zpracování, spánkové a novorozenecké EEG, klasifikace, vizualizace
Transkript
Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace Václav Gerla, Josef Rieger, Lenka Lhotská, Vladimír Krajča ČVUT, FEL, Katedra kybernetiky, Technická 2, Praha 6 Fakultní nemocnice Na Bulovce, Budínova 2, Praha 8 http://gerstner.felk.cvut.cz Přístroj pro měření EEG Princip: EEG přístroje, příslušenství: http://www.brainscope.cz Ukázka EEG signálu 19 EEG kanálů, EKG signál (+ artefakt 50 Hz) Klinicky významné frekvenční pásma Elektrická aktivita mozku vykazuje rytmickou aktivitu o různé frekvenci: DELTA 3 Hz a méně hluboký spánek, v bdělosti patologické THETA 3.5 - 7.5 Hz kreativita, usínání ALPHA 8 - 13 Hz relaxace, zavřené oči BETA 14 Hz a více koncentrace, logicko-analytické myšlení, neklid Grafoelementy Ostře časově omezené projevy výrazně se lišící od „pozadí“ - základní frekvence - K complex - lambda/POSTS - small sharp spikes - MU vlna - Wicket spikes Artefakty Napětí z EEG elektrod ~ jednotky µV elektronické zesilovače v elektroencefalografu musí být velmi výkonné => mnoha nepravých potenciálů, které nazýváme artefakty • biologické artefakty : • technické artefakty: Svalový artefakt Spánkové fáze, hypnogram 1. 2. 3. 4. 5. 6. Wake (bdělost) REM (Rapid Eye Movements) // sny NREM1 (usínání) NREM2 (lehký spánek) NREM3 (hluboký spánek) NREM4 (nejhlubší spánek) Hypnogram: Měření spánku Electroencephalogram (EEG) - měření mozkové elektrické aktivity Electrooculogram (EOG) - měření očních pohybů. Elektrody umístěny blízko očí zaznamenávají změny napětí způsobené pohybem očí Electromyogram (EMG) - měření elektrické aktivity svalů. Elektroda umístěna většinou na bradě Fáze Wake Alpha aktivita (při zavřených očích) Beta aktivita Fáze NREM1, NREM2 Spánková vřeténka, K complexy Theta aktivita Fáze REM Rychlé pohyby očí (fázově proti sobě) Theta aktivita Beta aktivita Snížená EMG aktivita Fáze NREM3, NREM4 Velká amplituda signálu Pomalé delta vlny Poruchy spánku Bolesti hlavy Nespavost - obtížné usínání - probouzení během noci - časté probouzení brzy ráno - neosvěžující spánek Nadměrná spavost - usínání během řízení vozidla - špatná koncentrace v práci, či ve škole - problémy s pamětí Syndrom neklidných nohou - pocit nepohodlí v nohou během nečinnosti Narkolepsie - náhlé upadání do spánku během dne Spánková apnoe - výpadky dechu během spánku Poruchy spojené s REM Zastoupení REM / NREM během spánku [%] 40 REM NREM(3+4) 35 30 25 20 15 10 5 0 3 18 40 70 věk Úbytek NREM spánku je částečně způsobený úbytkem delta aktivity (spánek ve stáří již není tak hluboký a nesplňuje kritéria NREM) Novorozenecké-kojenecké EEG • wake (problém s pohybovými artefakty) • aktivní/paradoxní spánek ~ REM • klidný spánek ~ NREM Binaurální rázy Příklad frekvencí: 0.15-0.3 Hz - deprese 4.5-6.5 Hz - snění během dne, představy 4-8 Hz - hluboká meditace, podvědomí 5.0-10.0 Hz - relaxace 5.8 Hz - závratě 7.83 Hz - rezonance země 8.6-9.8 Hz - indukce spánku, pocity brnění 15.0-18.0 Hz - duševní činnost 18 Hz – výrazné zlepšení v pamatování 55 Hz – Tantrická jóga LEVÉ UCHO – 70Hz PRAVÉ UCHO – 74Hz => BINAURÁLNÍ RÁZY O FREKVENCI 4 Hz Brain Wave Generator: http://www.BWgen.com Lucidní snění Ve snu si uvědomíme, že právě sníme. Možnost ovládat děj snu. Lucidní snění lze natrénovat: 1. Naučit se pamatovat si sny - bezprostředně po probuzení si sen zapíšeme 2. V průběhu dne provádíme ‘test reality’ - 2x po sobě přečteme jedno slovo - 2x po sobě se podíváme na hodinky 3. Sny jsou obrazem toho, co děláme během dne - jednou provedeme test reality i ve snu 4. Při snění je vše nestabilní => sen lze rozpoznat Vhodné je vstát ráno o hodinu dříve než obvykle, probrat se a pak se ještě pokusit usnout. Úvod do počítačového zpracování • MOTIVACE - velké objemy EEG dat (celodenní záznamy apod.) • CÍL - data vhodně předzpracovat, k detailnímu posouzení předložit pouze “zajímavé” části záznamu – cílem není nahradit zkušené oko neurologa, ale usnadnit mu práci • KLASIFIKACE - matematická metoda, kdy vstupní objekty rozřazujeme do tříd podle podobnosti • VISUALIZACE - umožňuje nahlížet na signál diametrálně odlišným způsobem v porovnání s analýzou v časové oblasti Klasifikace epileptického EEG 1. krok - segmentace (rozdělení signálu na úseky konstatní délky) Klasifikace epileptického EEG 2. krok - výpočet příznaků (pro každý segment vypočítáme množinu příznaků) segment 1 příznak 1 0,43 příznak 2 7,51 2 0,84 38,13 segment č. 1 => { 0,43 ; 7,51 } segment č. 2 => { 0,84 ; 38,13 } Klasifikace epileptického EEG 3. krok - vytvoření trénovací množiny (trénovací množina = množina “ukázek” segmentů pro jednotlivé klasifikační třídy) Pro náš problém pouze 2 třídy: - normální aktivita – třída 1 - epileptická aktivita – třída 2 Klasifikace epileptického EEG 4. krok - klasifikace (nalézt pro každý segment původního signálu co nejpodobnější segment trénovací množiny a přiřadit mu tak třídu) Zobrazení - normální EEG černě, epileptické červeně Adaptivní segmentace Požadovaná segmentace: Metoda dvou oken: Klasifikace spánkového EEG EEG signál doplněný EOG a EMG Cílem je získat hypnogram: Extrakce příznaků Hypnogram (vytvořen neurologem) EEG (Fpz-Cz) 1Hz Spektrogram (patrná periodická struktura typická pro lidský spánek) …………………………………………. EEG (Pz-Oz) 29Hz Normalizace příznaků Příznaky obsahují spoustu ostrých vrcholů normalizace Určení NREM4: Určení Wake: Rozhodovací pravidla Hledání vhodných pravidel - převod všech příznaků všech pacientů do formátu pro Weku Weka (http://www.cs.waikato.ac.nz/ml/weka) - algoritmy strojového učení - nástroje pro předzpracování, klasifikaci, regresi, shlukování a visualizaci dat Nejvýznamnější nalezená pravidla EEG 16-30Hz > 20% WAKE EEG 0.5-3Hz > 85% true false EEG 0.5-3Hz > 65% S3 EEG 13-15Hz < 15% and EOG 0.15-1.2Hz > 50% EEG 13-15Hz > 20% false S4 REM true EEG 13-15Hz > 10% S2 S1 Markovské modely VYUŽÍVAJÍ: - kontextovou informaci v EEG signálu (časová závislost) - přibližnou znalost pravděpodobnosti přechodu mezi stavy Klasifikace spánkového EEG Nahoře hypnogram vytvořený expertem, dole naší metodou Wake NREM1 NREM2 NREM3 NREM4 REM 0h 1h 2h 3h 4h 5h 6h 7h 8h 0h 1h 2h 3h 4h 5h 6h 7h 8h Wake NREM1 NREM2 NREM3 NREM4 REM Klasifikace komatického EEG • signál délky 2 hodin, segmenty po 16 sekund • trénovací množina – sestavena expertem (10 tříd, 319 segmentů) • ukázka segmentů trénovací množiny: segment třída 1 4 7 10 Klasifikace komatického EEG • barevné kódování tříd: třída barva 1 2 3 4 5 6 7 8 9 10 • hrubý odhad dlouhodobých trendů: třída 3 0h třída 4 třída 6+7 2h Eeg Biofeedback • • • • klinický biofeedback léčení fóbií omezení stresu sledování pozornosti 2D mapování 00:00 - 00:09 00:10 - 00:19 00:20 - 00:29 00:30 - 00:39 00:40 - 00:49 00:50 - 00:59 01:00 - 01:09 01:10 - 01:19 01:20 - 01:29 01:30 - 01:38 3D mapování • výsledek analýzy zobrazíme barevnou modulací na modelu hlavy • získáme topografickou představu o distribuci mapované veličiny (např. rozložení celkového výkonu v daném frekvenčním pásmu) Dotazy
Podobné dokumenty
crest performance
Spectrum Enhancement Processor, psychoakustický procesor, "Frequency Shift" přepínač pro volbut subharmonického rozsahu optimálně podle velikosti reproduktorů, Low Frequency
Enhance" sekce, High fr...
Spektrální a korelační analýza
• elektroencefalogram (EEG) je (grafická)
reprezentace časové závislosti rozdílu
elektrických potenciálů, snímaných z
elektrod umístěných zpravidla na povrchu
hlavy (skalpu) které vznikají jako důs...
Dave Hunt - Svod Krestanstva
kazatelem v Kalifornii, kde získal asi tak tisíc přívrženců - většinou z chudiny v Los Angeles. Nakonec je přemluvil k
odstěhování se do "Zaslíbené země". Tu "objevil" v jihoamerické Guayaně. Tam z...
Instalační manuál k aplikaci iHC-MA
g) Miele
Do seznamu Miele se dostaneme buď pomocí ikony v Dlaždicích nebo pomocí šipek pro pohyb mezi
Seznamy. Tato část aplikace nám umožňuje vzdálenou správu domácích spotřebičů Miele, které jsou...