THE HEAT CONDUCTION EQUATION The Need for Temperature
Transkript
THE HEAT CONDUCTION EQUATION The Need for Temperature Distribution Examine Fourier's law ∂T q& = − λ x ∂x (2.1) ∂T To determine q& we need x ∂x ∂T To determine we need the temperature distribution ∂x T(x, y, z, t) 1 Based on presentations by professor Latif M. Jiji, The City College of New York Formulation of the Heat Conduction Equation in Rectangular Cartesian Coordinates General case: • Three-dimensional • Unsteady state • Energy generation Eg, examples: z • Nuclear element • Electric energy dissipation in devices • Metabolic heat production in tissue y x Fig . 2.1 Apply conservation of energy to element dx dy dz during time dt: 2 Energy added + Energy generated - Energy removed = Energy change wit hin element E in +E −E g out = ΔE ak [J] (2.2) Express (2.2) in terms of T. E in Energy in by conduction, Ein: = q& dy dzdt + q& dx dzdt x + q& z dx dydt y [J] (a) Energy generation, Eg: E g = Q& zdr dx dy dz dt [J] (b) 3 Energy out by conduction, Eout E out = (q& x + ∂ q& x ∂x + ( q& + z dx)dydzdt + (q& y + ∂ q& z ∂z ∂ q& y ∂y dy)dxdzdt (c) dz)dxdydt Energy change within the element (accumulation), Δ E ∂U ΔE = dt ak ∂t (d) Expressing E in terms of T. Neglecting changes in kinetic and potential energy U = mu = u ρ dxdydz (e) 4 u = internal energy per unit mass ρ = density [J/kg] • Assume: incompressible material: cv = c p = c u = cT ∂U ∂T ΔE = dt = ρc dx dydz dt ∂t ∂t (f) (g) Substitute (a), (b), (c) and (g) into (2.2) and dividing through by dx dy dz dt − ∂q& x − ∂x ∂q& y ∂q& z ∂T & − + Qzdr = ρc ∂y ∂z ∂t (h) 5 Fourier's law (1.5) ∂T ∂T ∂T , q& = − λ q& = − λ , q& = − λ x ∂x y ∂y z ∂z (1.5) (1.5) into (h) ∂ ∂T ∂ ∂T ∂ ∂T ∂T & (λ ) + (λ ) + (λ ) + Q = ρc zdr ∂x ∂x ∂y ∂y ∂z ∂z ∂t (2.4) • (2.4) is the heat conduction equation • Assume: constant λ & ⎡ ∂ 2T ρc ∂ T ∂ 2T ∂ 2 T ⎤ Q zdr + + = + ⎢ 2 2 2 ⎥ λ λ ∂t ∂y ∂z ⎦ ⎣ ∂x (2.5) 6 a = thermal diffusivity (součinitel teplotní vodivosti) defined as conduction λ (2.6) a = ρc • NOTE: storage - accumulation (1) (2.5) is the differential formulation of the principle of conservation of energy. Valid at every point in the material (2) Limited to isotropic and constant λ (3) Physical significance of each term: • The first three terms = net energy conducted in x, y and z directions Q& zdr ⎡ ∂ 2T ∂ 2T ∂ 2T ⎤ ρc ∂ T + + + = ⎢ 2 2 2 ⎥ λ λ ∂t ∂y ∂z ⎦ ⎣ ∂x • The fourth term = energy generation • The fifth term = energy storage - accumulation7 (4) Simplifications for special cases: ∂T =0 • Steady state: set ∂t ∂ 2T ∂ 2 T = = 0 • One-dimensional: set ∂ y2 ∂z2 • No energy generation: set Q& zdr = 0 & (5) Solutions are simplified for constant a, λ and Qzdr 8 The Heat Conduction Equation in Cylindrical and Spherical Coordinates • Cylindrical coordinates r , φ , z ⎡1 ∂ 1 ∂ 2T ∂ 2T ⎤ ∂T q ′′′ ∂T (r )+ α⎢ = + ⎥+ 2 2 2 r ∂φ ∂ z ⎦ ρ cp ∂ t ⎣r ∂ r ∂ r (2.7) • Spherical coordinates r ,θ , φ ⎡ 1 ∂ 2 ∂T ∂ T ⎤ q′′′ ∂ T ∂ 2T ∂ 1 1 + )⎥ + α⎢ = (r )+ (sinθ 2∂r 2 2 2 2 ∂ r r sin θ ∂ φ r sinθ ∂ θ ∂ θ ⎥⎦ ρ c p ∂ t ⎢⎣r (2.8) 9 Boundary Conditions Boundary conditions are mathematical equations describing what takes place physically at a boundary. To write boundary conditions we must : • Select an origin • Select coordinate axes • Identify the physical conditions at the boundaries y Fig. 2.3 shows four typical boundary conditions: (B.C. 1) Specified temperature. Along boundary (0, y) the temperature is Tο : To insulation Qq& ′′ W ox L 0 convection α,h, T∞ Fig. 2.3 x 10 y T (0, y ) = To insulation (2.9) To W 0 L convection α,h, T∞ Fig. 2.3 (B.C. 2a) Specified flux. The heat flux at boundary (L, y) is q& . Using x Fourier’s law ∂T 2] q& = − λ [W/m (2.10) x ∂x x = L (B.C. 2b) Insulated boundary. The boundary at (x,W) is thermally insulated, q& = 0. Fourier’s law gives x ∂T ∂y =0 (2.11) y =W 11 Qq& ′′ ox x (B.C. 3) Convection. Heat is exchanged at the boundary (x,0) by convection with a fluid at temperature T ∞ . Equating Newton's law with Fourier's law y insulation ∂T (2.12) α T − T(x,0) = − λ ∞ ∂y y =0 Qq& ′′ [ To W 0 L h,T∞ convection α, ] ox x Fig. 2.3 (B.C. 4) Interface. Two different materials with a perfect interface contact: Two types of B.C.: T1 T2 kλ1 λk22 1 x 0 (i) Equality of temperature: T1 (0,y) = T2 (0,y) (2.13) Fig. 2.4 12 (ii) Equality of flux: −λ 1 ∂T1 ∂x = −λ x =0 2 ∂T2 ∂x (2.14) x =0 Consider the heat equation (2.5) T1 T2 kλ1 λk22 1 x 0 Fig. 2.4 ⎡ ∂ 2 T ∂ 2 T ∂ 2 T ⎤ Q& zdr 1 ∂T = + + ⎢ 2 + 2 2 ⎥ λ a ∂t ∂y ∂z ⎦ ⎣ ∂x (2.15) How many conditions are needed to solve this equation? 13
Podobné dokumenty
matematika iii - MATEMATIKA online
integrálem a také zde bude plošný integrál 2. druhu záviset na orientaci plochy.
Uvažujme plochu S danou explicitně rovnicí z = f (x, y) nebo parametricky.
Definice 14.1. Plochu S danou explicitně ...
Niels Bohr 1885–1962 Bohrův model atomu Max Born 1882–1970
tedy obecně nemůže měnit spojitě – odtud termín kvantový stav, kvantová mechanika
MATEMATIKA I
studovat tzv. afinní vlastnosti euklidovského prostoru E3 . Euklidovským prostorem E3 přitom budeme rozumět bodový prostor, v němž:
• každému bodu A ∈ E3 je jednoznačně přiřazena uspořádaná trojice...
Elektronická forma
Tepelnou změnu vnitřní energie soustavy lze ukázat při procesu nazývaném tepelná výměna.
Při tepelné výměně dochází také ke změně vnitřní energie. Uvažujme soustavu A s vnitřní
energií UA a soustav...
Stavové rovnice v teorii regulace
můžeme rovnice (3.21) a (3.22) napsat pomocí maticových operátorů v této formě:
Technický souhrn - Elmet spol. s r.o.
potrubí ochlazuje prostor, kterým prochází a může na něm kondenzovat vzdušná vlhkost. Přívodní potrubí
se neizoluje. Lze využít přihřátí vstupního vzduchu „odpadním“ teplem z okolí přívodního potru...