Fotosyntéza řas – regulace v průběhu denních cyklů
Transkript
Fotosyntéza řas – regulace v průběhu denních cyklů
Fotosyntéza, řasy a Chromera velia Laboratory of Photosynthesis – Algatech, Institute of Microbiology, Třeboň Academy of Sciences, Czech Republic Fotosyntéza jako součást biologického cyklu uhlíku účinnost přeměny zachycené energie ~ 30% globálně 1.5x1014 W/rok ~ 150 000 jaderných elektráren science.nationalgeographic.com Fytoplankton: základní údaje Průměr: < 1 m až > 100 m Pokud naskládáte 1000 planktonních buněk o velikosti 1 um vedle sebe, budou jako tlouštka mince! (~18,000 buněk na šířku) Koncentrace: 103 až 106 / ml Pokud naplníte pivní láhev mořskou vodou v době, kdy dochází k “vodnímu květu”, může obsahovat i přes miliardu buněk! Celková biomasa: < 1% celkové rostlinné biomasy na Zemi ALE je zodpovědná za téměř polovinu čisté fotosyntézy celé biosféry! Primary productivity of our planet 0 Productivity of all biosphere = 110 - 120 Gt C year-1 (annual anthropogenic emisisons 7.1 Gt C) Hydrothermal vents ~ 0.01 Gt C year-1 Approx. 50% of productivity on land & 50% in oceans 50 100 Primary production (gC m-2 month-1) (Giga = 109) Chemosynthesis hydrothermal vents on the bottom of oceans ~ 0.01 Gt C year-1 Not every photosynthesis is about (bacterio)chlorophyl ! Halobacteria (archea): extremely halophilic (>4M NaCl) proteins bacteriorhodopsin (pumps H+), halorhodopsin (Cl-) forms membrane 2D crystals Pigment - carotenoid retinal Marine flavobacteria: proteorhodopsin discovered in 2000 13-80% of all marine bacteria Vývoj života a fotosyntézy Miliardy let Cévnaté rostliny Bezobratlí Savci Člověk Vznik Země Řasy Život Makroskopická eukaryota Fototrofní bakterie Sinice a další fototrofní organismy Stromatolity mikrofosilie Vývoj života a fotosyntézy Miliardy let Cévnaté rostliny Bezobratlí Savci Člověk Vznik Země Řasy Život Makroskopická eukaryota Fototrofní bakterie Sinice a další fototrofní organismy Milestones in the history of the Earth Biomarkers for cyanos and eukaryotes Origin of Oxygenic PS ?? ? ? Rise of O2 Xiong and Bauer, 2002 Tree of life and photosynthesis Photosynthetic Prokaryotes Diverse classes of antenna, reaction center and electron transfer complexes Martin Hohmann-Marriott Fylogenetické rozšíření oxygenních fotoautotrofů druhově dominují terestrické (Embryofyta) vodní prostředí ~30 tis. druhů moře/sladkovodní 17/13 tis. v mořích početně sinice druhově Bacillariofyta Prochlorococcus Endosymbiózy primární (~ 1.5 mld let) sekundární (~ 1.2 mld let) terciární Tree of life & eukaryotic diversity Apicomplexa Fehling et al., 2008 Plasmodium - contains relict plastid (apicoplast) Apicoplast © 2009 QIAGEN, all rights reserved Nature 2007 Chromera velia Plesiastrea versipora Chromera velia – chlorophyll a (no chl c), symbiotic? Apicomplexa Alveolate evolution Plasmodium falciparum Toxoplasma gondii Chromerida Dinophyta Moore et al., Nature 2007 Plesiastrea versipora Diversity of Chromerid algae Phylum: Chromerida Different life cycle Different morphology Different plastid genome Family: Vitrellaceae – Vitrella brassicaformis Janouškovec et al. PNAS 2010 Oborník et al. Protist 2012 Family: Chromeraceae – Chromera velia Oborník et al. Protist 2011 Chromera velia Chromera velia Antennae organized as in Diatoms Phaeodactylum tricornutum (Pan et al. Photosynth. Res. 2012) Cyclotella meneghiana Simple pigmentation asi in Eustigmatophytes (Moore et al. Nature 2008) Nannochloropsis sp. Primitive type II RuBisCO as in Dinoflagellates Symbiodimum sp. (Janouškovec et al. PNAS 2010) Heme synthesis as in Apicomplexans (Kořený et. al Plant Cell 2011) Plasmodium falciparum Toxoplasma gondii Heme biosynthesis pathway • Two different ways of 5-Aminolevulinate (ALA) synthesis C4 C5 • Remaining 7 steps are conserved among all organisms • Eukaryotes differ in the origin of the genes and intracellular localisation of the enzymes Chlorophyll Biosynthesis in Photosynthetic eukaryotes • In the Photosynt. Cell, the majority of the end-products are needed in the Plastid • Chlorophyll is synthesized in much higher rate than the Heme. • Most Heme is used in the Plastid for cytochromes and for synthesis of Bilin Chromophores • Only small portion of the heme is needed in mitochondrion for respiratory complexes Heme Biosynthesis in Apicomplexa Apicoplast • Similarly to secondary algae, some genes come from the plastid • However, it uses δ-aminolevulinate synthase and localization resembles more the primary heterotrophs Tetrapyrrole biosynthesis in Chromera velia? • Data from 454 genome sequencing – small reads • Search for Sequences homologous to Heme genes • Full-length cDNA amplification by RACE • Phylogenetic analyses • Targeting Predictions Kořený et al. 2011. Plant Cell Tetrapyrrole biosynthesis in Chromera velia HETEROTROPH PRIMARY ALGA Chromera Apicomplexa + Kořený et al. 2011. Plant Cell Tetrapyrrole biosynthesis in Chromera velia C14 • 14C Glycine and Glutamate were used to C14 discriminate between the two ways of ALA synthesis • Chlorophyll was subsequently extracted, converted into chlorin and separated on TLC plate • Synechocystis was used as a control organism that uses glutamate for ALA synthesis Chlorophyll a Chlorin e6 C14 Kořený et al. 2011. Plant Cell Tetrapyrrole biosynthesis in Chromera velia Kořený et al. 2011. Plant Cell Tetrapyrrole biosynthesis in chromalveolates Kořený et al. 2011. Plant Cell Enzyme RuBisCO Form II dimer of large subunits (L2)n lacks small subunits low Srel value - low discrimination against O2 as an alternative substrate poor affinity for CO2 relatively high kcat Form II enzyme is adapted to functioning in low-O2 and high-CO2 environments. Badger et al. J. Exp. Bot. 2008 Photosynthesis under day/night cycle Oxygen evolution Very high photosynthetic rates - 4-5 times higher than those measured in cultures receiving continuous light High rate of carbon fixation – due to type II of enzyme RuBisCO (high kcat) Type II RuBisCO is very sensitive to presence of O2 (Srel ) Carbon fixation There must be a mechanism that reduces O2 accessibility to RuBisCO. Carbon a Hysteresis effect - mid-morning maximum and afternoon depression Photosynthetic rates cyclic electron flow photorespiration Photorespiration Oxygen produced CO2 assimilated Photorespiration in C. velia – mechanism for energy dissipation (photoprotection). ~ 1,3 Dinoflagellates Summary Apicomplexa Plasmodium falciparum Symbiodinium sp. Chromerida Chromera velia Eustigmatophyceae Nannochloropsis limnetica Diatoms Phaeodactylum tricornutum Acknowledgements Eva Kotabová Jana Jarešová Radek Kaňa Barbora Hošková Jiří Šetlík Jana Hofhanzlová Antonietta Quigg (Texas A&M, USA) Luděk Kořený Roman Sobotka Jan Janouškovec Patrick J. Keeling (UBC, Canada) Miroslav Oborník This project is supported by: GAAV IAA601410907 (2009-12)
Podobné dokumenty
Red and Problematic Green Phylogenetic Signals among
huxleyi (http://genome.jgi-psf.org/Emihu1/Emihu1.download.ftp.html) from their corresponding genome project
homepages. From the downloaded files, we removed Cterminal stop codons and replaced selen...