Adaptive fusion algorithm for VIS and IR images driven by neural
Transkript
Adaptive fusion algorithm for VIS and IR images driven by neural network Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil Palacky University- Department of Optics- Czech Republic [email protected] April 30, 2013 Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 1 / 19 Overview 1 Fusion of VIS and IR image 2 Fusion Quality Evaluation 3 Adaptive fusion 4 Conclusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 2 / 19 Overview 1 Fusion of VIS and IR image 2 Fusion Quality Evaluation 3 Adaptive fusion 4 Conclusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 3 / 19 PRAMACOM Image Fusion Unit Self consisten device with VIS and LWIR cameras, computational unit a video interface. Czech army transport vehicles. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 4 / 19 Multiresolution Image Fusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 5 / 19 Parameters of Multiresolution Fusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 6 / 19 Different Light Conditions Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 7 / 19 Different Light Conditions Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 8 / 19 Overview 1 Fusion of VIS and IR image 2 Fusion Quality Evaluation 3 Adaptive fusion 4 Conclusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 9 / 19 Piella-Heijmans Quality Metric Theorem Q(VIS, IR, F ) = 1 P λ(w )SSIM(VIS, F | w ) + (1 − λ(w ))SSIM(IR, F | w ) , w ∈W |W | SSIM(a, b | w ) = 4σab āb̄ (ā2 +b̄ 2 )(σa2 +σb2 ) Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 10 / 19 Subjective Evaluation Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 11 / 19 Overview 1 Fusion of VIS and IR image 2 Fusion Quality Evaluation 3 Adaptive fusion 4 Conclusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 12 / 19 Components of Adaptive Fusion System Each input image pair is characterized by 2-histograms. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 13 / 19 Components of Adaptive Fusion System Each input image pair is characterized by 2-histograms. System sets optimal internal fusion algorithm parameters by interpretation of the histograms. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 13 / 19 Components of Adaptive Fusion System Each input image pair is characterized by 2-histograms. System sets optimal internal fusion algorithm parameters by interpretation of the histograms. Neral network is ideal solution in this case. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 13 / 19 Components of Adaptive Fusion System Each input image pair is characterized by 2-histograms. System sets optimal internal fusion algorithm parameters by interpretation of the histograms. Neral network is ideal solution in this case. Representativ training data must be collect to cover large variety of inputs. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 13 / 19 Components of Adaptive Fusion System Each input image pair is characterized by 2-histograms. System sets optimal internal fusion algorithm parameters by interpretation of the histograms. Neral network is ideal solution in this case. Representativ training data must be collect to cover large variety of inputs. Training dateset is constructed with the help of both objective and subjective evaluation of fusion process. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 13 / 19 Neural network 22 values- VIS and IR 11 bin histograms 9 hidden nodes 2 output parameters of multiresolution algorithm Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 14 / 19 Adaptive System Output vs. Target Samples The adaptive system seting of fusion rule parameter is compared with target samples. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 15 / 19 Overview 1 Fusion of VIS and IR image 2 Fusion Quality Evaluation 3 Adaptive fusion 4 Conclusion Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 16 / 19 Conclusion The adaptive fusion system of VIS and IR images was realized. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 17 / 19 Conclusion The adaptive fusion system of VIS and IR images was realized. Multiresolution algorithm was implemented. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 17 / 19 Conclusion The adaptive fusion system of VIS and IR images was realized. Multiresolution algorithm was implemented. The system changes multiresolution fusion algorithm parameters and the change is driven by 11-bin histograms of input images. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 17 / 19 Conclusion The adaptive fusion system of VIS and IR images was realized. Multiresolution algorithm was implemented. The system changes multiresolution fusion algorithm parameters and the change is driven by 11-bin histograms of input images. The classification neural network was used as a basic concept. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 17 / 19 Conclusion The adaptive fusion system of VIS and IR images was realized. Multiresolution algorithm was implemented. The system changes multiresolution fusion algorithm parameters and the change is driven by 11-bin histograms of input images. The classification neural network was used as a basic concept. Network was trained with the help of both objective and subjective evaluation of fusion process. Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 17 / 19 Acknowledgments Supported by the Czech Ministry of Industry and Trade, project FR-TI1/364, and by the Technology Agency of the Czech Republic, Project TE01020229 (Center of Digital Optics). Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 18 / 19 The End Bohumil Stoklasa, Jaroslav Rehacek, Zdenek Hradil (PalackyAdaptive University) fusion April 30, 2013 19 / 19
Podobné dokumenty
Bright Blue - Centrum digitální optiky
V. Kollárová (UP, VUT), J. Čolákova (UP, VUT), L. Fialová
(UP, Meopta), J. Grézlová, (UP, Meopta), L. Úlehla (UP,
Meopta), O. Kaprál (UP, PRAMACOM-HT), L. Moťka (UP,
Meopta & UP), B. Stoklasa (UP, ...
drill® bs spol. s ro drill® bs spol. s ro pragosoja, sro
HILL’S PET NUTRITION - SPECIALISTA NÁKUPU.
GREAT MATE - OFFICE MANAGER.
CREDITINFO CZECH REPUBLIC - FAKTURANTKA.
Roční zpráva o stavu řešení projektu
byly v minulosti navrženy a případně vybrat to, které by bylo nejvhodnější pro Ramanovu spektroskopii. Mezi ně patří sestavy několika multimódových optických vláken (W. Hug, J. Raman Spectrosc. 199...
Řízení jakosti I.
Redesign process, set pacemaker
5S, Cell design, MRS
Visual controls
Value Stream Plan
kupní smlouva - Ústav výzkumu globální změny AV ČR, v. v. i.
o podrobnostech rozsahu odůvodnění účelnosti veřejné zakázky a odůvodnění veřejné zakázky
(dále jen “vyhláška“).
Pravděpodobnost a statistika - Bodové odhady a intervaly spolehlivosti
Definice (Nestranný / nezkreslený / nevychýlený bodový odhad)
Mějme pravděpodobnostní prostor hΩ, F, P i a náhodný výběr X = hX1 , . . . , Xn i
z rozdělení, které závisí na neznámých parametrech Θ1...
Interoperabilita v paměťových institucích INTERPI
International Organization for Standardization
LC
Library of Congress
LCC
Library of Congress Classification
LCNAF
Library of Congress Name Authority Files
LCSH
Library of Congress Subject Head...