iuStis jegj Xbav b gans ut uasoga si sapojpap ai|'i ¡o siioq iB jp xa a g x 'sixb pijtui a g ; o ; .rep aip u ad iad uoipajip e ui sapoipap a g i jo |iiauiaïiire.i.re aip o u ad t: Áojdraa 8M asodjnd s ig j i o j uorpanp auo ui sixt: a g j jo y ig s A.n;.i)i<|n> m; smojji; gaïq/A p asodoid si Usuaj spce-a]qi2i.reA„ a p B js o jp a p p a ^ a ijs ig d o s y ip v;su u v(j esgŸg ■<) .iifm pjnipK ipofj ‘ipvfSuuriQ Jo fyisj,gn,iuß jvDiuyoaj, ‘so isâ yj paijddy fo aso-y -fj pire piuigag j N O IX O a H ia 3 NO M I S IX V 3 H X j o x j i h s a h v h x i s h v H x iM S N iaa s i x v - a i s v r a v A v j o a N i a x n o SP EC T R O SC O P IC X-PEEM WITH EMPHASIS ON MAGNETIC CONTRAST G. Schönhense Institut für Physik, Johannes Gutenberg-Universität, D - 55099 Mainz Structural tayloring o f magnetic films is a rapidly growing field o f research and development because it offers additional param eters for the control o f magnetic properties. Vertical h eterostructures (multilayers) offer a wide range o f technical applications e g. in magnetic sensor technology (read heads, position sensors) because o f the giant m agnetoresistance (G M R) effect. H orizontal patterning is crucial for novel devices such as m agnetic tunnel junctions for spin transistors being the basic units o f future non-volatile magnetic storage elem ents (M RAM ). Also high-capacity hard discs require the controlled creation o f welldefined m agnetic domains with lateral dimensions down to the 100 nm range. F o r all these systems there is an increasing demand o f powerful microanalytical tools in the sub-micron range. F or patterned structures a resolution o f several 10 nm is desirable, for multilayers it w ould be advantageous to view "buried layers", i. e. to look through a non magnetic coating. M ost o f the above-mentioned materials are com posed o f several chemical elem ents or intermetallic compounds. Since the constituents contribute differently to the magnetic behavior, it is necessary to distinguish the various magnetically active com ponents in a system. Consequently, an appropriate magnetic imaging technique must com bine magnetic sensitivity with elem ent specificity. The pioneering w ork o f Stöhr et al. [1] has dem onstrated that Synchrotron-based photoelectron emission microscopy in the soft X-ray range (X -PEEM ) is a highly promising technique to attack these problems. I f the magnetic X-ray circular dichroism (M XCD) as investigated by Schütz et al. [2] is exploited by using circularly polarised Synchrotron radiation, the magnetic contrast o f a selected element becomes visible. This contribution will give an introduction into the technique [3] and illustrate its performance by means o f several typical examples. Technical problems like the chrom atic aberration due to the energy distribution will be addressed. The base resolution o f our instrument (FOCUS ISPE EM ) is less than 20 nm, visible in threshold photoemission at hv = 4.9 eV [4] Operation in the soft X -ray regime results in an effective energy distribution o f the imaged secondary electrons with a width o f 5-10 eV. This width has been confirmed by spectroscopy using the M icro-ESC A analyser [5], The energy width leads to a significant chromatical aberration yielding a total resolution o f 120 nm. Approaches to improve the resolution e g means o f a novel Time-Of-Flight mode o f operation [6] will be discussed. Typical results [7,8] are shown in Figure 1 M icro-patterned layers o f permalloy (left), a Co/Pt multilayer (middle) and an epitaxial Co-film on Cu(100) (right) have been viewed by means o f the magnetic circular dichroism contrast at the iron and cobalt L-edges. Despite o f their similar dimensions, the three structures exhibit completely different domain patterns The permalloy squares show a simple flux closure structure with very few exceptions (like the defect-induced distortion near the centre o f the left image). This general behavior reflects the small magneto crystalline anisotropy and the tendency to minimize the magnetic stray field. The Co/Pt multilayer o f 7 periods (2.1nm Pt / 2.5nm Co) shows a complicated domain pattern ("m agnetisation ripple") being indicative o f its high intrinsic anisotropy and the polycrystalline 9 (s ja jja q pue SMSiAay aoE jjns ui jBsddB o j) ja u q o s ji^ f pire qoaiMg /y\ ‘a su sq u o q o s ‘J a p p u i p s jv 3 ‘u3qi3|Z 4 3 ‘u u b u ijjb h a <S3 !I!D T ‘J a ju io jj y ‘i p t r * m [8] (¿ 661) I8£ “ŠZF ooj>d UJ^S ° ° S ss-a 'W t -Jauqosji^ f ‘osusquoqos 9 ‘sa^oojg g n ‘qoaiMg /y\ ‘usqisiZ M3 ‘JSluJQjj y ‘jsppuqos TV 3 [¿] ( 8661) ‘ssajd ui ‘y qja^V JJSUI P nN ‘ssusquoqss 9 ‘mreuizupH f] ‘P ^ I A I IAI ‘Efnqv 3 y ‘3j3qauio|>[ Q ‘3)(U3jaj a ‘usqjaiz M3 ‘i P W > S O ‘Ja>(33!dS H [9 ] doqsj[jOM siqj uo uounqujuoo J a js o j ‘ |B J3 [S>(astAI IAI 39 S [s] (866I) SS3jd u! ‘ u^Md P ’S J P s d s JJ03|3 f -P* 13 u a q p iz M3 |>] (¿661) [¿ I > 8 U3i[d p y pue Jj33d s U0JJ33I3 f IjsuqosjjX f puB ‘J3JU10J3 y ‘js p p u q o s TV 3 ‘|>|SM05(B[3ZJI3 X ‘ssuaquoqog 9 ‘jpiuiqos o ‘usqisiZ M3 ‘J3M33J H O ‘M33!MS AV [e] (¿861) LZL ‘8S I P ! ^ sXqd ^ [js jb ja i 9 puB ‘uiqB jj s ‘J3[|3Z >1 ‘31U3DI d ‘“JPMHM M ‘J3u8bav m ‘z WM3S O ÍZ] (£661) 8S9 ‘6 SZ aousps íjsu u o i ¿ g a g ‘lU BU iBS 9 [AI ‘nyW A ‘JM 9 JS f tl] PUB ‘u i B q u n Q a ‘B p u B j o x s ‘d j E H 9 ‘J 3 I 3 u j s i u j 3 h :S 3 3 U d J 3 fo }¡ S JU 3 U IU 3 d x 3 3 q j UI JU 3U I38 b 8 U 3 j p q j JO J [ 8 ] PUE [ ¿ ] SJ3-JJ J O S JO q in B -O O [[E 5JUBql I 3IPH ‘>IisAqdjnj3(njjsoi5(r^ jn j jnjpsujopuB ij-xB jA i s q j qjiM uoijBjoqBjjoo b ui (a jq o u a jg ) 3N S3 PUB (u !IJ3 g ) A SS3H S33Jnos uopEipEj uojjojq3uX§ aqj jb jno psuJEO puB (ç VH3t>W 50 puB z V W ! 129 SO) 3Ë0M9 P3PunJ 3J3m siusiuusdxs aq x :stU3waSpajáioUiioy sojenbs S uunoqqS pu uosMjaq guqdnoo dijsu S bui b j o uoijBoipui ou si 3J3qx unooo spA9| XbjS o m j A|uo ‘33u appui uojoqd jo XijduiuiXs 3 qj o j Suim q SMOJJB uo [;bsi;3 uS eui 3qj Xq psiBOipui <01 L> XSB3 3ql JO 3UO 8uO[B U0I1BSI13U§BUI uuojiun B 3IBtlbs qOB3 JOJ SJB3A3J (!N uiu S'I Xq pajEOO Xj|BnpB) uiu sssujpiqj ‘(0 0 l)n3 u0 ° 3 [ep^EJlda sq i ‘Xjjbuij s jn p n jjs SB S3XB (jqSu) u j t I 8 X mW 8 puB (3|pp;ui p u B ys[) uiri QZ X uiri q z 3JE sajEnbs aqj j o S3zi§ (jqSu 0} y3| ujojj) (OOl)n 3 / ° 3 puB j 3ÀB[ii[nui Jd/0 3 ‘Xo||Buu3d psujsjjBd-ojoiui j o sjnjotujs uiBuiop o u su S b ^ ¡ a jttS ij T H R E E D IM EN SIO N A L SCANNING ELECTRON M ICROSCOPY W. Slowko Institute o f Microsystem Technology, Wroclaw University o f Technology, ul. Janiszewskiego 11, 50-327 Wroclaw, Poland Introduction Hum ans and all higher animals are two-eyed so three-dimensional viewing the surface topography should be an expected standard for most electron optical instruments. The subject has also very practical meaning. Quantitative characterisation o f surface m icro-topography is one o f most essential problems in many fields o f science and technology, as for instance: m icroelectronics, micromechanics or tribology o f magnetic media. Scanning electron m icroscopy (SE M ) is a very im portant tool for inspection and measurements o f geometrical issues o f sem iconductor structures (e.g. critical dimensions). Apart from its high lateral resolution, main advantages o f SEM are that it imagines the surface topography in the way preferred by human eyes and is very operative to find out some subtle peculiarities in large surface areas. H owever, it still gives limited information about the third dimension o f the surface objects and to measure their elevation and side slopes it is necessary to make crosssections o f the sample. Current investigations on the problem are focused on tw o groups o f m ethods [ 1 , 2 ]: those based on principles o f stereoscopy or making use o f the specific angular distribution o f back scattered and secondary electrons (BSE & SE). Unfortunately, each m ethod shows some deficiencies and disadvantages, so three dimensional imaging still is not a very popular technique. Stereoscopic methods The utility o f a stereoscopic view o f the world to communicate depth information resulted in the use o f stereo cameras to produce “stereopticon” slides for viewing. The stereoscopic m ethods o f a quantitative characterisation o f the surface topography are based on the same rules but they apply strict analysis o f the relations betw een tw o images registered from tw o points o f view. The idea can be explained on the example showed in Fig. I, w here different images can be obtained by shifting the sample or viewpoint. In this case, the elevation difference H betw een the tw o points, A&B, results from the parallax (cl/ - d2), i.e. from the distance o f the tw o points measured in the horizontal direction: H - Wd (d, - d2)/S , ^ ( 1) w here S is the shift distance and Wd is the working distance. Fig. 1. Characteristic dimensions used to estimate the vertical height o f objects when the tilt or shift o f the viewpoints is applied Much greater displacement o f the viewpoints can be achieved when it is obtained by changing inclination angles o f the view directions rather than by their parallel shift For instance, the sample stage may be tilted by angle P between the tw o images to change the view directions (as in Fig. 1). This time, the S u iu u b o s u a a M ja q d e S a q j ||i j o j si j ^ g s p - £ a q j j i jB iju a ss a si q o iq M ‘u o i j n j o s a j p o o S ap iA O jd jo u UEO p u e so B d s s 3 j b [ A [3 a ije [3 j u i p a jB ja u a S s i ¡b u S is u o jjo 3 [ 3 p a ja jjB o s >pE q a q j ‘s a p i s a g u a q j i | a jB jS a ju i o j puB dd> a [S u e a d o |s a o B jjn s a q j o j j o a d s a j q jiM u o ijE n b a a q j a A jo s o j ÄsBa lu a a s 1 0 u s a o p j] X 8 y u ! p a u iB |d x a u a a q aABq B jn u u o j a q j u i jn o o o jE q j s a |8 u e o ijs u a jO B J B q 3 (£) ^ s o a rfiA u is /^ u is + dd>soo /s o o + [ soo + I soo A átósoo dé soo y = — = / 1 IP u o is s a jd x a a q j qjiM p a jB u iix o jd d B a q u b o u o i j n q u j s i p a q j ‘[ ç ] e jb jiija j o j S u i p j o o o y u o i j n q u j s i p jq S q a q j o j A jjb jiu jis ‘s a jB q s u o i j o a y a j p u E u o i s n y i p s u ib ju o o j i puB jE |n S a j j i js q jB j si u o i j n q u j s i p jE jn S u B j i a q j ‘jaA aM O jq s a ig ja u a q S iq .ira q t o j s ^ u B q j s a u o j o a f e j j jq S iB jjs js o u i|B S u o |B o S ubo jE q j s u o j j o a p poJSjjBOS )p E q j o j js a is B a s u ia a s u o i j o a j a p [B u o ijo a jip a q j ‘jq S q u io jj aq jjB d y ubo s a d o [S a q j j o u o ijB jS a ju i Aq p a u iB jq o a o B jjn s aqj jo a jijo jd b puB A jis u a ju i [e u S | s a q j s¡ a d o [S a p is a q j j o a jn s B a u i a q j ‘a j a n ssjS u e u o ijo ajo p UOJJOO[3 - V0 \7 'Vd>\7 ‘S3[SuE u o ijis o d JOJDSJSp -V Q 'V d ) ‘s 3 |8 u e p q o s UOIJ33J3p U 0jj03|0 - O'O'ffVy 'JOJOOA A jioopA JEIJIU1 - rt |e u •aoB jjns 0 |d u re s a q j o j X ' 3 |S u e u o js s u u a u o jjo a p u o j j o s p A jE uiud - g j jo p o jo p p a ijq d u iis E ‘ajStre odo|S so B jjn s uou jo jo o a - u ‘s jo jo s js p - Q ‘3 ‘a 'V ui S 3 |8 u e dd> ‘u reaq :ui3}sAs o ijsu o jO E jeq ;) j 'S i j 2 S ij ui uM oqs u a a q SBq ji s b ‘s u ia js A s jo jo a j a p - i j [ n u i u i p a s q e a j A [|E nsn ‘u o y n q u j s j p jB jn g u B u m o u í) b q jiM a o B jjn s a q j u i o j j p a jB ja u a S |b u S is a q j j o u o ijo a ja p |B u o ijo a jip u i s js is u o o p o q j a u i a q j ‘A [|B ja u a r) IVťZi s a ija u B A j o m o j b u i j/\¡ g s o ju i p a o n p o j j u i s b m ji ‘ja jB q u o ijB u iu in j|i a p is b jb ua>[Bj s u iB j S - o jo q d u o u o i j n q u j s i p s s a u j q S u q e j o sisB q a q j u o p a jE iu ijs a s j o a \ s jo a f q o o iq d B iS o d o j j o s a d 0 |s a p is puB s u o ijB A a p a ja q M A jja o iE jS o jo q d u i p a q d d E s b a \ p o q j a u i a q j ‘A [ i j b u i u j u o i j n q u j s i p p m S i s u i o j j 3 d i ; i |§ s|q B O i|ddE 3J0U I u ia a s ‘„ u o i j n q u j s i p [B uS|s u i o j j a d B q s ,, j a j j a q j o „ S u ip u q s u i o j j a d B q s,, pa[|BO s p o q j a u i ‘asBO s iq j u [ a u o j o u o u i a jB s u o i j b a 3 [o [b oo[ a ja q M s a o B jjn s q jo o u is A j3 a jb [¡bj A bui A s q x o |jE u io jn B aq j jo j s jo a f q o pooS a jE jE q j s a S p u puB s y u ‘s a S p a j o |[ry S u ;S u B q o u o y B o y iju a p i ‘s a o B jjn s q S n o j A j3 a j o j 3 [q B 0 ||d d B js o i u u ia a s s p o q j a u i o i d o o s o a j a js a q j ‘ABAvAuy >[sbj a q j j o j p a q d d B s u ia jsA s j a j n d u i o o a q j j o j u ia [ q o jd b q ijs s ; s jo s f q o o o B jjn s 3 q j j o u o ijB O ijiju a p i a [q i||B ju i p u e a A i p a j j a ü b q S n o q j|B ‘a s n |B o ijo B jd u i ajB s p o q j a u j o id o o s o a j a js s q j u o ijB ju a s a jd E jB p j o s a n b iu q o a j 3 [ q is s o d A ubu i j o a s n q jiM ‘j u a j b a>jq s jo a f q o pajB[no|BO a q j u o p a q o j o j j s A ||B n sn s i a o B jjn s 3[duiE S a q j j o j s a j a jo q M aqx J iB d - o a ja js S u ij n jijs u o o saS B u ii q j o q a q j jb A |s n o n S ;q u iB u n p a y i j u s p i 3 q o j q S n o u a d jB q s o q p |n o q s s jo s f q o s q x s jo a f q o o iq d B jS o d o j jE jn o ijjB d j o 3qj jo OAoqE p a q ijo s a p s a j n j a q j o j S u ip jo o o B s u o ijB A a p a q j S u ijB |n 0 |B 0 u ; s js is u o o A q d e jS o d o j a o B jjn s u o i j o n j j s u o o a j |B u o is u a u iip - a a jq j a q j o j qoB O jddE o j d o o s o a j a js a q j ‘A [[B jaua£) s jo a f q o a o B jjn s a q j j o s a p is d a a j s o j juaoB fpB s u o i S a j a u io s j o S u iM o p B q s piOAB o j a S jE | o o j a q j o u p |n o q s s jU |o d M 3 iA a q j j o j[ij a q j j o y iq s a q j ‘sasBO p a s s n o s i p o m j a q j u j (Z) u ts / f p - fj sod ip) = h :sb p ajB [n 0 |B 0 s q u b o ‘jo a fq o a q j j o q 3 [Sub a d o [S a q j puB ¡~¡ jq S ia q probe m icroscopy (SPM ) and confocal microscopy (SCLM). In this field better results can be expected when the secondary electron signal is applied. Secondary electrons are generated with Lambert’s distribution, so the current collected by one o f the detectors shown in Fig.2 can be written in the simple form [6, 7]: / / i = | iocosy sec cppdSl , (4) n< where: ig is a maximum angle density o f the secondary current, proportional to the e-beam current and secondary electron yield 5 0 A fter proper operations the expression for the d e te c to r^ current takes the form: Ia = io\d-tg(pp-co^®A - 0 P)+cJ , (5) that leads to the following eq. for the relative difference o f signals o f the detector A and B Ia - 1 b Ia + Ib dz dx ’ for 0 A = 0 and a- c/d (6) w here c and d are coefficients o f material and topographic contrast respectively. They depend on the detector geometry, as it has been shown in Fig.3. Finally, an integral o f the expression represents the surface profile along x axis, i.e.: dx + Q (7) where: x x - are co-ordinates o f the beginning and end o f the scan line, Q -is an integral constant equal with the surface profile height at the beginning o f each scan line (numbered /). F or the tw o detector system all lines have to start from the same level. A fully three dimensional image can be obtained when the second pair o f detectors (C, D ) is used to provide information about surface slopes in y z plane. Then, the final expression defining the surface topography along successive scan lines takes the following shape : st z(x ,y t) = a j dx + I a + Ib «J Ic - I n ) ■I c + I J dy+c n (8) The second integral reconstructs the surface profile in t h e / direction (beginning with the initial altitude Cr) along start points o f all lines (x -X q), as it has been shown in Fig. 4. d ./c f S'. 'V y=v,t Figure 3. Quotient of the detector geometry coefficients against the detector declination angle ( - 4- O.lrad, -9 - 0.3rad, -0 - lrad). Fig.4. Scheme of the three-dimensional reconstruction of the surface geometry The formulas for signal processing, (7) and ( 8), can be realised both in analog and com puter systems . Analog systems seem more suitable for the reconstruction o f the surface topography in a shape o f profiles which is a form o f tw o dimensional representation and can be OL I IOIO a 11XX'°N Juej8 '(NH>[) i[ojeoso>] oijijuapg joj oojjiuiuio^ nqi Xq pajjoddns ajaM qojEosoj jn o (9661) ¿6 uvdmtvz ‘ spH°S osojoif^¡ 3 fu o jX I ‘o>|MO|S M [¿]* (9661) ZZÏ ‘81 'SumuDOS ‘o>jmo|s M ‘!>(s^oj|d3z3 x [9] (9¿ 6 l) ¿61 9£ V ‘!P!1°S m v ts ‘bjejiijaj y [ç] (¿861) £96 ‘£H ‘ osouofwutx>s ‘issaQ a Pub J3[Suog ~a ‘jaunay q [t?j (6¿6l) 0£2 t ‘Suiuuvog ‘^IFPSiqai f [£] ( 2661) t’LZ >11 ' S m v ^ o j x ‘ ib jo b5|bubx h [ t i (0661) ssa jj iunus|d %doosouoitup s i s t s s v uam diuoj ‘ssn y f [[] S)3U3J 3J 3]{ suopeaqdde Xueui ui XqdBjgodoj aoBjjns aqj jo uo¡ibii|ba3 aApsjpuBnb jo j aApaajja aq Xeui poqjoui „uopnqujsip |BuS;s uiojj odsqs,, aqj ‘sjqnop Xubui os jo ajids u¡ puajxa amos oj paqjnjsip oq jjijs Xbui uopoajap [Buopoajip h s 3lll snqj mo¡j sapijjBd paSjsqo o>|buj o j sp p ij o u jo ap auios X|dun su o p n p s qjoq aqj 'J3aoa\oj¡ suoi aAijisod j o uopoBjjjB jb|iuiis Xq pajBsuaduioo oq uso sagjBqo oaijbSou bsbo puooos oqj ui puB uiaqj Xq pajOEJjjB su o jjo ap XjBpuooos Xq posi|Bjjnau X[jjBd oq ubo saSjcqo aoBjjns OAijisod asBo jsjij aqj uj [AI3S ajnssajd aiqBUBA aqj jo y\[gs oSejjoa MOj aq; Xq pajBajo ‘saSjsqo ooBjjns aq; j o uopEsuaduioo j o sopipqissod ouios ojb a ja q j uopnjosaj [BpBds jo o d b puB uopnqujsip pauyap XpjBjnaoBui qjiM |eu8is >)E3m e se soSBjuBApBSip aqj [[B qjiM ‘s u o jp a p pajauBOS >peq oj p a d s a j qjiM ojBqs SuisBOJOop jp q j o j spBO[ ‘saouEqjnisip o ujoap 01 oaijisuos jsoui 9jb jBqj s u o jp a p Xgjaua A \o ¡ aqi j o uopBuiuiqg sjojoajap oj a \ o [ j jp q j Suiqjnjsip ‘s u o jp a p joayap ujaqi Xq pajBjauag sp p ij o |jp a jg saoBjjns oujoopip uo uiBaq-a Xq paonpui soSjBqo o u jo ap Xq pasneo ajB s u o jp a p XjBpuooas j o uopoajap [Buopoajip aq) Sutujaouoo suia[qojd [Bpuassa XjjBay uopoajap aqj j o X ouapijja paonpaj b qjiM pauiosuB j si qoiqM ‘s j o p a p p aqj j o azis ¡¡buis pus u o p iso d qjiuaz saqdun ji ‘£ 8 y u| sniBJoBip o j S u ip jo o o y sarqBA uinui[XBUj mEjjB ‘p / o = 0 sjuaioijjaoo [BoujauioaS j p q j jBqj os paSuEjjB ajB sjred j o p a p p a q j uaqM p aonpaj X[[Bpuassa aq ubo s jo jja SuiM opBqs J o jo a p p oqj MopBqs ubo XqdBjgodoj aoEjjns a q j j o sju a u ia p os[B ‘auB|d juaguBj aqj Xq 3uiA\opeqs aqi paqBO aq Xeui jBqj guiMopBqs j o pui>( XjBjuauiap s¡qj u io jj jJB dy s u o jjo a p XjBpuooas jo a||o o o j a(qB s¡ puB juiod juauiaSuiduii aqj ui aoBjjns a|duiBS a q j o j juaSuBj auB|d a q j jaAo ||ijs si (o<—V*v) Jo jo ajap juiod b qoiqM je JéSt j o an|BA uinuiixBui a q j si p/o jBqj suBaui jBqx ( o06> ^) 1SOLU a q j JE aoBjjns ajduiBS a q j o j juaguBj aq ubo s u o jjo a p pajjiuia a’tjj j o saijtoopA [E|j|u; jBqj joej aqj u jo jj sj|n sa j uoijbjiuii| aqx Joajja SuiMopBqs aqj Xq papBaq ‘uoijoajap |BuS|s |Buo;joajip aqj jo sj|nBj a[q¡ssod Xueui u jo jj j[nsaj QSS j0J suoijbj¡uii| jsojaí QSS pajonjjsuooaj aq p|noA\ aoBjjns aqj jo jsaj oqj pus X(Boidoosoajajs paqsqqBjsa aq p|noM saSpa [|B jo sapnjiJiB ajaq/vv poqiaiu p a x | u i e aq Xbui uia[qojd aqj jo uoijnjos u y Xjinupuoosip qoBa jayB paqsqqBjsa aq p [ n o q s ( a p n j j j [ B [B |jiu i M a u e ) j u b j s u o o u o i j B j g a j u i M a u b asiMjaqjo ‘sd B O | p u B s í ( o b j o jnoqjiM ‘qjooujs XpAijBpj a i ‘saoBjjns snonupuoo jb pasqBaj aq u b o ( g ) p u B (¿) S |B j 8 a j u i aqj ‘|]B j o j s j i j uopn|os uinuipdo j o j ji b m jBqj suopBjiuiq snojauinu sjaaui ]jps j i j 3 A 3 a \ o h a[qBoi[ddB X|isBa puB 3 |dujis XpApBpj SUI33S ‘( o s s ) „uoljnquisip |b u 8 is u i o j j sdBqs,, poqjaui sqx suoijB jiuiiq josssoojd |b u S i s |BjiS;p b q jiM psddinba si u j s j s X s jsjnduioo sqj uaqM „auip |B a j„ b u i passsoojd sq o s |B u b o ‘jojoajap sjdrupBnb aqj U i o j j s |b u 8 |s jnoj oqj ‘o s e o siqj u[ j o j i u o u i jsjnduioo oqj uo a|qiss300B X[iSB3 ‘S u i S b u j i o i j j s u j o u o x b j o pu¡>( suios saqduii aoBjjns aqj jo uoponjjsuooaj |Buoisuauiip asjq j X[|ry y usajos aqj uo XpjBipouiuii uass jojEJsdo sqj jo sjjojja ijb s s j j b u i q o iq M ‘„sujp |B a j„ b u| Suissaoojd IBuSis a p i A O jd s u i s j s X s 8 o |b u b a|duiis XpApBpj ‘sapisag j o j i u o u i S o j b u b a q j uo paXB|dsip O X T H E T H E O R E T IC A L U N D ER ST A N D IN G O F T H E W IE N F IL T E R IN AN E L E C T R O N B IP R IS M IN T E R F E R O M E T E R P eter S onnentag, H arald K iesel, a n d F ranz H asselbach Institut fü r Angewandte Physik der Universität Tübingen A u f der Morgenstelle 10, D-72076 Tübingen, Germany In recent years, A. A. M ichelson’s v isibility spectroscopy [1] has been realized suc cessfully w ith electron waves in ste ad of lig h t waves [2], For th is, an electron b iprism is used, an d as a c o u n te rp a rt o f th e different p a th len g th s of th e interfering b eam s in light interferom etry, a W ien filter in its co m p en sated s ta te is em ployed (see Fig. 1). A W ien filter consists of a crossed electric a n d m ag n etic field, b o th b eing p e rp e n d ic u lar to th e o ptical axis. It is said to be in its co m p en sated or m atch ed s ta te if th e electric and m a gnetic force for th e m ain energy com p o n en t of th e electron beam cancel each other. From th e decrease in fringe c o n tra st w ith increasing e x citatio n of th e W ien filter, th e energy w id th of th e source can be d eterm in ed , an d even th e form of th e energy d is trib u tio n can be o b tain e d in case that, it is sy m m etrical to its centre. If th e in itia l s ta te o f th e electro n is a pure s ta te , i.e. all electrons form identical wave packets, th en th e actio n of th e W ien filter is to in tro d u ce a lo n g itu d in al sh ift betw een th e two p a rtia l wave packets com ing from opp o site sides of th e b iprism filam ent. R eduction of c o n tra st of th e interference fringes can th e n be explained by th e lack of overlap b et ween th e two packets. T h e lo n g itu d in al shift is caused by th e different group velocities inside the W ien filter b eing due to a different electric p o ten tial. If, on th e contrary, th e electron beam is m ade up o f a sta tistic a l ensem ble of electrons being in different energy eigenstates, th en - a t least for narrow energy d istrib u tio n s - th e loss of contrast, is th e sam e as for a p u re s ta te w ith th e sam e energy sp read , b u t in th is case it is caused by th e displacem ent of th e incoh eren tly su perim posed interference p a tte rn s relative to each o ther. T h is com es from th e fact th a t for electrons w ith an energy differing from th e one for w hich th e m atch in g co n d itio n is fulfilled th ere is a re su lta n t force an d therefore also a phase shift. B u t in reality, we have n eith er a p u re sta te of th e electrons n or a m ixed s ta te w hich is d iag o n al w ith resp ect to th e energy eigenstates, so th a t b o th m echanism s o f th e red u ctio n of c o n tra st will be involved. W hereas th e A haronov-B ohm effects yield phase shifts w ith o u t affecting th e centres of th e wave packets, a n d th e S agnac effect or a hom ogeneous electric or m ag n etic field in an electron in terfe ro m eter lead to b o th a sh ift of th e fringes and o f th e ir c o n trast, th e W ien filter in its co m p en sated s ta te p roduces a wave packet shift without a phase shift so th a t in th e m iddle o f th e fringe p a tte rn th ere is always a m ax im u m an d this is also a difference to F ourier spectroscopy w ith light. B ecause of th is special featu re of th e W ien filter it seem ed w orthw hile to do th e calc u latio n of th e b iprism interferom eter w ith W ien filter for th e case of a wave packet explicitly. T h is was done by using a form of th e sem iclassical ap p ro x im atio n of th e F eynm an p a th integral for stro n g ly localized wave, packets [3]. For monochromatic waves an d consequently also for incoherently su perim posed mo n o ch ro m atic waves - th e elec tro n -o p tical b iprism can be replaced by two v irtu a l sources ZL ‘,)jn)s p a 4B s n a d m o a s»i ui ja jjg u a i^ \ a ll'í P™ su o iin q u jsip ÁSjaua a u u j b u ¿ is a j o j s a u i u i j s p p q o iq M q in d ju.ujti:) ,M[| tu : ({4 s i x b jea p d o ai[4 04 ja s o p [jb a.re qatqM pasn si -iajjg tI8 !A\ aq 4 ut sij ji'd 4iiaiajjip jo uoissaaans b ¿y jo uoijB uiuija 4ap a q j jo j 4«q 4 43Bj a q j uio.ij sasuB siq j[ -pj s a S u u j jo . l a q i i i n u aq 4 Áq ubaiS 4jiq s 01(4 uBq 4 j a S iB j ‘suoi 4aa.i.ioa ja p jo jaqS iq asaqi 4u n o a a B 04111 <Jui>¡B4 ‘si <ImjV 4Jiqs 485pBd babaa a q x '(.K>4aBj aures a q j 4noqB sppiÁ [g] uot 4B |na|ea ajK.inaaw ajo u i « ) i jo J 040BJ b A q -lajjtp dMjV PUB M J ° suu;mj ja p .10 p n i p a q 4 jB qj 33140^ 1 -0,9 , os $• .1 ' ¡3 V + 3 t 55 a 30 JV os ‘SinpBds a S u u j a q j 04 [Bu014 .10 d 0 .1 d ÁpsjaAui si qatqAA (cj j 'S ij ) fj aauaS.iaAuoo jo a[3ire a i [4 04 p m 014.10 d 0 .1d A [.ie a u s i ,ia4jB [ a i ( j j '.K>4| g a q j u i s q j B d a q i j o u o n i í . r e d a s ]B ia 4B] a q ; 04 jo S41T111 111 .) i (4 yj p in ; p |a q .¡ t.n a a ja a q '4 j o q 4S u a J 4S a i ]4 04 iB u 014.10 d 0 .1d Á [3 4 B tiiix o .id d B s i ldMj \/ ‘q 48u a [ 8ABM ja q jo q a B a 0 4 a A i 4 B ] a i S 4 a > p e d aABM a i {4 « ¡fp a°f 30 N .ia q '40 a q t u ( ) i i o r 4i ! i i i u i n s a q 4 S u p B j d a j p i r e jo 4jiq s ] B U ip n ) i3 i iO ] a g 4 ‘p t r e g ‘u o iíB jS a ^ u i u b Áq j y y a tp j j s a o 04 p u i o i 'i j o d o j d -- u o i t u i i n x o J d d B p o o S ájba b 04 si u o i i a a j j a p o i |j j B q i innoaaB 04UI 3 u p ] e x s S u p B d s a S i i u j a q j X q p a p iA ip ‘g y Xq paonpui ai(4 Áq u o a iS si y y q a e g - y y a q ; jo u ins ai{4 si ajiipaaoad stq 4 S u u n p apis auo 11014. >aj}ap 04 p . > ||i q s u a a q s b ij a S u i i j a a p .10 q j o j o z a q 4 qoiqAV Áq s a S u u j j o .ia q u in u je jo ? a q x • s iB a d d B s ip 1 SBJ4U0.1 { ijiin p a i B a d o j b jb s d a 4s a s a q x • p a p .io a a a s i ii,i,)) jB d a S u u j a q 4 p u B ‘a 4B 4s p a 4B S u a d iu o a S41 04U1 >[;)Bq 4i id s i J a j j i f u a i . \ \ o q ; ‘iiibiÍb a|p p iu i aq4 ni si aS u u j ja p jo q jo jaz aq) ¡141111 pjai| .)I48uSbui a q 4 SuiSBajaiii Áq ‘uaqj^ s q 4piA \ a S n i.ij ]iasB a.i.)iii f\[\¿ ‘á b s ‘Á q p a j a a j j a p a iB s a S u u j a a a a j a j . i a i u i a q 4 ‘Á(4i i a n b a s i i o Q si Ápio p¡ag a u 4aaja ai(4 ‘d a j s 4sjg b u j ,)i|4 ‘ 4s .ig 4y Áq o.idr/ a .ie sp[ag at4 9 n S B U i pire a p i a a j a :[g] s M o g o j s b 4n o p a i.i.re a s i í u a u i a m s B a m a id o a s o jja a d s - ja u n o j a g x 's i x b o g j s p iB M 04 p a j o a g a p a iB sdabav a i| 4 p ir e 'Á[4;)Bxa u o i j i p u o a S u i q a j B i u a q j g i q n j 40U o p q .)|i|A \ s a p p o j a A aA Bg s i x b [ B a i 4 d o a i |4 j o a p i s B i a 4 j g a q 4 q . § n o j q 4 ja A B J i i p i q M s á b .i 4B q 4 ; o b j a i {4 u i o i j S i i i s i j b j a ^ g u a iy \\ a q 4 j o 11014:)« S u i s u a o j tiM o u > |-jjaM a g 4 04 a n p s i s i q x — o.v as k04 q jS u a .iis p p g a u p a p a g í si 3 aiaqA v SuipjoaoB ‘J 34|g ag4 jo uoi4B4pxa StiisBaJoui g}iAV J8M0J.ibii sauioaoq s S u ia B d s a S u u j a i {4 s b s a s i.re u o p B a g d m o a b ‘Á d o a s o j j a a d s . i a u n o j q i|A \ S u q B a p naqA'V ' 4j i q s 4.)a.i.io:)yi arnvs a q 4 ;a S s(a>[:)B (I aABM q j o q a i o j a a a q 4 p i r e ‘u i s u d i q a q j j o aS B S S B d j o a p i s a q 4 u o .10 s i x b jB a i 4 d o a q 4 0 4 . r e |i i . ) i p i i a d . i a d u o i j i s o d 4 iin o :K )B 04111 n a j jB 4 a q a q 4 110 p n a d a p 4 0 U 4lu p a a ti V'-A d >a s e q d iio ijB u iix o jd d B p o o S b 0 4 u^ch s b saop { « u o p i p p e a q i ‘b u i i x b i i i 3154 .io j S u i i p j B a s u a q i p i r e n o i 4 ; ) i iii j aABM a q 4 8 u i 4 B j n a |B a 4 S j g Á q a p B u i s i i a g 4 () t p B a 0 4 0 A r)B [ 0 ,i s ja > ] a B d s a b m a i (4 j o 4J i q s i B i i i p i i 4 i S u o [ a q 4 j o i i o i 4 B i i i u n a 4 a p a i [4 j i 4 B q 4 p a o i 4 o u a q p ] n o q s 41 4 n g q a n a 0 4 p ; u o i 4 .i o d o . i d 4 0 U , m ; í q S i g j o a u m p i r e a s B g d s b a b a i * .) 4 4 B u i .io j j b i j j ja q jo i; jb j a q 4 j o a . m a n b a s u o a a 4B q ) a u i u n u b s i s i q 4 ¡ s a a j n o s j b i i j j i a a q 4 S i i i s n p a 4 B |n a ] B a a q 4 0 UUBD - j j i q s ia > p B d aABM a q 4 a u n u j a í a p 0 4 a s n p p i o a a u o q a i q M puB ‘ ( a:>J" osj _ u i s i a j u a g a ig A \ ■411B 4 SI 11 H IB 4 J 3 3 b ib j a g 4 0 g a s a q 4 iM S u u a j i a 4 u i S 4 u a u o d m o . > Á S j a u a a q 4 a u n u j a 4 a p 0 4 p a s n s i q a iq M 4 q 3 i g j o a u n ) a q 4 ‘Á j q j j n o j % s a u iij ' l u a u t a p 4x a u a q 4 s . i a 4u a u o . n a a p a q 4 u a q A \ 4 i i a . i a g q ) a q jB .i a u a S u i j j i m a i a q 4 s b ‘p a ^ i i t u o a q u e a q a ti[A \ j o ^ a B j a s B q d u o u i u i o a b 0 4 d n ‘a : .u i i o s a g 4 j o u o p i q o A a a u i i 4 a g j g 4 iA\ p a i r e a . i a S n o j o u s a o p r n s u d i q a q 4 Á(( p o s tr e : ) a s B q d a q 4 u t (» “ " « j _ j ) u i J 8 4 a q 4 ‘p i s u d i t ) a q 4 3 i i i a \ 0 ] ] 0 J S 4u a u i a p j B a i 4d o ,ia t ] 4 0 q 4 iM j a 4 a i u 0 . i a j j a 4 u i u b j o j ‘Á [ p . i i q j a u o ^ a u n j 3 a b a \ j a a u o a a q 4 j a S 0 4 p a p p B a < | 0 4 s b i j iJ !A¿6 a s B q d 4 u a p u a d a p - Á 3 j a u a [ B u o p t p p B u b ‘Á j p u o a a g q .n ; a .io j t t i a i a j p p s i s i x b j B a p d o a q 4 u i o j j s a a i n o s [ B n j j t A ‘Á j j s . i i j spaMdf¥ 0 4 ^ u a u o d m o a Á S ja u a a q 4 j o a a u B j s i p a i [4 ‘a s i n o a j o a j B a p i r e s u o r 4B a g t p o u i a r a o s s p i r e u i a p ¡ a p o u i s i q 4 ‘ja A a A v o g ‘s 4 a>{aBd b a b m 1 0 3 -[f»] th e phase difference A tp(k) o f th e two interfering p a rts of an energy com ponent m ay be ap p ro x im ated by th e first ord er term in th e deviation 8k o f th e wave n u m b er from its m ain value ka. T h en , th e phase shift caused by th e W ien filter is equivalent to a difference in th e geom etrical p a th len g th in vacuum , so th a t is p ro p o rtio n a l to 7Vwp. F o u rier-tran sfo rm spectroscopy d em an d s a variable p ro p o rtio n a l to ¿¿r-'>k>■ T here fore, n eith er E nor N - w hich has been used so fa r [2] - is su itab le if th e high precision of visibility spectroscopy shall be fully exploited. B ecause iVwp c an n o t be m easured directly, we propose to use j as th e tra n sfo rm a tio n variable, w here s is taken from th e recorded fringe p a tte rn s. For th e case o f a wave packet, th e decrease in fringe co n trast w ith increasing ex citatio n of th e W ien filter can also be in te rp re te d as being due to th e increasing (possibility of get ting) “w elcher W eg” (w hich -p ath ) in fo rm atio n available from th e difference in arrival tim e betw een th e tw o packets. A n o th e r way how com plem entarity, in p a rtic u la r w ave-particle duality, m ay be enforced in “w elcher W eg” ex p erim en ts is en tan g lem en t w ith orthogonal sta te s e ith er w ith th e enviro n m en t (e.g., m easurem ent device) or w ith an in tern al degree of freedom (e.g., spin). T h e effect of th e W ien filter can, loosely speaking, as well be seen as a kind of en tanglem ent: If we w rite th e o rd in ary s ta te space of th e p article as a tensor p ro d u ct of th e s ta te space of positio n s on th e d etec tio n screen an d of th e s ta te space Z of positions o rth o g o n al to th a t screen (i.e., along th e o ptical axis 2), th en because o f the lo ngitudinal d istan ce A z o f th e positions o f th e m ax im a of th e p a rtia l wave packets we have en tan g lem en t w ith resp ect to th e space Z . H elpful discussions w ith R ich ard N eutze an d Tom áš Tyc are th an k fu lly acknowledged. a) b) Fig. 1 -.lO A iiifl l a p > [ is Á i ] j a r4 p u « A i a 3 u y i n j í n i i } s u ¡ lí p q j « u i o ] d i Q ¿661 ‘u aS u iq n x rglis \ i a ,4 a u i o . i a j . i o |U ] - T i u i s n d i g - u o u o j ^ a j g n ia u to u i j a y tj- u o i ^ w u in z u a S u m p n M a íU fj a r p s i j a j o a q x £¿61 S IZ -Z 0 2 OZ 1VPV mt}d() S e iu a u u o g j a ^ a j [g] u i s i i d i q j r i B ^ s o j j a a j a ire Áq p a a n p o i d a n ia ja jja ju i u o jja a ja j o j [a p o u i o ip jo u o iís a g tjs n f -« A o q a B jA g p u « « > |S jin o > [ [• [{7] S86I 'OCLGSC 1 9 ^D isfiyj udapo^ ¡o stnaiagy sax n g a ija u S B n io jjD a p jo s ia a jja u m jm m b a q j^ -n o sad o j nz^A O j [ pu« m .r e [ Q -g [g] S66I %£Z~Z£Z :S9£ 'V yo-ivasay s o isü y j m vpoyi'jffl pu v sju jiu iu fsu j j,m p n p j (Á d o a so ip a d s-ja u n o j) « ip a d s ap p -red p aS je ip jo 4u auiajns«aui :)i.r;auio.iaj.ia4ii[ Maj_iopuaq:)K:\\ ¡j pu« '.iojï;ipg y ‘ip « q p ss« H j [g] ' I 68T QMHJCE :I £ ‘auizvEvytf p jii/d o s o jy q j j- 'S 4uauia.msBa]/\[ n d o a s o . r j a a d g 0 4 s p o q ' 4a p ^ - a a u a . i a j j a ; i i i j o u o i 4« a i | d d y aqi u q u o s p ip ip ^ -y jja q jy [x] s s a u a ia ja y VARIABLE AXIS LENS WITH A N EXTREMELY LARGE SCANNING AREA IN ONE DIRECTION R. Spehr Institute of Applied Physics, Technical University Darmstadt, Hochschulstrafie 6, D-6^289 Darm stadt, Germany In order to obtain a large writing area on a single line, we have developed an electron lens design [lj quite different to th a t of usual variable axis lenses based on a round lens. The electrodes and the polepieces are formed by three parallel slits which in the x-direction are extending infinitely, at least in principle. Thus the geometry of the lens is translation invariant with respect to the x-axis as it is customary for a cylinder lens. For stigmatic focussing we combine two different fields, both fields being consistent with this geometry. Using a negative (or a positive) potential on the middle slit, we get a retarding (or an accelerating) electrostatic cylinder lens focussing in the yz-section [2J. In addition we superimpose a magnetic quadrupole field, which is oriented in such a way th at focussing in the xz-section is achieved. This field is produced by fabricating the three slits out of magnetic material ( p.r » 105 ) and by placing windings on both halves of the middle slit, which carry constant current density. In this three-dimensional arrangement the magnetic scalar potential is given by Umag = <3 X F (y ,z ). (1) The function F (y, z) depends on the geometry of the slit in the yz-section and can be calculated by a suitable charge simulation procedure, which only needs to be two-dimensional. From eq.(1; we 6ee th at the form of the magnetic potential does not change when moving into the x-direction, while its value increases linearly. In practice the slits must have a final length. Then the magnetic material should enclose the opening of the slit and we need two additional coils situated at both ends of the middle slit which carry the opposite Ampere windings as the polepigces do. The magnetic quadrupole field focusses in the xz-section, but defocusses in the yz-section. To obtain stigmatic focussing, the electrostatic cylinder lens needs twice the refractive power as the quadrupole. W hen the axis of the quadrupole field lies within the xz-section, this axis coincides with the lens axis of the whole arrangement. The axis of the quadrupole field can be shifted over the whole length of the slit into the x-direction simply by transfering some current from the coil at one end of the slit to the coil at the other end. Thus our lens„acts as a variable axis lens. In principle the displacement of the axis with respect to the x-direction can be infinite without changing the imaging properties of the lens. Like a round lens this lens does not show any aberrations lower than of third order due to its high symmetry. Furthermore there is no need for a separate stigm ator as stigmatic focussing is achieved by balancing its cylinder lens field against its quadrupole field. Different to round lenses we have to distinguish between the x- and the y-direction when looking at its aberration coefficients. For instance the spherical aberration is given by three coefficients Caoca , Cppp and Ca0/3 = Ca<x0 j where a and /3 are the angles of convergence with respect to the xz- and the yz-section respectively. '¿661 ip™™ ‘?p«isuiji3fi »¡mpsipoH aipsiuijjoj ‘sisoq; Binojdip ‘¿foqj[ja){ -g [gj (e¿6i) 6ťoE n!ido ‘3soH h [el S9SÊ n 961 a a ?a:>)M ,JM3dS H [l] BODUyJOJOTJ •uoipas-zX aq) pire -zx aq) uiqq.-A sauopaPej) u o jp a jg :x OJnSij • p a A a itp e a q u b d o = a q ) u t a jS u B S u i p u o d s a j j o a a q ) ja A a /A o q a q j t í t í d j j o a n p jA a 8 j e [ a q ) o ) a i i Q q p ? u is a q mx>Q s b 3>?.re[ s j r a b a q j q S i u i u o i p a s - z x o ) s ia q u o i p a s - z X a q ) u i a jS T O u o i ) « u i i m q i ; - u r e a q a q ) j o a j S u « p q o s a j q u s n a q ) n o s p u a d a p p a a d s S u i)U jY \. • s a o p q ) S u a [ [B 3 0 J a q ) o s p i r e jajfip suoipas q)oq ui sauq [tidpuud aq) suoi)3as q)oq ut )uiod [ijjoj oures aq) ifli/w ■sauo)aaj'Bj) aj[q-A ut s)[nsaj sua[ japuqXz 3 t)e)soj) 3 a p aq) jo pjag SutpjB)aj aq) uoi)aas-Zjí a q tu j qodnjpTOb ai)auSuui aq) jo uot)3i2 aq) Aq six« aq) pjim o) )uaq Â[q)oouis aro sauo)-jafi;j) aq) uot)3as-zx aq) ui -sua[ aq) Áq passnaoj Suiaq sixtí Dijdo aq) o) p[[i;ii>d sauo) 3 afet) uoj) 3op SAvoqs j'S ij (■ p p g a ¡0 d n )3 0 )u « )s u o 3 -e q)uvt aaq)aSo) q)8uaj)s a[q«UBA jo pjag ajodii)xas « uiojj paure)qo aq irea ppy. a[odn)ao Suiaoui y ) -Suiaoui si six« suaj aq) uaqm p p ij a[odnjp«nb aq) q)iM X]snoauu)[mut9 payiqs aq o) s«q pjag ajodn)ao siq j, X[)ui23ijiu§is d d ° Q pire 0d d Q SutSu^qa )noq)iM o = **> ” q jo j )aajjoa o) ajqissod si )i ‘p p g o[odiupT;nb aq) o) pasodrauadns p p q a|odn)oo 3i)au8«ni >p2a*i [«uoi)ipp« ire Snisfj (£) -UIUI6&-H- = “H| ZV Puv m i n o r e - = *■ H \*V ■ su a [ a q ) jo auiqd ajppiui aq) o) iCpAirepj sauq a[dpui.id aq) jo ñ H | z y pu« ' H \ z y )jtqs aq) ure)qo osje um 3M souo)3af«j) asaq) u i o y x'äq ui uaas aq ui23 suoipas q)oq ui sau o p afsj) Sui)[nsaa aqx (Z) '“ ¿{'‘0 = 00aD : “ 81 = 000D ■m IS 0 ‘0 = x”°’°O a )« in 3 [B 3 a q ) u o S u is sn s o j 3i ) « i u S i )9 j o j p u « [g ] ) p « ) s u u ,B Q u ; ) ] i n q a A B q 3m s u a i SM u im Q O 1 = z a u « [d a q ) j o jtj)a u io a S a q ) j o j D ISTRIBU TED PROBLEM M O NTE CARLO: SM ART W AY FOR COM PUTIN G COM PLEX R. Stekly, L. Frank and I. M ullerová Institute o f Scientific Instruments A S CR, Královopolská 147, 612 64 Brno, Czech Republic The aim o f this w ork w as to create an engine for the distribution o f an com putation task in the TCT/IP network, to verify its operation and to achieve a low -cost great-volume com putation pow er for sim ulations o f electron scattering using the M onte Carlo m ethod [1-3]. The available P C 's have a sufficiently high com putation output not only for office w ork but also for sim pler scientific computations. The com putation output o f the best P C 's is com parable w ith that o f the cheaper series o f the RISC w orkstation but their purchase cost is h a lf that or less. M odem offices are being equipped w ith P C 's w ith the operating system W in95 connected to the LAN network, which is often connected to the Internet. A t interactive w ork, the processor is operated noncontinously and there are long inactive periods. Typical exam ples are text and graphic editors, table calculators and Internet brow sers. On average, for a sufficiently long period, the processor is never used 100%. Therefore it has been decided to w rite a program that w ill make use o f the tim e-outs for its own activity, will receive sim ple tasks via the network, make com putation and send back the results [4], O perating systems w ith pre-em ptive m ultitasking can effectively w ork with priorities o f processes and they are m ostly equipped with the m echanism that allows the action o f program s during the inactive period o f the computer. The chosen platform W in95/NT im plem ents this m echanism relatively well. The only problem is the back com patibility when the 16-bit program s (D OS, W in3.11) are being started using the com puter em ulator w ith the given operating system that causes the m echanism to stop because W 95/N T are not capable o f determ ining the state o f the application w ith no im plem ented m echanism o f com m unication w ith the given operating system. The w ritten com putation program has very low demands on the operating memory, typically 2.7M B com pared w ith the 30MB text editor, is easy to control, provides m axim um inform ation about its state, and w orks autom atically w ithout any intervention o f the user. A fter starting, the program becom es connected to the com puter that distributes the task, receives the data and starts computation. A fter finishing the com puter work, the user m akes the shutdow n o f the operating system, the program becomes logout from the com putation process, sends the com puted part o f the task and becomes ended. The program is used as resident but the user can end it manually. The task distribution is carried out from one com puter, w hich is determ ined in advance. This com puter serves for data collection and recording o f the current state o f computation. The operation o f the engine w as tested in the internal netw ork o f the Institute o f Scientific Instrum ents. The test task was a sim ple com putation o f electron scattering in Au specim en at electron energy o f 1 keV. The entire task is divided into subtasks. The m axim um num ber o f trajectories is lim ited so that all computers end the w hole task at the sam e time. The com putation process w as running on the background, the test w as m ade during the norm al w orking tim e, the users were asked not to change their working habits. The follow ing form ulas were used for statistically processing the operation: m ean value x= standard deviation S trajectories I time ô = VZ>, variance variation factor n 5 a q j o} [EnuBjAJ p u s u o i j n p o j j u j / j 3 u p 3 j n q u j s i p A \ M M / / : d j j q ‘j s u p s j n q u j s i p |> ] '9661 ‘WISVDOW aS ejp B j 3JEMyos ‘u o isty jia u o jp a jg jo u o i j B j n u u s o j j e q ajuo[A j ‘j a u u a > j 3 [g ] 1061 ‘(8861) Z osojoijaí SuiuuBas ‘¿ o f j a ‘o n q s lz] £6 ‘(9661) 81 SurauBDS ‘n ziu n q s "H ‘S u !d T * Z [l] S33U3J3J3)| •Xb m siqj pajnqujsip sq u b o qaiqM s>¡sej jo s sd Á j j o u o i j o u j s s j n[qRjap|Suon b s u b s u j ipii|M ‘ji oj psjoauuoo jojndiuoo aq; j o jndjno uoijEjnduios aqj p u B >[j o m j 3 u m v t aqj jo u o i s s iu i s u b j j BjBp sqj uaoMjaq uoijjodoidsip a3jE[ e s i poqjsui siqj jo sSBjuEApBSip aqx a |q B j y o j d jou si j s a j s s uoijBjnduioo sjB JB d ss e j o asEqajnd aqj puB ‘uajjo npBiu jou 3jb jsqj suoijBjnduioo aAisuajxa j o j poqjaui Supsajajui Aj b a b s i Ae m paquosap 3AoqB aqj ui jajnduioa aaijjo aqj uo jno paiueo uoijBjnduioo aqj jBqj pajEjs aq ubo j [ ajA q jj aqj jo M oy aqj >[3Bq JU3S 3J3 M J o s jjb jo u pg u s q j s s a | a z i s a§EJ3AB u b aABq A a q j puB ‘BjBp u o ijB a iu n u iu io a p jn o a Á a q j jB q j o s Á ju o u d BJEp p3JBtlJBA3 Oqj SUIUIBJUOD SJ35JOBJ j3 m o | 3JÁq b gH q jiM A |s n o u o jq a u A s B SBAV J3}[3Bd g U IU Ijap ->|SBjqns aqj jo azis a q x s d g i ‘p \ oj S uipuodssxioa Á ju o u d jssq S iq a q j qjiA\ Moy EjBp sS b jsa e ub si qoiqM ‘sS b jsa e uo spuoaas q z \ X jsas p a jn q u jsip bjsm sj3>[0Bd ‘uoijBoijddE jn o u[ js s j sq j jo j p a sn aj3M sXEp 8u;>jjoav om j j o j ‘ja y o jju o a g Q ¡ ‘pjBoquiEiu J3 J ‘0 0 3 ‘OOÜHd x ? ^ 0 D d D uoijB jngguoo u i g puE y sjajn d iu o a jBaijuapi XjajBUiixojddE os ÍNtVH omj [% ] jo jo b j u o ije u e A OOOOWt' 00009LZ 915QZ a 00001 00001 oei. oei 1.8 801. 1 9 'Z¿U 68‘9 SS'Ofr z V z v u o js js d s jp [t s] X 00 1 OSl [j. s r ^ x >|s e j j a d s s u o j o s f e j i s g u o jo s f e ji ssoos [s ] s u j j j > js e x V je jn d o io Q sjjnssj SAijEjijUBnf) : [ aiqex OOZ san|EA x j o aauajjnaoo j o ajEy \ S ij (e r^ íá ) % £ 8 ° J psjunouiB ji ‘pa>paqa Ajsnonuijuoa s e m ireui- 3 uaqM ‘p i o ^ ui ? ¡ j o m j o a s B a aqj uj (V I '81 j ) Jajndujoo aqj jo jndjno uoijBjnduioa j e j o j aqj j o %Z9 o j pajunouiB punoj§>(OBq aqj uo uní ssaaojd aqj spjBSaj s e jndjno uoijejnduioa a g B jaA B aqj uaqj ‘saSEd A \M M SuiqqBjS j o UEUI-3 t¡ui>paqa A[snonu;juoa s e m pus lH d l3 Q ui SuiuiuiEjSojd sem j o ju r e jo jo q j puB m e j q | 3 J 0 3 ‘jaoxg ‘pjO/W sjaj suiBjSojd qjiM S u i> ( jo m s e m guiuuru s e m uoijBjnduios aqj pun0jS5(0Bq ssoqM uo jsjnduioo sqj j o j a s n aq; j¡ :sMoyoj s b s j e sjjnssj SAijEjijuBnb sq x •5[sej sqj |]E Suunp s u i i j jo jiun sqj j o j psjBinuiis ssu o jasfB jj j o jaqum u aqj si x puB ‘>¡SEjqns suo Suunp suiij j o jiun sqj j o j psjBjnuiis s s u o j o s I b j j j o jaquinu 3qj si x ajaqM AN E+B+E BEAM SEPARATOR FOR DETECTING SECONDARY ELECTRONS IN LOW VOLTAGE SEM Katsu Tsuno, N obuo H anda and Sunao M atsumoto JEOL Ltd., 1-2, Musashino 3-chome, Akishima, Tokyo 196-8558, Japan tsuno(a)jeol.co.jp 1. INTRODUCTION A m ong various proposals o f the objective lens for high resolution low voltage scanning electron m icroscope (LVSEM ), an im mersion m agnetic lens called Snorkel lens [1,2] and a com bined electric and m agnetic field lens[3] are now w idely used. We classified various objective lenses for LVSEM and compared their electron optical perform ances [4—6]. For designing the optical system o f SEM , not only spherical and chrom atic aberration coefficients o f the objective lens for the incident beam but also efficiency o f collecting secondary electrons are important. In the strong m agnetic field region ju st above the specimen, secondary electrons are spiral up into the bore o f the objective lens when the Snorkel lens is used. However, once the electrons com e up inside the bore, secondary electrons spread out and hit the wall o f the lens, because there are no m agnetic field. It is useful to apply a m agnetic field along the optical axis to bring up those electrons to the top o f the objective lens. A w eak electro-static field is effective to pull up the electrons em itted with high angles. In this investigation, w e further show electron trajectories from the top o f the objective lens to the detector. We use an usual Everhart-Thom ley detector, w hich is inserted from the side o f the optical column. High voltage 10 kV is applied to the detector. In the in lens SEM w ith accelerating voltage o f 2 0 -5 0 kV, high voltage applied to the detector captures the secondary electrons w ithout influencing the prim ary beam. However, in LVSEM, the detector must be set far behind the optical axis o f the prim ary beam. In such the case, it is necessary to introduce a beam separator to deflect secondary electrons tow ards the direction o f the detector. S ato[l] used the Wien filter as the beam separator. In this investigation, w e propose a new beam separator, w hich is sim ilar but not the same as the Wien filter. Recently, Philips announced a new beam separator with 3 stage electrode system[7]. 2. ELECTRON TRAJECTORY CALCULATION IN THE SEPARATOR. A s shown in Fig. 1, the new beam separator consists o f the first electrodes, the m agnet and the second electrodes. The length o f the magnet is equal to the sum o f the length o f tw o electrodes. The electro-static and magnetic fields are calculated using E 0 3 D and M 0 3 D and the electron trajectories are calculated using C 03D [8]. Fig. 2. Electro-static field distribution on xz plane and the primary beam trajectory 6 ¿W -1 8 S -I¿-W + :XBd / P l P U sJBMyos u resg uojjos[g s.ojunpM jBnuBjM d £ 0 3 ssn o y f -g ■qasi Aiun u p a ‘(8 6 6 1) W 'd ‘P E jjsq v (so ijd o apiJJBJ p sá re q o 81103 jui q y ij) SOdD ‘M!PullD f y ‘u fu x 'W D 'd ’W d ‘Jsbw p A">i ‘jso o jx z » ‘w js u s h V 'L S ¿ l- £ H dd u o jey Boog ‘¿661 SS3Jd 3 3 3 ‘i W O T P» „soijdo sp ijJB j psSjBq;),, ui 14Xdoosojoiui u o j p s p jq j sosus¡ oijsuSeui u ojjjosjg,, ‘ounsx >[ 9 ZSZ'ÍPZdd soqdo spijjB d psâreq3 8S8S' IOA 3 Id S \<P\'HS Of?Bi[OA MO) ui su o jjo sp XjEpuooss j o uoijBiuqjoo pus sssüsj sAijosfqo uoisjsuiuii j o sojjjodojd |Boijdo„ ‘iuieSo[aj y pire ojoumsjEjAj 'S ‘BpuBjj M ‘ounsx '» S 'S6 6 l ‘SS2-£t'Zdd ‘salido o p il a d psäreq3 ZZÍZ P A g[JS \dA1333 puB |/\jgs sSbjjoa mo[ jo j sosus] uoisjoujuj],, ‘ojouinsiB[Aj s puB BpuBH 'K ‘o u n sj y¡ -p 6861 ‘¿ ¿ 8 I"fr¿8 I dd ‘( Z l / l l ) ¿ a p u q o s x ‘P S '™A f ‘„suoijBoqddB sSbjioa -MO[ JOJ S3SU3| OlJBJS-OJJOSp pUB OIJSuSbIH pUnodUK>3„ ‘js S u y » puB S3I[d g ‘U3ISOJJ f £ S6 6 I ‘S8fr-l781?dd VS1N a o jj ‘„jojosjsp uojjosp XjEpuooss ui-jinq qjiM su 3 [ p[3 ij oijsuSeui Suojjs qjiM 303£9'IM Sf ‘íM3S“3 d sd ^> sus|-ui -¡lúas uo|jn|os 3 j qSiq-Bjj|Q„ ‘u ssp q sjN ’3 puB bmeSe^e^ ■§ ‘uoainzB» h ‘bmbîjoXijaj 'S 'Z £661 ‘£2- ¿ l dd ‘so n d o o p i y e j psSlBq 3 PII Z [OA g j j s ‘„SUOJJOSp ÁJEpUOOOS guiJOSJSp JOJ PJ31J a SSOJO g qjiM sus] sAijosfqo [boiuoo sdXj | 3 ^jou^¡ y „ ‘buibXsSb;>[ y puB ojo^opox H ‘°1BS PM 3 S á 3 Ñ lH 3 3 T O s u r e s q ¡ b i x e - j j o s q j j o j J o j o s j s p s q j j o p s p j o ije js - o j j o s j s s q j u i j n o p E O jd s s i X j o j o s í e j j o q j S q j p u i u i OU p33U 3AA ‘3 JO J3 J3q X £ ‘S l J Ul SE JO jB JB dss s q j u i j j B q j s j j e j s q j jb P 3 J J 3 S u i& S A ip SUOIJOSp SSSqj 3§J3AUOO OJ SSjnqiJJUOO j \ ^ 0 1 JO 3 8 e J|0 A q S iq s q x u o p o p p s q j Xq p s jn jd B O 3 q UBO JO jB JB dss 3 q j UIOJJ JIXS S U O jp 3 [3 p s S jS A lQ JOJBJBdSS jopapp oj p3i[ddB a 5! 01 J° PJ3IJ Diijoap aqj Kq suoijoaja XjBpuooss §uijBun¡[ 0 3 p S ij 3UIBS 3 q j u i X jo p a lB J i u iB s q X jB U iud s q j q jlM J S q p S o j S 3 U o p 3 ¡B J l U 0 j p 3 |3 /C re p u o o a s 3q j SM oqs f 3J n S i ¿ •OíllOAip U3qj puB 3pOJp3|3 pU003S sqj 3AoqB snooj b 3ABq sixb [Boijdo 3qj oj |3||EjBd uiojjoq sqj uio jj dn âuiuioo SU0JJ03J3 XjBpUOOSS •jqSiBJjs X[JB3U SI XJOJ33ÍEJJ UIEOq XjBUIljd 3ip ‘z 'S i j uio jj psonpsj /Í[o3jb| sjb jojBJBdss sqj j o suo;jBjpx3 sqj ssnBosg XiojosfEjj uiBsq ÁJBiuud 3 qj qjiM jsqjsS o j souojosIejj u o jjo s|s XjBpuooss sq j SMoqs £ o jn S ij SU0JJ3S[3 j o uo ijo sy sp sq j ájiuSeui oj suoijipuoo Suia\o|[oj sqj uBqj jsS uojjs ssuiij £ [ qjSusjjs p[sij sq j jsp u n UMBjp sjb sjsq UA\oqs ssuojosfBjj sq x uiBsq jndui sqj sb suies sqj si sixb jBoijdo [euij sqj puB js jp j eSsuio sqj oj jB|iuiis sjb suojjosjs sqj jo qjBd sq x 'Z '813 ui UMOqs sb ssp o jjo sjs puooss sq j Xq uoijosjip jsj¡j sqj oj p sjo sy sp usqj puB ‘p p ij oijsuSbui sqj Xq uoijosjip sjisoddo sqj ui jnq uieSb p sjo s|jsp ‘ssp ojjss(s jsjij sqj Xq p sjo sy sp si unS sqj uiojj uresq XjBuiud sq x •JOJBJBdaS 31J1 OJUI áu iJ3 JU 3 3JO J9q y \9 0 0 1 ° J P91BJ3J30DB 9JB SU0J)03[3 /CjBpUOOaS 3i|j j o pSLUÜSSB dfa SJnSlJ d o j s ip u io jj sJíbis ip iq M ‘X io p s fe jj lUBsq XjBuiud s q j qiTM j a q p g o i ‘u io ijo q a ip lu^sq 3+g+H u io í | s*re}s qoiqM ‘JOjBJBdas uj S9U0J09ÍBJ1 uoijoaja XjBpuooss £ Sij A N TIB U N C H IN G OF ELEC TR O N S AS A CO N SEQ U EN CE OF THE IN D ISTIN G U ISH A BLEN ESS OF FERM IONS Tomáš Tyc Dept, o f Theor. Physics and Astrophysics K otlářská 2, 611 37 Brno Czech Republic T he principal indistinguishableness of identical particles has a fundam en tal significance in quantum mechanics. One of its m ost im portant conse quences for fermions is the Pauli principle. A nother consequence of the qu an tu m indistinguishableness is th e difference of the statistics of arrival tim es of coherent particles em itted from a therm al source to a detector, with respect to th e statistics of classical particles. This phenom enon is called bunching in th e case of bosons due to the fact th a t bosons come m ore likely in groups of two, th ree etc. ( “bunches” ) than alone. In th e case of fermions we deal w ith antibunching because the fermions avoid each other, i.e., do not come to a detecto r even in pairs. B unching of bosons was predicted theoretically [1] and proved experi m entally [2] with photons already over 40 years ago. T he theory describing this phenom enon is richly developed (e.g. [3]). On the contrary, the theory of antibunching (e.g. [4, 5]) is quite incom plete and there are still many problem s to be solved. M oreover, the antibunching of fermions has not been experim entally proved until now. In th e talk will be given a brief introduction to the theory oPímti bunching for electrons and its application to an interesting case of an electrostatic biprism interferom eter. [1] E. Purcell, Nature 178 (1956), 1449 [2] R. H anbury Brown, R. Q. Twiss, Proc. Roy. Sac. London 242 (1957), 300 [3] L. M andel, E. Wolf: O ptical Coherence and Q uantum O ptics, Cam bridge University Press, 1995 [4] M. P. Silverm an, 11 Nuovo C im enlo 9 7 B (1987), 200 [5] S. Saito, J. Endo, T. K odam a, A. Tonom ura, A. Fukuhara, K. Ohbayashi, Phys. Lett. A 162 (1992), 442 - 448 paueapun - n y paueap - n y - ZS ss a y ui ‘(8661) ‘» W v3jwii{Mj^p\i ‘p.BEsy -y pue ijraiOQ-ia IA[ [£] (9661)683 ‘£1 Î I ddnS] ‘m3Vm rum MJW i ‘BAOjannpj i pire [izrnpBZ 'IM 1 ÍZ\ (¿861) ‘W -IS ‘¿M I0A 'idoDsojMW f ‘Xof j <j [I] :s30uarapy paueapun - u s - o paueap - u s o paueapun - n o - • paueap - n o — paueapun paueap ■ z'3y (Aa) A 9 H 3 N 3 OOSfr OOOfr 00S€ 000C 0053 saigjaua m o[ jb sanjBA 0003 U s ji paiaM O j jBqj a a u jm s sji u o uqg appro uiqj b o a b i| Xbui qoiqM 1 1 3 j o u o p d a a x a aqj qjiM ‘% oi oj dn j o s a a u a ra jjip Moqs a s a q j, U3AÖ a re (sauij pips) s u o i u oâiB aijaSjaua o j p a ja a fq n s njis-ui uaaq aABq jBqj asoqj pire (saun psMop) s a a e jjn s p a y asu i-st? aqj ttio ij b jb q • s ju a u ia p m o j j o j dg X Sjaua u o i j a a p ju a p p u i aqj snsjaA juapijjaoa li aqj j o jo [d B si ‘z § H ‘ L p a m sB a u i aqj j o an[BA aqj j a j p u bo jBqj suojjaap Xrepuoaas j o u o p a a j p a aqj a a n p a i o j sjob o sjb 11 ‘uSisap jasduioa b q a n s j o j su o ijB ijau a d p p i j S u ia n p a i o j uoijippc ui jBqj p u n o j aABq 3/W p u g 3 u o Xjuo j o pB ajsui sspojjasp p u g o m j SBq jo ja a ja p ju a s a id aqj jBqj ui uSisap la ijie a u b m ay s ia j jip j i [£] jaipBa p a y o d a i psijipoui b si qoiqM ‘[g ig u i pajaidap XpaijBuiaqas jBqj j o UOISJ3A si jo ja a ja p p a s n sjuBuiuiBjuoD a aB jins aA O uiai o j Q u i a y ^ o i J ° s u 0 ! j y A05) z) s u o i Dijagjouo Xq p a ir e a p ai3M jBqj saa B jjn s a[dures u io jj puB ‘jB q u i o i J ° J 3 p J ° a q i ui s u o p ip u o a umnoBA japun jn o p a u r e s aiaAV sjuauiam sB 3jM 'Qd pue n y ‘j j ‘m ‘JH ‘PO ‘uS ‘P 3 ‘§V ‘opv ‘q N ‘J Z ‘3 0 ‘« Z ‘n o ‘!N ‘3 3 ‘O ‘A ‘! I ‘!S ‘IV ‘D ^ ™ d 66 6 6 6 j o sa[d u re s a sa q j j o j AW g oj A 3 OSS 3 § ® J XSjau3 a q j ui p a m sB a u i uaaq aABq sjuapyjaoo (g) uoijcep Xrepuoaas puB (li) S u u a jjB jS ip e q a q x IM 3 S A T J ° uopBoijpirenb 3qj spreMoj pauire si pire suoijipuoo uauiiaads pasuajaB JB qa-ipM ja p u n l i p ire 9 jo Xpnjs e si a ia q p a jio d a i >poA\ a q x 'W 3 S 3q i ui juauiuoiiAua uauipads j o u b a b sb [[3/a sb s u o j j a a p Xgj3U3 a \o [ j o j sjuapijjaoa (U) p a ia jjB ssjp B q puB (g ) Xrepuoaas aqj jo sju a iu a m s B a u i juapijjnsui oj a n p s i siqx am jB u ui S A ijB jipnb uaaq jb j os SBq snbiuqasj a q j ‘i^ H S A T J° so ijia d o jd p a iis a p [[B a re 3 S3 q j 3 [iq /j\ [g] SUOIJBJJU30U03 p u a jB u i m o [ SuijD sjap jo X jq iq isso d aqj puB ‘sjCJBjajre s g p s paiqdßjgodoj jo (u o ijB s iu n u iu i jo ) uopanpai b ‘[z] Xgjaus uresq juoppu; sqj jo aapqa [tyarea sqj qjiA\ s[b u 3 jb u i SuijB[nsui gupasdsui jo Xjqiqissod aqj ‘aA ijisuas ocmjjns aiorn a n b iu q a a j aqj S35[bui jBqj au m jo A uopoEiajui - p i p s uojjaap psnnpsj b ‘[ [ ] suojjoap XSiaua m o j aqj j o j ppiX u o i j a a p Xrepuoaas qgiq b :apnpur a s a q x su o sB a i p ja A a s j o j u o ijB ja d o Xdoasoiaiui uojjaap jo a p o u i snoaSBjuBApB u b si /\3>[ç ireqj ssa[ si Xgjaua uoijaap juappui a q j qaiqM ui ‘(JM H SA T) Xdoasojaiui u o j j a a p Suiuueos ag B jp A mítj Z J ‘oiug P9Z19 ‘¿PI rnjs/odoAojpj}/ ‘y j $ y ‘jisuj o ifijw p sp amysui :ssajppn lusumiuaj^ Nil 'GCIS [0A V oA ^lJOA I o fotsj3t\iu[) ‘sjiuojj.jajg fo jurnupnda(] pmuoo-H 'JMPue *\W W Z W NOÍLL33T3 CIřTa:-UJ.V3S>I3V9 aONVa ÄOHHN3 M en AHHA HRL NI SlN 3D Idd30D A W 0M 033S 3H L 3 0 SiK3IAI3>inSV3IN ONV IMAGING OF NON-CONDUCTING SPECIMENS BY NONCHARGING SCANNING ELECTRON MICROSCOPY WITH METHOD FOR AUTOMATICALLY ADJUSTED CRITICAL ENERGIES M. Zadražil, L. Frank, J. Norris Institute o f Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic The total emitted electron current in the SEM is normally lower than the primary beam current so that some negative charge is dissipated into the specimen. In the case of a non-conductive specimen, the charge stays localised at the surface. It creates a unipolar electric field which deflects the primary beam and influences the trajectories of the signal electrons before their detection, and can also cause discharges, etc. Thus, non-conductors cannot be observed at normal energies. Between the critical primary energies at, say, 0.5 to 4 keV, the total electron yield exceeds the unity level and the positive surface charge attracts back a part of slow secondaries so that a balance is established with a potential of a few volts only. The non-charging microscopy method [2,3] consequentially utilises the critical energies to avoid any charge dissipation. The difficult task to determine a critical energy at absolute minimum surface charge-up (see [4]), is solved by quick acquisition of the signal development in time after a pixel is illuminated for the first time. The method was realised in a cathode lens equipped SEM which enables one to adjust easily the electron landing energy and even to roughly align the SEM at a different energy. The drawback is that the cathode lens extracts the secondaries off the surface so that also the positive chargingup fully develops. The final step in the method development consisted in closing an automated loop formed by the following steps: I: 2: 3: 4: 5: 6: 7: measurement of the signal vs. time curve in series of pixels not illuminated before; smoothing of the curves by using the polynomial rms fitting method; curve integration with respect to its asymptotic level; stepwise discarding of the curves most differing from the average; determination of the average integral as the total charge measure; determination of the next suitable value of the cathode lens excitation, i.e. the electron landing energy; adjustment of the specimen bias by the electronically controlled HV supply and approximate automatic prefocusing based on tabulated data (this step is not ready yet, such that partly manual control is necessary). The loop is preceded by definitions of pixels prescribed for the critical energy measurements and determination of the working distance, it is closed when a total charge rtieasure falls below a pre-selected limit, and finally, a single-shoot picture at the critical energy is taken from the unused part of the view field. The method was tested on two different ceramics materials. For both of them, signal vs. time curves were taken, and the curve integral was calculated. The sample (a) embodies only one critical energy (see Fig. 1), which means that the sample is compact of materials with close values o f critical energies. There was no problem in observing this sample with the SEM’s landing energy set to the calculated value (1.6keV). On the contrary, we found two mutually distant critical energies on the sample (b) (Fig. 1). Under the latter circumstances, the method presented here cannot produce truly noncharged micrographs; a specimen of this kind of heterogeneity consists of domains, parts of which charge-up at any electron energy selected. ■£LÍ (¿661) SWía ‘'ÍEnbjol ■sv»j}sqyjo yoog ‘s m i dot^joM '-'«7 £ ‘'^ -U 1 ‘Iizsjpez JAT LSI •frl (3661) 26 "Wd0 I®» Jaunay q '683 (9661 ) £1 ‘[jddns] moy iw yxuD ifl ‘BAOiannpv ^ j ‘jizRjpt>2 yyj ‘jp rey q 6ř I (^661 ) ‘I IoA sP®d '3S0J31W13 j S u o j -tu/ JEI °°ud ‘P-'cuann^j 7 pue jprejj 1 8 It?I (9861) 6S ‘a fy d l ckIV T ‘xrrezto j- [fr] [g] Izl [[] :S’3 3 U 3 J 3 ( 3 y (b) jo j sem ji sb (q) jo j pap3jno[B3 aq oj qqB lou sbm XSjouo Suipunj puijsip b ‘uoseai srqj j o j (b) ui jsrea jou op ipiqM (q) ojdures in sapprajduioo jBiiopisoduioo jo jpisai b si soS buii sip ui souarajjip aqx XpApsadsai ‘(q) A 35I VZ P1™ («) A°>I 9 1 saiáraua SuipUEJ UOJIDap )E U35(BJ S[BU3JBUI S3IUIBJ9D JO S9|dUJBS JUaiSJJip OM1 JO OTEJjnS Sip JO SqdEjSOEHUI - 1 - g y (as) À9H3N3 9NIQNV1 OOOť oooe 0002 0001. O ------------------------------------------------------------------------------ 008009- oot?- o X > ID O z o o cz JD o 33 > 003 < 002- OOfr
Podobné dokumenty
2 Difrakce, rozdělení difrakčních jevů a difrakční integrály
To však není nezbytné. Předpokládejme pouze, že v bodech M (xM , yM , 0) roviny z = 0 známe vlnovou
funkci ψ(x, y, 0) = ψ0 (xM , yM ). Jejím prostřednictvím pak vyjádříme vlnovou funkci ψ(x, y, z) ...