Photonic structures: characterization, modelling, and applications
Transkript
Photonic structures: characterization, modelling, and applications
Introduction Experimental setups Research activity Photonic structures: characterization, modelling, and applications Kamil Postava and Jaromı́r Pištora Nanotechnology Centre, IT4Innovations National Computing Center, and Department of Physics Technical University of Ostrava, 17. listopadu 15, 70833 Ostrava-Poruba, Czech Republic e-mail: [email protected], [email protected] K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 1 / 23 Introduction Experimental setups Research activity Technical University of Ostrava K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 2 / 23 Introduction Experimental setups Research activity Technical University of Ostrava Nanotechnology Center (head: Jaromı́r Pištora) 7 faculties more than 17 000 students about 1500 employee K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 3 / 23 Introduction Experimental setups Research activity IT4 Innovations – supercomputer center in TU Ostrava www.it4i.cz hardware ◮ ◮ 2000 TFlop/s computing performance 40th most powerfull supercomputer in the word software – ANSYS, COMSOL, FLUENT, MATLAB, etc. – high performance computing (HPC) research – Modeling for Nanotechnology – one of 7 workprograms K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 4 / 23 Introduction Experimental setups Research activity Spectroscopic ellipsometry optical characterization of thin films and nanostructures ◮ spectroscopic ellipsometry UVISEL (Horiba Jobin Yvon, France) phase modulation technique, spectral range 0.6–6.5 eV ◮ Mueller matrix ellipsometry RC2 (Wollam, USA) dual rotating compensator, spectral range 0.7–6.4 eV spectra of complete Mueller matrix K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 5 / 23 Introduction Experimental setups Research activity Infrared spectroscopy infrared spectroscopy and microscopy ◮ ◮ ◮ ◮ Fourier transform infrared (FTIR) spectrometer VERTEX 70v (Bruker) spectral range 8000–100 cm−1 (1.25–100 µm) infrared microscope HYPERION 2000 reflection and transmission unit, ATR unit, VW accessory, liquid and gas cells phase modulation external ellipsometer – PEM (HINDS Instruments) K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 6 / 23 Introduction Experimental setups Research activity THz time domain spectroscopy THz spectral range – TPS Spectra 3000 – TeraView time resolved spectroscopy – fibre optics pulsed laser spectral range 0.06 – 3 THz (wavelength 100 µm – 5 mm) K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 7 / 23 Introduction Experimental setups Research activity Equipment for magnetic characterization magnetic characterization of thin films and nanostructures ◮ ◮ ◮ ◮ ◮ magneto-optic vector magnetometry at fixed wavelength magneto-optic microscopy vibrating sample magnetometry magnetic force microscopy (MFM) hystergraph, magnetostriction measurement K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 8 / 23 Introduction Experimental setups Research activity Research activity ellipsometry, polarimetry, and spectroscopy (UV–infrared, THz) ab-initio calculation magnetoplasmonic gratings, plasmonic of semiconductors solar cells, photovoltaic terahertz (THz) sources (lasers) and nonreciprocal isolators spin-lasers, application of spintronics in light sources photonic structures in security holograms magneto-optics (vector magnetometry, quadratic effects, material sensitivity) We are searching for collaboration and future projects K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 9 / 23 Introduction Experimental setups Research activity 1. Magneto-optical non-reciprocity → optical isolator protection of a laser against spurious reflections optical isolator for fiber telecommunications Unique non-reciprocity of magneto-optical effects −→ unidirectional transmission, nonreciprocal isolators, and circulators. K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 10 / 23 Introduction Experimental setups Research activity Optical response of magnetoplasmonic grating grating thickness h = 160nm 100 Cavity mode: ∆ Rp [%], Rp [%] (C) 50 0 Rp ∆ Rp −50 0.5 1 Photon energy [eV] 1.5 (A) (B) Plasmon modes: (field confinement in MO material; YIG) L. Halagačka, et. al., Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect, Opt. Express 21, 21741–21755 (2013). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 11 / 23 Introduction Experimental setups Research activity Experimental optical data of fabricated structures Optical spectroscopy: Mueller matrix measurement (193–1700 nm) Focused beam of the experimental setup – 300 µm Finite spectral resolution: measured data at the wavelength λ reflectivity optical isolation ratio 1 0.02 0.6 δ Rp/Rs Rp/Rs 0.8 0.03 model data 0.4 model data 0.01 0 −0.01 0.2 0 −0.02 500 1000 wavelength [nm] K. Postava, J. Pištora 1500 −0.03 Technical University of Ostrava 500 1000 wavelength [nm] 1500 March 2, 2016 12 / 23 Introduction Experimental setups Research activity 2. Spin-lasers What is the spin-laser? new class of laser devices in which spin polarization of injected carriers (electrons, holes) is controlled emitted light polarization is directly related to the electron spin due to the angular momentum conservation advantages – lower threshold, control of emitted light polarization, fast modulations Frougier J., et al., Appl. Phys. Lett. 103 (2013) 252402 T. Fordos, K. Postava, H. Jaffres, J. Pistora, Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers, J. Opt. 16 (2014) 065008. K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 13 / 23 Introduction Experimental setups Research activity Modeling and characterization of spin-lasers Theoretical and experimental investigation of these effects in multilayer spin-lasers (spin-VCSELs) joint PhD study of Tibor Fordos Ecole Polytechnique, Prof. H. Drouhin and Unité Mixte de Physique CNRS/Thales Dr. H. Jaffres. T. Fordos; H. Jaffres; K. Postava; J. Pistora; H. J. Drouhin; Properties of linear birefrigence of InGaAs/GaAsP semiconductor spin-VECSELs: From experiment to theory and models, MORIS 2015, Penang, Malajsie (invited). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 14 / 23 Introduction Experimental setups Research activity 3. THz lasers and isolators Materials for solid state terahertz lasers and isolators Ecole PolytechniqueUniversité Lille 1, Prof. J.-F. Lampin and Dr. M. Vanwolleghem. joint PhD study of Martin Miçica M. Micica, V. Bucko, K. Postava, M. Vanwolleghem, J.-F. Lampin, and J. Pistora, Analysis of Wire-Grid Polarisers in Terahertz Spectral Range, J. Nanosci. Nanotechnol. 16, 1-4, (2016, in press). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 15 / 23 Introduction Experimental setups Research activity 3. Novel structures for Solar cells Theoretical and experimental investigation of materials and nanostructures for solar cells applications collaboration with Laboratoire de Physique des Interfaces et Couches Minces (LPICM), École Polytechnique, Prof. P. Roca i Cabarrocas. joint PhD study of Zuzana Mrazková Z. Mrázková, A. Torres-Rios, R. Ruggeri, M. Foldyna, K. Postava, J. Pištora, P. Roca i Cabarrocas, Thin Solid Films 571 (2014) 749-755. K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 16 / 23 Introduction Experimental setups Research activity Novel structures for Solar cells Theoretical and experimental investigation of diffraction from structured sollar-cells surfaces T. Kohut, K. Postava, Z. Mrazkova, M. Foldyna, P. Roca i Cabarrocas, M. Micica, and J. Pistora, Modeling of Mueller matrix response from diffracting structures, J. Nanosc. Nanotechnol. 16, 1-4, (2016, in press). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 17 / 23 Introduction Experimental setups Research activity Modeling of holographic gratings – collaboration with Optaglio – Optical Microstructure Technologies used as security protection against falsification for banknote, ID cards, taxstam, goods based on electron beam lithography 3D object visualization using hologram K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 18 / 23 Introduction Experimental setups Research activity 5. Modeling of blazed holographic gratings α Λ N=75, φ=18o α=20o 0.8 0.8 0.8 0.8 0.6 0.4 0.6 0.4 0.2 −50 0 0 50 Angle of diffraction (degree) o Diffracted intensity 1 Diffracted intensity 1 0 0.6 0.4 0.2 −50 o 0 0 50 Angle of diffraction (degree) o N=75, φ=−12 α=20 0.6 0.4 0.2 −50 o 0 0 50 Angle of diffraction (degree) o N=75, φ=−22 α=20 o 0.8 0.8 0.8 0.8 0.2 0 0.6 0.4 0.2 −50 0 0 50 Angle of diffraction (degree) o Diffracted intensity 1 Diffracted intensity 1 0.4 0.6 0.4 0.2 −50 o o N=75, φ=−52 α=20 0 0 50 Angle of diffraction (degree) 0.4 0.2 −50 o o N=75, φ=−62 α=20 0 0 50 Angle of diffraction (degree) o 0.8 0.8 0.2 0 0.2 −50 0 50 Angle of diffraction (degree) K. Postava, J. Pištora 0 Diffracted intensity 0.8 Diffracted intensity 0.8 Diffracted intensity 1 0.4 0.6 0.4 0.2 −50 0 50 Angle of diffraction (degree) 0 0 50 Angle of diffraction (degree) o N=75, φ=−82 α=20 1 0.6 −50 o N=75, φ=−72 α=20 1 0.4 o 0.6 1 0.6 0 50 Angle of diffraction (degree) N=75, φ=−42 α=20 1 0.6 −50 o N=75, φ=−32 α=20 1 Diffracted intensity Diffracted intensity N=75, φ=−2o α=20o 1 0.2 Diffracted intensity N=75, φ=8o α=20o 1 Diffracted intensity Diffracted intensity N=75, φ=28o α=20o 0.6 0.4 0.2 −50 0 50 Angle of diffraction (degree) Technical University of Ostrava 0 −50 0 50 Angle of diffraction (degree) March 2, 2016 19 / 23 Introduction Experimental setups Research activity 6. MO material selectivity from periodic multilayers 1. Co and NiFe layers in the multilayer periodic system [Ni80 Fe20 (2 nm)/Au(2 nm)/Co(0.4, 0.8, and 1.2 nm)/Au(2 nm)]10 Polar Kerr rotation 50 0 0 −20 Si wafer −50 −5 0 5 MO contribution of Co M /M −5 0 5 MO contribution of NiFe 1 1 0.5 0.5 S X 10 Co 0 0 −0.5 −0.5 P Au 2 nm Co 0.8 nm Au 2 nm NiFe 2 nm Polar Kerr ellipticity 20 mdegree Au 2 nm Co 0.8 nm Au 2 nm NiFe 2 nm Au 2 nm Co 0.8 nm Au 2 nm NiFe 2 nm −1 NiFe −1 −5 0 5 Magnetic field (kOe) −5 0 5 Magnetic field (kOe) K. Postava, I. Sveklo, M. Tekielak, P. Mazalski, A. Maziewski, A. Stupakiewicz, M. Urbaniak, B. Szymański, and F. Stobiecki, IEEE Trans. Magn. 44, 3261–3264 (2008). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 20 / 23 Introduction Experimental setups Research activity MO material selectivity from self-assembled nanostructure 2. Self-assembled BiFeO3 –CoFe2 O4 biferroic nanostructures polar Kerr effect, incidence angle 11◦ , wavelength 650 nm Polar hysteresis loop Polar hysteresis loop 0.2 0 −0.2 −0.4 −1 CoFe 2O4 SrTiO 3 (001) −0.5 0 0.5 Magnetic field (T) 1 1 0 −1 −1 −0.5 0 0.5 Magnetic field (T) 1 0.5 0.5 0 P M /M S S Second phase 1 P First phase 1 M /M BiFeO 3 Kerr ellipticity (mrad) Kerr rotation (mrad) 0.4 −0.5 0 −0.5 −1 −1 −1 −0.5 0 0.5 Magnetic field (T) 1 −1 −0.5 0 0.5 Magnetic field (T) 1 K. Postava, D. Hrabovský, O. Životský, J. Pištora, N. Dix, R. Muralidharan, J. M. Caicedo, F. Sánchez, and J. Fontcuberta, J. Appl. Phys. 105, 07C124 (2009). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 21 / 23 Introduction Experimental setups Research activity MO material selectivity – effect of buffer layer 3. Co grown on self-assembled Au islands sapphire/Mo(20 nm)/Au(islands)/Co(2 nm)/Au(5 nm) prepared by MBE, Au islands grows at 500◦ C First phase First phase Au (5 nm) Co (2 nm) Au islands Mo(110) (20 nm) sapphire substrate First phase 0.1 0.2 0.1 0.05 0.1 0.05 0 0 0 −0.05 −0.1 −0.05 −0.1 −4 −2 0 2 Magnetic field (kOe) 4 −0.2 −4 −2 0 2 Magnetic field (kOe) Second phase 4 −0.1 −4 0.01 0.04 0.02 0.005 0.02 0.01 0 0 0 −0.005 −0.02 −0.01 −0.01 −4 −2 0 2 Magnetic field (kOe) polar 4 −0.04 −4 −2 0 2 Magnetic field (kOe) longitudinal −2 0 2 Magnetic field (kOe) 4 Second phase Second phase 4 −0.02 −4 −2 0 2 Magnetic field (kOe) 4 transverse K. Postava, D. Hrabovský, J. Pištora, A. Wavro, L.T. Baczewski, I. Sveklo, A. Maziewski, Thin Solid Films 519, 26272632 (2011). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 22 / 23 Introduction Experimental setups Research activity MO material selectivity 4. α−Fe crystallites in FeNbB amorphous ribbon longitudinal Kerr rotation θKs and ellipticity ǫKs J. Hamrlová, K. Postava, O. Životský, D. Hrabovský, J. Pištora, P. Švec, D. Janičkovič, A. Maziewski, Acta Phys. Pol. A 118, 837 (2010). K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 23 / 23 Introduction Experimental setups Research activity Acknowledgment PhD students Lukáš Halagačka, Tibor Fördös, Zuzana Mrazková, Mratin Mičica, Jan Chochol Collaboration, sample preparation H. Jaffrés, J.-M. George, H.-J. Drouhin, M. Foldyna, P. Roca i Cabarocas, Ecole Polytechnique, Unite Mixte de Physique CNRS/Thales, France M. Cada, Dalhousie University, Halifax, Canada B. Dagens, P. Beauvillain, Institut dElectronique Fondamentale, UMR CNRS 8622, Université Paris-Sud XI, Orsay, France M. Vanwolleghem, F. Vaurette, J.-F. Lampin Institut d’Electronique, Microelectronique et Nanotechnologie, CNRS UMR 8520, University of Lille, Villeneuve-dAscq, France I. Sveklo, A. Stupakiewicz, A. Maziewski, Laboratory of Magnetism, University of Bialystok, 41 Lipowa Street, 15-424 Bialystok, Poland K. Postava, J. Pištora Technical University of Ostrava March 2, 2016 24 / 23
Podobné dokumenty
Skripta materialy 6
Berylium je šedý kov, má vynikající mech. vlastnosti, zejména při vysokých teplotách
(beryliová bronz).
PDF 2300kB
Vychází v Praze mûsíãnû, mimo ãervenec a srpen
● Vydává: ÚMâ Praha 15, BoloÀská 478/1,
109 00 Praha 10, Iâ: 211355 ● Vedoucí redakce: Jana ·imkÛ ● Odpovûdn˘ redaktor: Ing.
Jan Novák ● Tajemnice red...