Transkript
MEFANET 2010 KOMPLEXNÍ MODELY INTEGROVANÝCH COMPLEX MODEL OF INTEGRATED PHYSIOLOGICAL SYSTEMS – A THEORETICAL BASIS FOR MEDICAL !"# Abstrakt "$%%&##'()$$((*$%(%'#%)() )$#$#% (+))#)(*),#%&(%' -'$((.(( ) &$#(.# /( 0 & (' .1 2(% 3 ' ) (%' % 445 %) - $) &$# (%'+ 6#788999((: -$( #( $%$# (%'+ (% $ ) .. ;+- )( $ ..( &' /% 2/ (%' /%% & ) /( 6#788999(8: ;<0= 6#788999((8:>$%$-) )%$##(%'+&, ' % %. (+- ' (%# ( )+),( '& (%$# ( ?'( $%$# (%'+ ) (* ( $# % # (% )$#9$((%'(?# '%%6%%-$#&%,# (+: &)@'''.#'$(#$(9A#9<*%) %($#$#(+?(#)'#$(3( B%((6#788#%((:(($((&&C;% +D,(((% );&(#(+.),&),($#$##+# )(# +((%()((/,&)( (' #(' & D, (( (% B%(( 6#788#(8#%((: % %-$(($%(%'"&))#(( %(%-,# 9 $#(%'+ (;$%$- Abstract ##(((#(%% (%#% ( %#((#9#; (%# (#%#A((((*(#1 2(%3(%%E#(%445%#(( (%6#788999((: (%)%(%= (%A(2#(%9#%((*( 6#788999(:;<0=6#788999((8:(#(% ((% (9####(% # 9%(%0#((%(* (#%##%( 9##9(%=%% 6#(F%#(%:%%% # (% #9A#90#%(#(#( (3(B%((6#788#%((:(( (##% C;/%((#(#;%# %#(%# #(%(*###C;((G% (#(#(9#(/*%(A #(%(((B%((6#788#(8#%((:9# (%=((99%%9 (%# (;(% 1 MEFANET 2010 1. Schola ludus pro 21. století H3 ,( (% &( (%) '( (% %((I A % % .% (% %) ( ( %. $ ) HA AI ()%(%.#2(%.#%)(- #'(%# )% J & % &' %'( ( & &$# (%'+ . %'#.#')$#$#% (+ 2) % # (%('# & (%.( ( &', (- )( ' - '$# #+ .'$#&'$#>)(%('# $%$##$%#'(%?1(!(#H2# %%IJ)H,#%IKLM$)-N 2(%. # $%% ( )% (( & (.# /(> (.# (%'+ % ) YROQČ GRVWXSQp $% VLPXOiWRU\ MHGQRWOLYêFK I\]LRORJLFNêFK VXEV\VWpPĤ 0 & (%' <3O( 6#788999(8: %(-@%) % %,&#'%('#%(#(%%<!O +$#KNPM0 #&('#&+$##%(-@%) (%' 3%( 6#788999%( %88#8(8#(: KQM 2(%' $# &)+ %(-@%) ' %'(% 6#788(%E%8: "& # + ( )% (( (%'%216*2%1#(:%.#$%%%*KNRM6#788999 A: S %% %$# %(-@%) % (%. ( D< TD U 6#788999%%: KPLNM >$%$ (%'1=V1 6#788 999L8: (%) %'# # %(-@%) '' +$# %#+ %% & ( &)(% %W$ ( (% KPNXQM ?( $+,#Y )$$WODVI\]LRORJLHDSDWRI\]LRORJLH$) %' (%(' $%' (+ ' '% % &( =% %-((%.#(+%)%)$#$#(+&.) ))#%#J#788#(8KQLQ5QZM !"#$%&!'(!)*+,-,/"0345#' T#($%$#(%'+(% $) ..6 :"# ##(' '%'&%&%(%'+%.%' #%$# # KPPPP4XNM T) # &$# (%'+ %.$# .' # ' $# $# Y+ 6%(' % % :/%2', )%) & #9$#-+%.$#'@.'&##'KL5PZMD&' /( 6#788999(8: ' % $# (%'+ . (%'% 2([ Y,%-#)&$-.)KXZM0- .)$%&+$%KXMV,(Y,$($ () ('/(;<0=6#788999((:))- -)%(6- '%: $%% (+ $ + $# $(+ )( (%#+KXX4M &-%(-@%) )-$+ $% % .(+-%'.% Y>-) )%$##(%'+&,' % %. (+- ' (%# ( )+),( '& (%$# (>, %+ )% (' (%' %) ), 6 /:#%#%%%+KZM ?', %@%)&%+$%(%'(,, ' %.%)# - ' $% "& '( %- (%'% ) , $ 2 MEFANET 2010 !" # $ %&'(( ) "# *+,.%&'((///)01 &! 2302 245 &! 212"! 6 ($$',$# #)#'#'(+- &(%#+K55L45RXXXNZM ))$('(#(%'%('(&$# $%$# (%'+ ) . $ ( $# (+ # (% ?# ' %% 6% # (+: % (.# -+ &)@'''.#'$(#$(9A#9 6#7"8!$73*#59':3);)83" ;)%$((&$#-+#%)PDWHPDWLFNpPRGHO\ QHMHQMHGQRWOLYêFKI\]LRORJLFNêFKVXEV\VWpPĤDOHLMHMLFKSURSRMHQtGRNRPSOH[QČMãtKRFHONX # $%(% $) %( )$# $# % (+ (% $'$'ÄLQWHJUDWLYQtI\]LRORJLH³KRM )'('(& - ' % $ *('# $%(% H I-&($)$#$#%))# %%#.&))+),#( ?( # '#$# (($# + $# % )$# % (+ (% ($ % #% '( , % ( $4NL% 13 O% (%%K4M S' )- #( $#.'+ ?#%.' & '# #( & ' &() ' )# # & 1, ( $# %.' ) $. 6' . . %(' ' %. : ( (( 3 MEFANET 2010 '$(.(;'%(($#.'% %- / ' (($# #+ 3 #( & ($ $##+(/)'&#((#(%6 L: 1%& ( # $( + ( ( / )'&$# (($# ( + % %.# (% )# ,, % ' % ( (% !('& + (% (($# #+ (%.")4N5),4NP,(/KLRM &%-$#&%+ ) O%%/%(#%$##+'#&) %&J&=KLZM?% $%('%1(!)KLMO/$' ((#(%&()$# + #%%#$( $('(JO%+()#,(/6))(,#%+ &O%%)&&): (('%))3\\ O%)#%-'(&-')KX5NMO%+( (&-$#(*#(+$#%%-# %'#&+(%)+),#) +$#$#+;/$O%+((())('+ '#$($#%(%HV1%ID121KN4M <):=>?;&/)0";'(!)*+,-)*&=3/,;>7)!' O% )- .'% ('$# %( (- %-' (+ ) %. $% (+ '( #),# (- $. # - (%$%"&$%%-/#('##+( )$( $( % ( " ' ))# #' & # )+), % -%-'((($) .(..")4ZLO%+%0#(3(&( Ä+XPDQ³%.$&,($%$(Y.+(K4M;%(-(%&%$# +6''#'#(#$,):$#%$#'#+6Y $#+Y%(%$%:> ; V#((?+3(+$%$(B%(&%9 %KXLM > % ' O% (% ('$# % ..$# (+ $% ( $% ) % ' &,( #( %(%+&%,$#%D!% $( $$( ,( [ # Y% % , # & ! " '( % ( '( )( (+ $(%.# +))#(%KZRZM 2%((($($#..#;<V1)- # ,('#.$#..+KZLM >('$##)(%$)#'##(%)$# $#%(&#&,(('%##('&#& ; '# &% # + K5M )( ,& (* ( #(' &# & KZ54QPQXQNM >&$ ( (( ) %.' ,,# )%%-(($#(+#(%'(#(#$%(% KNNM #((%)%D121HV1%IKN4MD% ((% , %- $. $# A$# % &( /(%(&''KQQM D'( &$ (* ( &# & )( ('$# %,%-$%!(%(( -('(#9%& %($ (' = % -'' $% % . % '& $# # /$ $% "$ 4 MEFANET 2010 NON-MUSCLE OXYGEN DELIVERY VASCULAR STRESS RELAXATION MUSCLE BLOOD FLOW CONTROL AND PO2 260 57.14 02M 268 RDO 512 u^3 230 lower limit 50 238 198.7 263 BFM 5 DOB 264 POT^3 P1O 223 0.08 PDO 195 0.3 188 1 220 189 AHM upper limit 15.0 lower limit 0.4 RFN 0.1005 213 214 CNA 142 182 0.14 AH 222 184 lower limit 3 CNR 139 RBF 0.001 0.025 2.5 CNX 1.211 PRA 0 177 178 179 REK PPC 1 s AH7 AHM 1 1.211 CNE 0.0007 2 AM 1 1 AHY 180 AHZ RFN 28 0.3333 CN8 10 1 183 176 1 175 NOD 1.2 RBF 100 AOM 0.9899 1 s 158A 6 CNY AM AHM 207 RFN AMM AH1 u CNZ 1.2 201 lower limit 0.35 AUM 1 1 10 AHC 185 0.0785 187 AH2 6 AHM NOD 221 1 PVO 6 1 0.1 215 lower limit 0 40 186 AH4 216 1 GP3 1 249 EXC 40 TVD 0.001003 0.009 AM 211 1.5 ARF 191 210 APD 202 AAR 243 512 HM 0.0125 0 190 219 1 1 POM TVD lower limit 0 Z11 AHM 0.01 GF3 1 s xo VIM 196 0.5 250 1 u^3 122 8 VPF GF3 197 VVE PM5 PMO 0.5 2.86 7.999 5 GF4 203 algebraic loop breaking VIM 0.01095 1 244 P3O^3 233 2.8 POT VV7 4 Z10 1 0.301 P3O 194 STH 8.25 1.002 217 1 GLP 31.67 VV7 VV1 62 1 60 242 193 1 STH 0.001008 1000 209 PPC 51.66 63 VV6 VV2 lower limit .005 251 248 AAR 198 18 POE 1 7.987 200 8 0 VUD 0.001 TRR 212 8.0001 OVA 40 0.00333 P2O 241 PVO QO2 lower limit 0.0003 0.8 33 AOM 1 8 upper limit 8 RMO 57.14 1 BFN 272 POT P2O 2400 Xo 235 DVS 234 255 HM xo 271 1 s upper limit 8 1 xo s 232 OSA 192 POT 8 VUD PFL EVR AAR SRK 252 247 THIRST AND DRINKING 218 GFR 208 0.00781 61 224 271 206 0.125 1 s 0.25 -1 0.7 231 200 5 2400 u^3 GFN 205 200 65 VV7 256 MO2 265 KIDNEY DYNAMICS AND EXCRETION RR 1 1 253 199 PM4 1 s xo OVA 225 P40^3 8.0001 236 QOM 257 40 AMM 1 s xo 1 64 5 OVA 2688 254 02A 0.15 u^2 246 P4O 266 AU 237 PK3 PM1^2 2500 40 POV 267 245 1 lower limit .001 239 PK1 258 226 262 POT PM3 PMO 800 229 5 RMO 5 240 PK2 227 POV 270 228 BFM 1 259 0.7 261 AOM 1 1 s xo OSV 168 269 181 AU AH8 1 lower_limit_0 1 NON-MUSCLE LOCAL BLOOD FLOW CONTROL 40 POV 277 278 1 s xo POB 276 274 275 POD 273 ARM AK1 1 POK lower limit 0.2 1 40 A2K 1 lower limit 0.5 AR3 20 AR2 ARM 1.6 VIM 1 VVE 1 POC 283 286 POJ 99.96 0.495 2.86 0.00355 11520 0.3 1 289 1 33 0.33 lower limit 0.3 A3K VAS RSN 1 PA VAE xo 0.85 POZ AR3 1 xo s 32 1 s if (POD<0) {POJ=PODx3.3} VBD 5 VVR 6 2.95 DVS 1 s BFN PGS QVO 298 0 1 295 8 CPA 54 25 0 QLO VLA RPA 20 -4 AUC AUB CALCULATION when PA1<40: AUB=1.85718 AUB when 40>PA1<170: AUB=0.014286*(170-PA1) when PA1>=170: AUB=0 304 0 23 6 PLA RPT 22 PGL QPO AUJ QPO 18 VPE 316 0.21 0.85 314 1.001 312 AUL AUV IFP VIF 1 xo s 12 3.454e-006 110 AUD AUY 0.5 319 VVR 2.949 1 AUH 1 1 0 8 VVR 70 PPA AUH 150 0.4667 1.001 AVE 1 0.55 146 151 0.375 32 327 PLF 145 0.0003 152 2 PRA RCD 332 0.5 1 2-(0.15/u) DFP 0.0125 11.4 142 VPF PPI = 2 - (0.15/VPF) 351 0.01252 333 DHM HPR 347 342 1 352 HM 57600 343 40 96 0.1 u^2 REK 93 94 PGC PGR CHY^2 99 VG 1 334 344 VB 1 349 5 VRC 1 1 xo s 1 1 HPL 1 xo s 119 1 xo s 2130 0.1 CNA 118 NED 0.25 NAE HMD HPR 57 HYL 90 142.1 142 NID PGH PTS 89 CNA 116 PGP PTC 2 117 PG2 95 PIF upper limit 1 HMD RKC VRC 0.00042 NOD 1 s 57600 348 126 120 V2D xo 1 1600 335 124 CKE 125 100 0.4 RC2 5 123 KOD 1 336b 100 VPF 0.00014 KE 98 40 -4.842e-010 1 xo s 1 xo s 75 140 AM 122 KED 0.013332 PP3^0.1 HM DFP PLF 0 u^0.625 xo 2 2 0.0000058 143 1 346 PA4^0.625 HPL VRC PPI 141 1 HEART RATE AND STROKE VOLUME u^0.625 1 s xo 11 PFI 1 CKE 5 121 KID VGD 0.0025 1 s 144 0.0003 140 40 AU 336 336c PPO CPF 0 321 HMD 127 0.013 1 KCD 0.0028 (u/12)^2 HM2 40 331 2850 97 PP3 KIR KE1 GPR xo PTT = (VTS/12)^2 6 PTT PPA4 128 129 KIE KCD 113 1 s 350 345 130 3550 VG 101 85 POT 15 1 341 RC1 PLF PPI 322 323 324 325 11.99 VTS HSR PPA 100 340 POS PPC HR 10 VG 8 15 PA HSL 1 0.00092 0 POS 100 1.5 337 xo 1 s 88 0 86 VTS 338 VIC 1 xo s 1 s PTS = f(VIF) VIM VIE 135 25 KI 171 112 12 339 464e-7 330 7.866e-008 PPD PCP SVO -6.3 131 xo 1 lower limit 0.2375 POY 148 PPN 139 VIM POT 329 0.333 0.4 xo 147 AUTONOMIC CONTROL 5 PTS 0 0 VID 0.01 CNA GPD xo 0.9897 PO2 VPF 1 s 0.000225 138 AVE PPD QLO VIF 12 CCD 132 VIC PIF 8.25 PPR 149 137 AUM PO1 CPN CPP 28 136 15 PPC 320 133 CKI GP2 111 0.0005 20 1 s 2.95 0.7 1 318 VID 134 GPD 87 VID VTD 84 PLA 1 326 DPL 83 VTC 313 1 ALDOSTERONE CONTROL VTL 0.002 VV9 AU 315 0.07039 103 DPI 0.1 0 CIRCULATORY DYNAMICS 3.159 0.3 0.15 328 0.005 PRA 0.09925 1 s 170 AMC xo lower limit 6 9 102 PRA 0.38 166 KN1 CNA GP1 14 VPA 0.0048 165 CKE 5 104 0.30625 15 1 169 60 109 PTT 20 DPC 0.04 VRA 15 0.00352 7.8 CPI 0.25 lower limit 4 20 -4 QRN = f(PRA) AMT AMR 200 0.04 -6.328 1 s VPA PTC PIF 0 AU9 171 -0.017 168 AM1 AMP = f(PA) 106 PIF 20.15 CPI 142 105 xo 1 s AUJ^AUZ 1 SVO 5 0.1 13 QRO 20 21 PPA 1 1 s xo uv u AM2 AM3 00 PLD 0.004 lower limit 5 108 DPL 0.002 PTC xo 311 VTL 5.038 12 DRA VRA 19 15.22 AUZ 310 1 AU 172 19.8 167 AMP DPL PRA PR1 AU8 AUN AUN 173 AM5 PA 107 HMD 0 Z8 0.03826 0.001899 VTL 15 QRN PPA AUN calculation 317 QVO 1 AUH xo AM 10 HSR QRO 16 50 AUH 51 0.026 1 AUB calculation AUM 1 ANM 100 HMD 0 RVM = f(PP2) 1 s 20.039 174 AM 164 PPA AUN CALCULATION when PA1<50: AUN=6 when 20>PA1<50: AUN=0.2*(50-PA1) when PA1>=50: AUC=0 PA1 0.002 1.002 RVM 0 PP2 RPT 309 ANGIOTENSIN CONTROL DPC 1 1 52 PL1 308 0.0005 0.0384 20 3 11 AUH 55 0.0357 20 57 PLA AU2 AUB PA1 ANT DPC 0.04 VP 3.004 VP HPR RPV 0.4 DLA 24 DAU AUK AUB^3 305 15 PR1 lower limit 0 307 1 303 AU6 301 u^3 1 158 0.1 CPI 71 1 xo s 3 1 56 1 xo 302 A1B 152 RVG 50 1.4 PP1 QLN = f(PLA) AUC AUC calculation 1 s xo 157 AN1 74 49 48 sqrt 1 s 156 155 CNE ANM 2.738 1 RVM 53 QLN VLA 1 AUC CALCULATION when PA1<40: AUC=1.2 when 40>PA1<80: AUC=0.03*(80-PA1) when PA1>=80: AUC=0 PA1 PLA 159 10 4 1 0.4 EXC 142 PVS 0.6 QRF 15 26 Z12 CPP (1.2/RFN)^3 CNE 154 CNA CP1 VTL 10 QLO QLN 47 28 VLE 0.1 1.24 PA1 0 260 LVM = f(PA2) 10 44 27 P2O 296 297 EXE 45 46 0.02244 PLA 0 8 293 3 74 VPD VUD DFP 0.042 ANC (1.2/u)^3 69.77 PC^3 0 PVS 160 AN2 RFN 1.2 75 70 0.001 5 VRA PLA 5.085 QLO 100 POQ PPC u 10 153b TVD 0.001 VVS VPA PA2 LVM 8 upper limit 8PA lower limit 4 294 0.001902 VTC 3.3 161 AN3 4.0 REK 153a u^3 VB VLA 58 1.4 1 HMD HPL POT POQ 0.002 3.7 AN5 lower limit 0.7 ANM 210 0.4 60 VAS 59 HSL LVM QLN QAO QLO 291 73 5 PA 29 5 30 8 28 1.6283e-007 CPK DAS 292 PPC 69 16.81 PTC PVS VVS 1.004 1 s xo VTC lower limit 0.0001 0.0825 CV VVE 0.3 CFC 0.007 PVS VAS3 PRP CPP 9 xo 3.25 2.8 100 8 VV8 QVO 61 VP -6.3 3.781 7 VVS 162 163 1 ANM 80 70 CPP 72 PIF PVS 2 16.81 62 VP QAO BFN 31 288 0 4 284b VV7 0.04 DPP 0.00047 PC 68 2 0.3229 RBF DLP LPK CPR 17 5.004 VB VRC 1.2 BFM 100 DPL 78 77 85 PC VB 5 PC RVS 0.007 0 67 PVS 3.7 79 PPD PVG BFN 2.8 17 17 PA DP0 1.6379 0 39 17 284 287 41 2.782 34 AUM 66 0.2 0.0212 CN2 RV1 1.014 ANTIDIURECTIC HORMONE CONTROL RVS 2.9 BFM PAM AUM RV1 43 1 3 PGS CAPILLARY MEMBRANE DYNAMICS 2.9 1 s xo CN7 1.79 RVS RSM 37 RAR AUM PAM 30.5 RAR 0.1 1 35 ANU VIM PON 41A 38 36 ANU AMM VIM RAM 96.3 AUM RAM 1 279 280 AR1 1 s xo 42 1 1 290 POA 281 282 285 algebraic loop breaking 40 1 AVE lower limit 0.95 ARM POR 0.06 1 AR1 ANM 1 0.9457 91 PIF 92 STH 0.1 1 VIC 0.0125 VPF 114 115 VEC CHY 39.99 VTW PRM -5.9 3 VP VTW 24.2 1 12 VTS 0.0125 PULMONARY DYNAMICS AND FLUIDS LIST OF VARIABLES AAR-afferent arteriolar resistance [torr/l/min] AHM-antidiuretic hormone multiplier, ratio of normal effect AM-aldosterone multiplier, ratio of normal effect AMC-aldosterone concentration AMM-muscle vascular constriction caused by local tissue control, ratio to resting state AMP-effect of arterial pressure on rate of aldosterone secretion AMR-effect of sodium to potassium ratio on aldosterone secretion rate AMT-time constant of aldosterone accumulation and destruction ANC-angiotensin concentration ANM-angiotensin multiplier effect on vascular resistance, ratio to normal ANN-effect of sodium concentration on rate of angiotensin formation ANP-effect of renal blood flow on angiotensin formation ANT-time constant of angiotensin accumulation and destruction ANU-nonrenal effect of angiotensin AOM-autonomic effect on tissue oxygen utilization APD-afferent arteriolar pressure drop [torr] ARF-intensity of sympathetic effects on renal function ARM-vasoconstrictor effect of all types of autoregulation AR1-vasoconstrictor effect of rapid autoregulation AR2-vasoconstrictor effects of intermediate autoregulation AR3-vasoconstrictor effect of long-term autoregulation AU-overall activity of autonomic system, ratio to normal AUB-effect of baroreceptors on autoregulation AUC-effect of chemoreceptors on autonomic stimulation AUH-autonomic stimulation of heart, ratio to normal AUK-time constant of baroreceptor adaptation AUL-sensitivity of sympathetic control of vascular capacitance AUM-sympathetic vasoconstrictor effect on arteries AUN-effect of CNS ischemic reflex on auto-regulation AUV-sensitivity control of autonomies on heart function AUY-sensitivity of sympathetic control of veins AUZ-overall sensitivity of autonomic control AVE-sympathetic vasoconstrictor effect on veins AlK-time constant of rapid autoregulation A2K-time constant of intermediate autoregulation A3K-time constant of long-term autoregulation A4K-time constant for muscle local vascular response to metabolic activity BFM-muscle blood flow [l/min] BFN-blood flow in non-muscle, non-renal tissues [l/min] CA-capacitance of systemic arteries [l/torr] CCD-concentration gradient across cell membrane [mmol/l] CHY-concentration of hyaluronic acid in tissue fluids [g/l] CKE-extracellular potassium concentration [mmol/l] CKI-intracellular potassium concentration [mmol/l] CNA-extracellular sodium concentration [mmol/l] CNE-sodium concentration abnormality causing third factor effect [mmo/l] CPG-concentration of protein in tissue gel [g/l] CPI-concentration of protein in free interstitial fluid [g/l] CPN-concentration of protein in pulmonary fluids [g/l] CPP-plasma protein concentration [g/l] CV-venous capacitance [l/torr] DAS-rate of volume increase of systemic arteries [l/min] DFP-rate of increase in pulmonary free fluid [l/min] DHM-rate of cardiac deterioration caused by hypoxia DLA-rate of volume increase in pulmonary veins and left atrium [l/min] HEART HYPERTROPHY OR DETERIORATION RED CELLS AND VISCOSITY DLP-rate of formation of plasma protein by liver [g/min] DOB-rate of oxygen delivery to non-muscle cells [ml O2/min] DPA-rate of increase in pulmonary volume [l/min] DPC-rate of loss of plasma proteins through systemic capillaries [g/min] DPI-rate of change of protein in free interstitial fluid [g/min] DPL-rate of systemic lymphatic return of protein [g/min] DPO -rate of loss of plasma protein [g/min] DRA-rate of increase in right atrial volume [l/min] DVS-rate of increase in venous vascular volume [l/min] EVR-postglomerular resistance [torr/l] EXC-exercise activity, ratio to activity at rest EXE-exercise effect on autonomic stimulation GFN-glomerular filtration rate of undamaged kidney [l/min] GFR-glomerular filtration rate [l/min] GLP-glomerular pressure [torr] GPD-rate of increase of protein in gel [l/min] GPR-total protein in gel [g] HM-hematocrit [%] HMD-cardiac depressant effect of hypoxia HPL-hypertrophy effect on left ventricle HPR-hypertrophy effect on heart, ratio to normal HR-heart rate [beats/min] HSL-basic left ventricular strength HSR-basic strength of right ventricle HYL-quantity of hyaluronic acid in tissues [g] IFP-interstitial fluid protein [g] KCD-rate of change of potassium concentration [mmol/min] KE-total extracellular fluid potassium [mmol] KED-rate of change of extracellular fluid potassium concentration [mmol/min] KI-total intracellular potassium concentration [mmol/l] KID-rate of potassium intake [mmol/min] KOD-rate of renal loss of potassium [mmol/min] LVM-effect of aortic pressure on left ventricular output MMO-rate of oxygen utilization by muscle cells [ml/min] M02--rate of oxygen utilization by non-muscle cells [ml/min] NAE-total extracellular sodium [mmol] NED-rate of change of sodium in intracellular fluids [mmol/min] NID-rate of sodium intake [mmol/min] NOD-rate of renal excretion of sodium [mmol/min] OMM-muscle oxygen utilization at rest [ml/min] OSA-aortic oxygen saturation OSV-non-muscle venous oxygen saturation OVA-oxygen volume in aortic blood [ml O2/l blood] OVS-muscle venous oxygen saturation O2M-basic oxygen utilization in non-muscle body tissues [ml/min] PA-aortic pressure [torr] PAM-effect of arterial pressure in distending arteries, ratio to normal PC-capillary pressure [torr] PCD-net pressure gradient across capillary membrane [torr] POP-pulmonary capillary pressure [torr] PDO-difference between muscle venous oxygen PO2 and normal venous oxygen PO2 [torr] PFI-rate of transfer of fluid across pulmonary capillaries [l/min] PFL-renal filtration pressure [torr] PGC-colloid osmotic pressure of tissue gel [torr] PGH-absorbency effect of gel caused by recoil of gel reticulum [torr] PGL-pressure gradient in lungs [torr] PGP-colloid osmotic pressure of tissue gel caused by entrapped protein [torr] PGR-colloid osmotic pressure of interstitial gel caused by Donnan equilibrium [torr] PIF-interstitial fluid pressure [torr] PLA-left atrial pressure [torr] TISSUE FLUIDS, PRESSURES AND GEL PLD-pressure gradient to cause lymphatic flow [torr] PLF-pulmonary lymphatic flow [torr] PMO-muscle cell PO2 [torr] POD-non-muscle venous PO2 minus normal value [torr] POK-sensitivity of rapid system of autoregulation PON-sensitivity of intermediate autoregulation POS-pulmonary interstitial fluid colloid osmotic pressure [torr] POT-non-muscle cell PO2 [torr] POV-non-muscle venous PO2 [torr] POY-sensitivity of red cell production POZ-sensitivity of long-term autoregulation PO2-oxygen deficit factor causing red cell production PPA-pulmonary arterial pressure [torr] PPC-plasma colloid osmotic pressure [torr] PPD-rate of change of protein in pulmonary fluids PPI-pulmonary interstitial fluid pressure [torr] PPN-rate of pulmonary capillary protein loss [g/min] PPO-pulmonary lymph protein flow [g/min] PPR-total protein in pulmonary fluids [g] PRA-right atrial pressure [torr] PRM-pressure caused by compression of interstitial fluid gel reticulum [torr] PRP-total plasma protein [g] PTC-interstitial fluid colloid osmotic pressure [torr] PTS-solid tissue pressure [torr] PTT-total tissue pressure [torr] PGV-pressure from veins to right atrium [torr] PVG-venous pressure gradient [torr] PVO-muscle venous PO2 [torr] PVS-average venous pressure [torr] QAO-blood flow in the systemic arterial system [l/min] QLN-basic left ventricular output [l/min] QLO-output of left ventricle [l/min] QOM-total volume of oxygen in muscle cells [ml] QO2-non-muscle total cellular oxygen [ml] QPO-rate of blood flow into pulmonary veins and left atrium [l/min] QRF-feedback effect of left ventricular function on right ventricular function QRN-basic right ventricular output [l/min] QRO-actual right ventricular output [l/min] QVO-rate of blood flow from veins into right atrium [l/min] RAM-basic vascular resistance of muscles [torr/l/min] RAR-basic resistance of non-muscular and non-renal arteries [torr/l/min] RBF-renal blood flow [l/min] RC1-red cell production rate [l/min] RC2-red cell destruction rate [l/min] RCD-rate of change of red cell mass [l/min] REK-percent of normal renal function RFN-renal blood flow if kidney is not damaged [l/min] RKC-rate factor for red cell destruction RM0-rate of oxygen transport to muscle cells [ml/min] RPA-pulmonary arterial resistance [torr/l/min] RPT-pulmonary vascular resistance [torr/l/min] RPV-pulmonary venous resistance [torr/l/min] RR-renal resistance [torr/l/min] RSM-vascular resistance in muscles [torr/l] RSN-vascular resistance in non-muscle, n/minon-renal tissues [torr/l/min] RVG-resistance from veins to right atrium [torr/l/min] RVM-depressing effect on right ventricle of pulmonary arterial pressure RVS-venous resistance [torr/l/min] SR-intensity factor for stress relaxation SRK-time constant for stress relaxation ELECTROLYTES AND CELL WATER STH-effect of tissue hypoxia on salt and water intake SVO-stroke volume output [l] TRR-tubular reabsorption rate [l/min] TVD-rate of drinking [l/min] VAS-volume in systemic arteries [l] VB-blood volume [l] VEC-extracellular fluid volume [l] VG-volume of interstitial fluid gel [l] VGD-rate of change of tissue gel volumes [l/min] VIB-blood viscosity, ratio to that of water VIC-cell volume [l] VID-rate of fluid transfer between interstitial fluid and cells [l/min] VIE-portion of blood viscosity caused by red blood cells VIF-volume of free interstitial fluid [l] VIM-blood viscosity (ratio to normal blood) VLA-volume in left atrium [l] VP-plasma volume [l] VPA-volume in pulmonary arteries [l] VPD-rate of change of plasma volume [l] VPF-pulmonary free fluid volume [l] VRA-right atrial volume [l] VTC-rate of fluid transfer across systemic capillary membranes [l/min] VTD-rate of volume change in total interstitial fluid [l/min] VTL-rate of systemic lymph flow [l/min] VTW-total body water [l] VUD-rate of urinary output [l/min] VV7-increased vascular volume caused by stress relaxation [l] VVR-diminished vascular volume caused by sympathetic stimulation [l] VVS-venous vascular volume [l] Z8-time constant of autonomic response 786 #36 6 & &1 9:7%&)4.6 %); 1& 15 6 #"!&" Y )( )# (( ! $%$# (%'+ )('-%#'$#(.###%(- 5 MEFANET 2010 ?'$ ?'$ 6666 6 < < 6 (!$*"#) < 6666 7 0 < 0 (!$*"#) ?'$ ?'$ 6 66 66 ?'$ < 6 66 66 (!$*"#) 66 66 66 < 66 < (!$*"#) < (!$*"#) < &8 6 6 MEFANET 2010 '&$%(%'%-$%( )0";'$=3/,;$#53('*=3/,;3#-)*+4?=5754? >'& (%.# (+ %@%) ' 9' & ?( # ) ; 82(% /( ;#9 ?# %.' ) /$ (%. ) 2(% (- ( .. (, %)( (%. ( )$# ( J )$# 9$#(%.#%.')%)((%.#2(% )% ( +(()'&$##+%-O%T ))))#/(% 0 '(()(% #(&(2(%%& $$O%+(&# %.#(%.#(%K5LM>), #(%#(%)(-#)$)+(/(#(% J-(.+'.. +)%) 2(%. % # #(% Y ' J '( '( #(%(%)%-# 6 5:]>( '%%(A#- 2(%%(# %))" $# ))#)K55Q4M ?)(-O%+( )-$ '(#'&')+),# % J )&KNLLNXMD&'(# % '# > '#(),* (J ')-$$J%.&'-#$% ;-)-(%&(%# &,#J'$% (% H&I # # ) % ( (+% ! + %&)*(+#(%(()J -%#%#'(%(%(D'(&' (%' 6#: O% (% ) ')(+( - #788999#(8%D),(%'(#(-), (%O%),#^'@)( $,#%-$# (($##++( O%+ ( ) &' (%' _ )% , # &# " $, &# ) # $ (% %. 6' ..'%(':)$#% (+)% 2(%%')%- &%,$(%$%3$('' )$# + )$# % (+ &# ( $# ($# )% ) % ( '' ( (% # (%.# $.% ) % (%%& + [)(-%'#)%-(/% ("& (+ ) (- # )( ) ) & ) % + ,, ##Y ?(%% (&%))H(%..I$)&%-( %%%(%. )$.%$'&%-())$# +,#$#+ -(+-)(%#'.%(% & %%% (% $.% "( H(%.# .+I ) #'(%)(&#))'&')('(($((# (%3$-$((+-( ))(%..%%))# )))))$(+ ((%%-%) 0 ) ( $# ( % %' J )( #.# # ) ) & (' ($# (+ <*(' (% %( )((#)%%H%&I(%.#.%))$#(%.# .+( %,#%%%(%)##'(+-&&%,((%.( 7 MEFANET 2010 Simulation time SIMTIME ZUR XURE YURU ZMNE XMNE YMNU VA GFR ALD ADH THDF STPG YTA YTA1 PHU YNH4 YCO3 YCO3R PICO XPIF ZPIF ZPP XPP PPCO ZPO4E XPO4 YPO4 ZSO4E XSO4 YSO4 ZORGE XORGE YORG OSMP UCO2V UO2V PCO2A FCO2A PO2A FO2A YNU YNH YND XNE ZNE YNHI YKHI ZKI ZKE YKU YKD XKE PIF QLF QWD QWU OSMU ZCLE XCLE YCLU QCO PAP PAS PC PVS PVP ZCAE XCAE YCA ZMGE XMGE YMG HB HT VB VP VEC VIF VTW VIC YINT YGLS YKGLI ZGLE XGLE YGLU A STBC BE AH PHA SO2A XCO3 UCO2A UO2A BEOX BEEC TBEOX YCO3IN YHIN MRH ZBEEC0 BEOX0 TYINT XGL0 CGL1 CGL2 YINS CGL3 YGLI YINT0 ZGLE0 QIN QVIN QIWL QMWP CFC CSM VRBC XHBER VIN0 VP0 VIF0 VIC0 YCAI YMGI ZCAE0 ZMGE0 RTOT RTOP KL KR DEN KRAN YCLI ZCLE0 QLF0 CPR YNIN CBFI CHEI ZKI0 CKEI YKIN ZNE0 ZKE0 ZHI0 MRCO2 MRO2 PBA FCO2I VAL FO2I UCO2V0 UO2V0 FCO2A0 FO2A0 YPO4I YSO4I YORGI ZPO4E0 ZSO4E0 ZORGE0 YPLIN ZPG0 ZPIF0 ZPP0 ZPLG0 TPHA1 YTA0 TPHU2 TPHU1 YNH40 PHA0 PHU20 PHU10 VA0 YURI YMNI ZUR0 ZMNE0 1 SIMTIME <ZUR> TBEOX 1 TBEOX 2 (=8.0) YCO3IN <XURE> 3 YHIN <YURU> YHIN (=0) <ZMNE> 4 MRH <XMNE> MRH (=0.0405) ZBEEC0 6 (=0) <YMNU> BEOX0 7 TYINT 8 XGL0 9 CGL1 10 CGL2 <VA> TYINT 11 YINS 12 CGL3 7 YMNU 8 VA <GFR> (=15) XGL0 (=108) <ALD> CGL1 9 GFR 10 ALD (=1) <ADH> CGL2 11 ADH (=1) <THDF> 5 ZMNE 6 (=0) BEOX0 3 4 YURU XMNE ZBEEC0 5 2 ZUR XURE YCO3IN (=0) YINS 12 THDF (=0) CGL3 <STPG> (=0.03) 13 STPG <YTA> 13 YGLI 14 YINT0 15 YGLI (=0) YINT0 17 QVIN 18 <PHU> (=0) ZGLE0 <YNH4> (=66) ZGLE0 <YTA1> <YCO3> QVIN (=0.01) <YCO3R> QIWL QIWL (=5e-4) 19 20 CFC <PICO> 15 YTA1 16 PHU 17 YNH4 18 YCO3 19 YCO3R 20 PICO QMWP (=5e-4) QMWP 14 YTA <XPIF> CFC <ZPIF> (=0.007) 21 XPIF 22 ZPIF 21 CSM CSM <ZPP> (=3e-4) 23 ZPP 22 VRBC VRBC <XPP> (=1.8) <PPCO> 23 XHBER XHBER <ZPO4E> (=33.34) 24 XPP 25 PPCO 26 ZPO4E 24 VIN0 <XPO4> VIN0 (=0.01) <YPO4> 25 VP0 26 VIF0 27 VIC0 28 YCAI 29 YMGI VP0 <ZSO4E> <XSO4> (=8.8) VIC0 <YSO4> (=20) 30 (=0.007) YMGI ZORGE 33 <YORG> <UCO2V> ZMGE0 32 RTOT <UO2V> RTOT 34 KL 35 KR UO2V 38 36 <YNU> KR <YNH> (=0.3) <YND> KRAN <XNE> 37 KRAN (=5.93) 38 YCLI 39 ZCLE0 40 QLF0 41 CPR 42 YNIN 43 CBFI 44 CHEI 45 ZKI0 46 CKEI <ZNE> YCLI (=0.1531) <YNHI> ZCLE0 <YKHI> (=1144) QLF0 <ZKI> (=0.002) CPR <ZKE> (=0.2) <YKU> YNIN <YKD> (=0.106) CBFI (=1e-9) CHEI <XKE> <PIF> (=5) ZKI0 <QLF> (=2800) <QWD> CKEI <QWU> (=0.001) <OSMU> 47 YKIN 48 ZNE0 49 ZKE0 YKIN (=0.047) ZNE0 <ZCLE> <XCLE> (=1540) 41 FO2A 42 YNU 43 44 YND 45 XNE 46 ZNE 47 YNHI 48 YKHI 49 ZKI 50 ZKE 51 YKU 52 YKD 53 XKE 54 PIF 55 QLF 56 QWD 57 QWU 58 OSMU 59 ZCLE 60 <YCLU> XCLE 61 <QCO> YCLU 62 ZKE0 (=49.5) FCO2A 40 PO2A YNH DEN(=1) DEN 36 UCO2V 37 PCO2A 39 <PO2A> KL (=0.2) 35 OSMP <FCO2A> <FO2A> XORGE 34 YORG <PCO2A> (=20) RTOP 33 RTOP (=3) 31 <XORGE> (=0.008) 31 ZMGE0 (=33) 30 XSO4 YSO4 32 ZCAE0 (=55) 29 ZSO4E <ZORGE> YCAI ZCAE0 28 YPO4 (=2.2) VIF0 <OSMP> 27 XPO4 QCO 50 ZHI0 ZHI0 <PAP> (=100) <PAS> MRCO2 51 MRCO2 (=0.2318) <PC> <PVS> 52 MRO2 53 PBA MRO2 (=0.2591) PBA <ZCAE> (=760) 55 VAL 56 FO2I FCO2I <YCA> (=3) <ZMGE> XMGE 73 YMG UO2V0 (=0.155) <HT> FCO2A0 59 FCO2A0 (=0.0561) 60 FO2A0 FO2A0 <VB> <VP> (=0.1473) <VEC> 61 YPO4I 62 YSO4I 63 YORGI 64 ZPO4E0 65 ZSO4E0 66 ZORGE0 67 YPLIN 68 ZPG0 YPO4I (=0.05) YSO4I <VIF> <VTW> (=0.04) YORGI <VIC> (=0.01) <YINT> ZPO4E0 (=24.2) ZSO4E0 <ZGLE> 69 ZPIF0 70 ZPP0 (=0) 71 ZPLG0 72 TPHA1 73 YTA0 74 TPHU2 (=154) (=70) <AH> <PHA> <SO2A> TPHA1 (=200) YTA0 <XCO3> <UCO2A> (=0.0068) TPHU2 <UO2A> (=20) <BEOX> 75 TPHU1 76 YNH40 77 PHA0 78 PHU20 79 PHU10 80 VA0 TPHU1 YGLU 88 A 89 STBC 90 BE 91 AH 92 PHA 93 SO2A 94 XCO3 95 UCO2A 96 UO2A 97 BEOX (=300) <BEEC> YNH40 81 VIC 82 83 YGLS 84 YKGLI 85 XGLE 87 <A> <BE> ZPP0 ZPLG0 79 VIF <XGLE> (=20) ZPIF0 (=176) VB 77 VP 78 VEC 80 VTW <YGLU> YPLIN ZPG0 HT 76 ZGLE 86 (=66.0) <STBC> 74 HB 75 YINT <YGLS> <YKGLI> (=22) ZORGE0 71 <YMG> (=0.21) <HB> 58 UO2V0 69 ZMGE 72 57 (=0.52) UCO2V0 68 70 YCA <XMGE> UCO2V0 PC 66 67 PVP XCAE (=0.0003) VAL FO2I 64 PAS 65 ZCAE <XCAE> 54 FCO2I 63 PAP PVS <PVP> 98 BEEC (=0.024) PHA0 (=7.4) PHU20 (=6) PHU10 (=6) VA0 (=5) YURI 81 YURI (=0.15) YMNI 82 (=0) YMNI ZUR0 83 (=77.5) ZUR0 GOLEM ZMNE0 84 ZMNE0 (=0) 16 QIN QIN (=0.001) =*3 ; 3 2 ! 8 2 !; & &!3!3; 32!>!2 !"&?&! %&'((/// &!1(!&!)2! 3> %.(&KQRM "((%$# +)(&NQLKRYQXI\]LRORJLFNêFKPRGHOĤ3K\VLROLEUDU\' )7#788999#(8(#2%.'#)'#$ $($#%$ (,#YêXNRYpKRVLPXOiWRUX*ROHP ; (' ##% %%% -% )$# &$# )$# (%$# +K5NM6 QA X: );"//5=7)($43"#7$ 0 $%#(%'%*ROHP-((%),,((' Y .) & %-# # )# ) /$( (( (($((%'%K5XM 2(%'HO(I$)(&('$#)% (& &,($%%%#&#&K5Q5PPRAPQM (-@(% )((,%#( '#%#%# + . #' %# % (-@ )+), Y 2(%'%-,#$##.#&$#%'#.)( & $% 2(%' (* (% $# (+)#%(-'(MDNMHGQRWOLYpI\]LRORJLFNpV\EV\VWpP\VSROX QDY]iMHPVRXYLVHMtMDNVHW\WRVRXYLVORVWLSURMHYXMtYMHGQRWOLYêFKSDWRI\]LRORJLFNêFKVWDYHFK 8 MEFANET 2010 XHB TBEox <TBEOX> <BEOX> BEOX STBC INPUTS: BEOX - Base Excess in fully oxygenated blood [mmol/l] HB - Hemoglobin concentration [g/dl] PCO2A - CO2 tension in arterial blood [torr] PO2A - Oxygen tension in arterial blood [torr] HB <HB> ACID BASE METABOLIC BALANCE A <A> BEox VEC <VEC> yTA <YTA> yNH4 <YNH4> yCO3 <YCO3> yKHi <YKHI> yNHi <YNHI> yHin <YHIN> BE U(E) U A <TYINT> OUTPUTS: PHA XHB - Vector of coefficients derived from hemoglobin concentration STBC - Standard bicarbonate concentration [mmol/l] SO2A BE - Base Excess concentration in arterial blood <PCO2A> AH - Hydrogen ions concentration [nmol/l] PHA - arterial plasma pH XCO3A SO2A - Oxygen hemoglobin saturation in arterial blood (expressed as ratio from 0 to 1) XCO3 - Actual bicarbonate concentration in arterial blood UCO2A UCO2A - Content of CO2 in arterial blood [l STPD/l] UO2A-Content of O2 in arterial blood [l STPD/l] PO2A yINT <XGL0> BE <CGL2> <YINS> CGL2 yINS SO2A <CGL3> XCO3 UCO2A <YGLI> CGL3 yGLI <PO2A> UO2A UO2A <VEC> vEC Blood Acid Base Balance <GFR> BEEC BEEC yGLS yKGLI OUTPUTS: yINT - insulin secretion [unit/min] yGLS - glucose flow rate from ECF into cells [mEq/min] yKGLI - K flow rate from ECF to ICF accompanying secretion of insulin [mEq/min] zGLE - ECF glucose content [mEq] xGLE - ECF glucose concentration [mEq] yGLU - renal excretion rate of glucose [mEq/min] zGLE xGLE GFR 21.8.2001 yGLU <ZGLE0> YGLS YKGLI ZGLE XGLE YINT 0 Scope2 ZBEEC 0 ZGLE 0 YGLU Blood Glucose Control BEOX 0 <BEOX0> YINT BLOOD GLUCOSE CONTROL INPUTS: TYINT - time constant of insulin secretion xGL0 - reference value of ECF glucose concentration CGL1 - parameter of glucose metabolism CGL2 - parameter of glucose metabolism yINS - intake rate of insulin[unit/min] CGL3 - parameter of glucose metabolism yGLI - intake rate of glucose [g/min] vEC - ECF volume [l] GFR - glomerular filtration rate [l/min] CGL1 PHA <YINT0> <ZBEEC0> xGL0 AH MRH <MRH> TYINT Selector STBC <CGL1> AH PCO2A OUTPUTS: BEox (** Base excess in fully oxygenated blood [mEq/l]*) BEEC (*ECF Base excess concentration yCO3in <YCO3IN> BEOX INPUTS: TBEOX - (*Time constant*) VB (*Blood Volume [l]*) HB (fore XHB) (*Blood hemoglobin concentration [g/100 ml]*) A [11] - (* vector of coeficients, see "Blood Acid Base Balance" *) pCO2A (*CO2 tension in arterial blood [Torr]*) VEC (*Extracelular fluid volume [l]*) yTA (*Renal excretion rate of titratable acid [mEq/min]*) yNH4 (*Renal excretion rate of ammonium [mEq/min]*) yCO3 (*Renal excretion rate of bicarbonate [mEq/min]*) yKHi (*Potassium ions flow rate from ECF into ICF exchanged with hydrogen ions [mEq/min]*) yNHi (*Hydrogen ions flow rate from ECF into ICF exchanged with sodium ions [mEq/min]*) pCO2A <PCO2A> HB <HB> XHB BLOOD ACID BASE BALANCE VB <VB> Scope Acid Base Metabolic Balance1 Acid base metabolic balance Scope1 Blood acid base balance Scope3 Blood glucose control qIN <QIN> HB qVIN <QVIN> HB <VEC> vEC zCaE ZCAE VB <VB> QCO QCO qIWL <QIWL> CALCIUM AND MAGNESIUM BALANCE BODY FLUID VOLUME BALANCE qMWP <QMWP> qWU <QWU> qLF <QLF> CFC <CFC> pICO <PICO> pPCO <PPCO> pC <PC> pIF <PIF> CSM <CSM> xNE <XNE> INPUTS: qIN - drinking rate [l/min] qVIN - intravenous water input [l/min] qIWL - insensible water loss [l/min] qMWP - metabolic water production [l/min] qWU - urine output [l/min] qLF - lymph flow rate [l/min] CFC - capillary filtration coefficient [l/min/torr] pICO - interstitial colloid osmotic pressure [torr] pPCO - plasma colloid osmotic pressure [torr] pC - capillary pressure [torr] pIF - interstitial pressure [torr] CSM - transfer coeff. of water from ECF to ICF xNE - ECF Na concentration [mEq/l] xKE - ECF K concentration [mEq/l] xGLE - ECF glucose conc. [mEq/l] zKI - ICF K content [mEq] vRBC - volume of red blood cells [l] xHBER - hemoglobin concentration in the red blood cells [g/100 ml] xKE <XKE> zKI <ZKI> vRBC <VRBC> xHBER <XHBER> <GFR> yCaI <YMGI> GFR yMgI <ZCAE0> <ZMGE0> KL yMg VIF vTW pC PVS YMG <KRAN> vIF PAS OUTPUTS: QCO - Cardiac output [l/min] PAP - Pulmonary arterial pressure [torr] PAS - Systemic arterial pressure [torr] pC - Capillary pressure [Torr] PVS - Central venous pressure [torr] PVP - Pulmonary venous pressure [torr] KR <DEN> zMgE0 RTOP XMGE 30.7.2001 VEC PAP INPUTS: VB - Blood volume [l] RTOT - Total resistance in systemic circulation [Torr * Min / l] (norm.=20) RTOP - Total resistance in pulmonary circulation [Torr * Min /l] (norm. =3) KL - Parameter of the left heart performance [l/min/torr] (norm.=0.2) KR - Parameter of the right heart performance [l/min/torr] (norm.=0.3) DEN - Proportional constant between QCO AND VB [1/min] (norm.=1) KRAN - Parameter of capillary pressure (norm.=5.93) ZMGE <KR> xMgE CARDIOVASCULAR BLOCK RTOT YCA <KL> zMgE INITIAL CONDITIONS: zCaE0 - ECF calcium content [mEq] zMgE0 - ECF magnesium content [mEq] zCaE0 <RTOT> XCAE <RTOP> yCa OUTPUTS: zCaE - ECF calcium content [mEq] xCaE - ECF calcium contentration [mEq/l] yCa - calcium renal excretion rate [mEq/min] zMgE - ECF magnesium content [mEq] xMgE - ECF magnesium contentration [mEq/l] yMg - magnesium renal excretion rate [mEq/min] VP vEC xCaE INPUTS: vEC - ECF volume [l] yCaI - calcium intake [mEq/min] yMgI -magnesium intake [mEq/min] GFR - glomerular filtration rate [l/min] VB vP 24.8.2001 VIN 0 <VIN0> <YCAI> HT vB OUTPUTS: HB - blood hemoglobin concentration [g/100 ml] HT - hematocrit vB - blood volume [l] vP -plasma volume [l] vEC - ECF volume [l] vIF - interstitial fluid volume [l] vTW - total body fluid volume [l] vIC - ICF volume [l] xGLE <XGLE> HT DEN 24.8.2001 edited by Tom Kripner KRAN PVP Calcium and Magnesium Balance PAP PAS PC PVS PVP Cardiovascular Block VTW VP 0 <VP0> VIF 0 <VIF0> Scope5 vIC Scope4 VIC VIC 0 <VIC0> Body Fluid Volume Balance Scope6 Body fluid volume balance Calcium and magnesium balance Cardiovascular block <VEC> vEC ADH <ADH> DIURESIS AND URINE OSMOLARITY <YCLI> yCLI zCLE CHLORIDE BALANCE <YNU> <YKU> <YNH4> <YCA> <YMG> <YSO4> <YCO3> INPUTS: vEC - ECF volume [l] yCLI - chloride intake [mEq/min] yKU yNU - Na renal excretion rate [mEq/min] yKU - K renal excretion rate [mEq/min] yNH4 - ammonium renal excretion rate [mEq/min] yNH4 yCa - calcium renal excretion rate [mEq/min] yMg - magnesium renal excretion rate [mEq/min] xCLE yCa ySO4 - sulphate renal excretion rate [mEq/min] yCO3 - bicarbonate excretion rate [mEq/min] STPG - summary renal excretion rate of phosphates and org. acids yMg related to arterial pH [mEq/min] <ZCLE0> yKD <YKD> yGLU <YGLU> <VIF0> <VIF> qWU VIF0 QWD VIF PIF yURU <YURU> QWU OUTPUTS: qWD - rate of urinary excretion in distal tubule [l/min] qWU - urine output [l/min] OSMU - urine osmolality [mOsm/l] yMNU <QLF0> <YNU> QLF OSMU yKU <YKU> YCLU Scope7 STPG 16.8.2001 QLF0 Interstitial Pressure and Lymph Flow Rate OSMU yNU yCO3 PIF OUTPUTS: pIF - interstitial pressure [torr] qLF - lymph flow rate [l/min] 17.8.2001 yCLU INTERSTITIAL PRESSURE AND LYMPH FLOW RATE INPUTS: vIF0 - normal interstitial fluid volume [l] vIF - interstitial fluid volume [l] qLF - normal lymph flow rate [l/min] QLF XCLE OUTPUTS: zCLE - ECF chloride content [mEq] xCLE - ECF chloride concentration [mEq/l] yCLU - chloride renal excretion rate [mEq/min] 30.7.2001 <STPG> INPUTS: ADH - effect of antidiuretic hormone [x normal] OSMP - plasma osmolality [mOsm/l] yND - sodium excretion rate in distal tubule [mEq/min] yKD - potassium excretion rate in distal tubule [mEq/min] yGLU - renal excretion rate of glucose [mEq/min] yURU - renal excretion rate of urea [mEq/min] yMNU - renal excretion rate of mannitol [mEq/min] yNU - sodium renal excretion rate [mEq/min] yKU - potassium renal excretion rate [mEq/min] yND <YND> <YMNU> ySO4 qWD OSMP <OSMP> ZCLE yNU Diuresis and Urine Osmolarity ZCLE 0 Chloride Balance Scope8 Scope9 Diuresis and urine osmolarity Interstitial pressure and lymph flow rate mrCO2 <MRCO2> <YTA1> <YNH4> <YCO3> <ALD> <GFR> <CPR> <THDF> <YNIN> <PHA> <CBFI> <CHEI> <YKGLI> <ZKI0> <CKEI> <YKIN> <VEC> <ZNE0> <ZKE0> <ZHI0> yNU ALD GFR CPR THDF yNIN PHA CBFI yNH xNE zNE CKEI yKIN vEC ZNE 0 ZKE 0 QCO <QCO> PBA <PBA> XNE fCO2i ZNE VAL <VAL> YNHI <UCO2V0> YKHI <UO2V0> zKI zKE yKU yKD ZKI <FCO2A0> <FO2A0> ZKE OUTPUTS: (** Content of CO2 in venous blood [l STPD/l]*) (** Content of O2 in venous blood [l STPD / l*) pCO2A (*CO2 tension alveoli [Torr]*) fCO2A (*Volume fraction of CO2 in dry alveoli gas*) pO2A (*O2 tension in alveoli [Torr]*) fO2A (*Volume fraction of O2 in dry alveoli gas*) UO2V PLASMA OSMOLARITY xURE xGLE <XGLE> pCO2A xMNE xNE <XNE> PCO2A INPUTS : XMNE - ECF mannitol concentration [mmol/l] XURE - ECF urea concentration [mmol/l XGLE - ECF glucose concentration [mmol/l] XNE - ECF sodium concentration [mmol/l] XKE - ECF potassium concentration [mmol/l] OSMP OSMP OUTPUT : OSMP - plasma osmolarity xKE <XKE> Plasma osmolarity calculation FCO2A uCO2V uO2V - fO2i <FO2I> yKHI <XMNE> <XURE> uO2V fCO2A VA <VA> yNHI OUTPUTS: yNU - Na renal excretion rate [mEq/min] yNH - Na excretion in Henle loop [mEq/min] yND - Na excretion rate in distal tubule [mEq/min] xNE - ECF Na concentration [mEq/l] zNE - ECF Na content[mEq] yNHI - H ions flow rate from ECF to ICF (exchanged w. Na) [mEq/min] yKHI - K flow rate from ECF to ICF (exchanged w. H) [mEq/min] zKI - ICF K content [mEq] zKE - ECF K content [mEq] yKU - K renal excretion rate [mEq/min] yKD - K excretion rate in distal tubule [mEq/min] xKE - ECF K concentration [mEq/l] zKI0 YND <FCO2I> CHEI yKGLI uO2A <UO2A> yND INPUTS: mrCO2 - (*Metabolic production rate of CO2 [l STPD/min]*) uCO2A (*Content of CO2 in arterial blood [l STPD/l]*) VTW (*Total body fluid volume [l]*) mrO2 - (*Metabolic consumption rate of O2 [l STPD/min]*) uO2A (*Content of CO2 in arterial blood [l STPD/l]*) QCO (*Cardiac output [l/min]*) PBA - (*Barometric pressure*) fCO2i - (*Volume fraction of CO2 in dry inspired gas*) VAL - (*Total alveolar volume (BTPS)*) VA (*Alveolar ventilation [l BTPS/min]*) fO2i - (*Volume fraction of O2 in dry inspired gas*) mrO2 <MRO2> YNH UCO2V VTW <VTW> INPUTS: yTA1 - Arterial pH dependent portion of titrable acid excretion rate yNH4 - ammonium renal excretion rate [mEq/min] yCO3R - bicarbonate reabsorption rate [mEq/min] ALD - aldostrone effect [x normal] GFR - glomerular filtration rate [l/min] CPR - excretion ratio of filterd load after proximal tubule THDF - effect of 3rd factor (natriuretic horm.) [x normal] yNIN - sodium intake [mEq/min] PHA - Arterial blood pH CBFI - Parameter of intracellular buffer capacity CHEI - Transfer coeff. of H ions from ECF to ICF yKGLI - K flow rate from ECF to ICF accompanying secretion of insulin [mEq/min] zKI0 - normal ICF K content [mEq] CKEI - Transfer coeff. of K ions from ECF into ICF (exchanged with H ions) yKIN - K intake [mEq/min] vEC - ECF volume [l] uCO2V O2 and CO2 EXCHANGE YNU SODIUM AND POTASSIUM BALANCE yNH4 yCO3 uCO2A <UCO2A> yTA1 UCO2V 0 pO2A PO2A UO2V 0 8.10.2001 FCO2A 0 fO2A FO2A FO2A 0 O2 and CO2 Exchange YKU YKD 27.7.2001 xKE ZHI 0 XKE Scope12 Na & K Balance Scope11 Sodium and potassium balance Scope10 O2 and CO2 exchange Plasma osmolarity <VEC> zPO4E vEC ZPO4E <VIF> pICO vIF <TPHA1> <YSO4I> <YORGI> <GFR> <ZPO4E0> <ZSO4E0> xPO4 yPO4I INPUTS: vEC - ECF volume [l] yPO4I - phosphate intake [mEq/min] ySO4I - sulphate intake [mEq/min] yORGI - organic acids intake [mEq/min] GFR - Glomerular filtration rate [l/min] ySO4I yORGI GFR ZPO4E 0 yPO4 XPO4 <QLF> <PC> STPG <YPLIN> zSO4E xSO4 ySO4 pC YPLIN INPUTS: vIF interstitial fluid volume [l] qLF - lymph flow rate [l/min] pC - capillary pressure [torr] YPLIN - rate of intravenous plasma protein input [g/min] vP -plasma volume [l] xPIF XPIF <YORG> <YPO4> zPIF ZPIF <YTA0> ZSO4E XSO4 <ZPG0> <ZPIF0> vP ZPG 0 ZPIF 0 YSO4 <ZPP0> zORGE <PHA> OUTPUTS: pICO - interstitial colloid osmotic pressure [torr] xPIF - interstitial protein concentration [g/l] zPIF - interstitial protein content[g] zPP - plasma protein content [g] xPP - plasma protein concentration [g/l] pPCO - plasma colloid osmotic pressure [torr] zPP <ALD> ZPP <TPHU2> xPP XPP <TPHU1> ZPP 0 10.7.2001 <YNH40> ZORGE <ZPLG0> ZPLG 0 pPCO PPCO <QWU> ZSO4E 0 30.7.2001 xORGE Protein Balance XORGE <PCO2A> <ZORGE0> ZORGE 0 yORG STPG PHA qLF YPO4 <VP> OUTPUTS: zPO4E - ECF phosphate content [mEq] xPO4 - ECF phosphate contentration [mEq/l] yPO4 - Phosphate renal excretion rate [mEq/min] zSO4E - ECF sulphate content [mEq] xSO4 - ECF sulphate contentration [mEq/l] ySO4 - sulphate renal excretion rate [mEq/min] zORGE - ECF organic acids content [mEq] xORGE - ECF organic acids contentration [mEq/l] yORG - organic acids renal excretion rate [mEq/min] TPHA1 PICO PROTEIN BALANCE PHOSPHATE, SULPHATE AND ORGANIC ACIDS BALANCE <YPO4I> YORG <GFR> Phosphate, Sulphate and Organic Acids Balance ano XCO3 <XCO3> yORG RENAL ACID BASE CONTROL yPO4 INPUTS: TPHA1 - Time constant of titratable acid [1/min] PHA - arterial pH yTA0 yORG - Renal excretion rate of organic acid [mEq/min] yPO4 - Renal excretion rate of phosphate [mEq/min] ALD yTA0 - Normal value of renal excretion rate of titratable acid [mmol/min] ALD - Aldosterone effect [x normal] TPHU1 - Time constant of ammonium secretion [1/min] TPHU2 TPHU2 - Time constant of titratable acids secretion [1/min] yNH40 - Normal value of ammonium renal excretion rate [mmol/min] TPHU1 qWU - Urine output [l/min] pCO2A - Alveolar pCO2 [torr] GFR - Glomerular filtration rate [l/min] yNH40 xCO3 - Actual bicarbonate concentration [mmol/l] yTA yTA1 PHU YTA YTA1 PHU qWU OUTPUT VARIABLES: STPG - summary renal excretion rate of titratable acids, phosphate and org. acids [mmol/mi yNH4 yTA - renal excretion rate of titratable acids [mmol/min] pCO2A YNH4 yTA1 - on arterial pH dependent portion of titratable acid secretion rate [mmol/min] PHU - urine pH GFR YNH4 - Ammonium renal excretion rate [mmol/min] YCO3 - Bicarbonate excretion rate [mmol/min] YCO3R Bicarbonate reabsorption rate [mmol/min] xCO3 yCO3 YCO3 24.7.2001 <PHA0> <PHU20> PHA 0 PHU2 0 yCO3R Phosphate sulphate and organic acids balance Protein balance <VEC> <VA0> vEC CONTROLLER OF RENAL FUNCTION GFR <XKE> <YNH> <PVP> <OSMP> pAS xKE yNH pVP INPUTS: vEC - ECF volume [l] pAS - systemic arterial pressure [torr] xKE - ECF K concentration [mEq/l] yNH - Na excretion in Henle loop [mEq/min] pVP - pulmonary venous pressure [torr] OSMP - plasma osmolality [mOsm/l] pPCO - plasma colloid osmotic pressure [torr] <PCO2A> ALD <PHA> OUTPUTS: GFR - glomerular filtration rate [l/min] ALD - aldosterone effect [x normal] ADH - effect of antidiuretic hormone [x normal] THDF - effect of 3rd factor (natriuretic horm.) [x normal] <AH> VA0 pO2A pCO2A pHA RESPIRATION CONTROL INPUTS: VA0 - normal value of alveolar ventilation [l BTPS/min] pO2A - O2 partial pressure in alveoli [Torr] pCO2A - CO2 partial pressure in alveoli Torr] pHA - arterial blood pH AH - concentration of hydrogen ions in arterial blood [nM/l] <VTW> <YURI> VA vTW yURI VA OUTPUTS: VA - alveolar ventilation [l BTPS/min] <GFR> GFR AH <YMNI> yMNI Respiration Control ADH HIDDEN CONSTANTS: vEC0 - normal ECF volume [l] GFR0 - normal glomerular filtration rate [l/min] ___ Scope15 YCO3R PHU1 0 zUR <VEC> ADH vEC ZUR UREA AND MANNITOL BALANCE INPUTS: vTW - total body fluid volume [l] yURI - intake rate of urea [mEq/min] GFR - glomerular filtration rate [l/min] yMNI - intake rate of mannitol [mEq/min] vEC - ECF volume [l] xURE yURU 4.10.2001 OUTPUTS: zUR - total body-fluid urea content [mEq] xURE - ECF urea concentration [mEq/l] yURU - renal excretion rate of urea [mEq/min] zMNE - ECF mannitol content [mEq] xMNE - ECF mannitol concentration [mEq] yMNU - renal excretion rate of mannitol [mEq/min] XURE YURU Urea and mannitol balance zMNE ZMNE 21.8.2001 xMNE <ZUR0> OSMP ZUR 0 XMNE 17.8.2001 THDF <PPCO> ALD <PHU10> Renal Acid Base Control GFR <PO2A> <PAS> Scope14 Scope13 THDF <ZMNE0> pPCO ZMNE 0 yMNU YMNU Urea and Mannitol Balance Controller of Renal Function Scope16 Scope17 Scope18 Respiration control Controller of renal function Renal acid base control Chloride balance INPUTS @A! !"&; 12&!>8;!!1B23&163&!!!";22&5!3!2! 2!!>! 9 MEFANET 2010 XHB <BEOX> BEOX XHB BLOOD ACID BASE BALANCE STBC <HB> INPUTS: BEOX - Base Excess in fully oxygenated blood [mmol/l] HB - Hemoglobin concentration [g/dl] PCO2A - CO2 tension in arterial blood [torr] PO2A - Oxygen tension in arterial blood [torr] HB A U(E) U Selector STBC BE BE AH AH OUTPUTS: PHA XHB - Vector of coefficients derived from hemoglobin concentration STBC - Standard bicarbonate concentration [mmol/l] BE - Base Excess concentration in arterial blood SO2A PCO2A <PCO2A> AH - Hydrogen ions concentration [nmol/l] PHA - arterial plasma pH XCO3A SO2A - Oxygen hemoglobin saturation in arterial blood (expressed as ratio from 0 to 1) XCO3 - Actual bicarbonate concentration in arterial blood UCO2A - Content of CO2 in arterial blood [l STPD/l] UCO2A UO2A-Content of O2 in arterial blood [l STPD/l] PO2A PHA SO2A XCO3 UCO2A <PO2A> UO2A UO2A Blood Acid Base Balance 1 XHB Hemoglobin Coefficients ABCNST 2 HB Blood hemoglobin concentration Hb Standard Bicarbonate Concentration STBCB XHb INPUT : Hb - blood hemoglobin concentration [g/dl] INPUTS : STBC XHb - coefficients derived from hemoglobin concentration BE -blood Base Excess [mmol/l] XHb OUTPUTS : XHb - coefficients derived from hemoglobin concentration 2 STBC HCO3st BE OUTPUT : HCO3st - standard bicarbonate concentration [mmol/l] c[1]..c[10] a[1]..a[11] 5 PHA ST BCB pH From Base Excess BEINV XHb ABCNST pH37 INPUTS : XHb - coefficients derived from concentration of hemoglobin in blood BEox - Base Excess in fully oxygenated blood [mmol/l] SO237 - oxyhemoglobin saturation [expressed as ratio form 0 to 1] SO237 PCO237 - pCO2 [torr] in blood at 37 °C PHA PHA Actual Bicarbonate Concentration ACBCB pHt BEox 1 BEOX SO2A Memory PCO2A PCO237 PCO2A INPUTS : pHt - plasma pH at patient temperature PCO2t - PCO2 [torr] at body temperature temp - body temperature [°C] PCO2t 37 Fcn 4 AH 7 XCO3A XCO3A OUTPUT : HCO3 - actual bicarbonate concentration at body temperature BE OUTPUTS : pH37 - plasma pH at standard temperature (37 °C) BE- current value of blood Base Excess [mmol/l] 10^(9-u); HCO3 temp Constant AC BCB pH From BE SO2A 3 BE CO2 Blood Content CARB XHb PCO2A INPUTS : XHb - coefficients derived from conentration of hemoglobin in blood PCO237 - pCO2 [torr] in blood at 37 °C SO237 - oxyhemoglobin saturation [expressed as ratio form 0 to 1] pH37 - pH of plasma at 37 °C PCO237 PHA SO2A PO2A 4 PO2A PO2A PO237 pH37 3 PCO2A PCO2A pCO237 Oxyhemoglobin Saturation SATUR INPUTS : PO237 - pO2 [torr] in blood at 37 °C PCO237 - pCO2 [torr] in blood at 37 °C pH37 - pH of plasma at 37 °C PHA SO237 SO2A SO237 CO2 8 UCO2A OUTPUT : CO2 - blood CO2 content [expressed in l CO2 STPD/l ] pH37 SO2A CARB PCO2A OUTPUT : SO237 - oxyhemoglobin saturation (expressed as ratio form 0 to 1) SO2A SO2A SO2A 6 SO2A SATUR XHb SO2A SO2A PO2A SO237 PO237 O2 Blood Content OXY INPUTS : XHb - coefficient derived from concentration of hemoglobin in blood SO237 - oxyhemoglobin saturation 37 °C (expressed as ratio form 0 to 1) PO237 - pO2 (torr) in blood at 37 °C O2 9 UO2A OUTPUT : O2 - blood O2 content [expressed in l CO2 STPD)/l ] OXY SIMULATION CHIP: BLOOD ACID BASE BALANCE u[1] CO2 - part1 ( u[2]*u[26] + u[3] ) / (u[26]*u[26]) 1 CO2 - part2 XHb u[4]*u[25]/u[26] 2 CO2 - part3 PCO237 u[5]* ( 1-u[24] ) / ( (u[26]/u[25])^2 + u[26]*u[6] / u[25] + u[7] * u[23] ) [7.0388002E-3 3.6447450E-4 7.9099077 -2.0113444E-1 -1.4790526 ] CO2 - part4 X0 ... X4 u[8]* u[24] / ( (u[26]/u[25])^2 + u[26]*u[9] / u[25] + u[10] * u[23] ) CO2 - part5 3 SO237 4 SO2 >= 10^ -13 f(u) 1 CO2 D 0.02226 X0=7.0388002E-3 ; X1=3.6447450E-4 ; X2=7.9099077 ; X3=-2.0113444E-1 ; X4=-1.4790526 ; % if SO237==0 % SO237=1E-13; % end; D=X0*(SO237^X1)*(pH37^X2) *exp(X3*SO237+X4*pH37); pH37 10^( 9 - u ) AH AH=10^(9-pH37); CO2= Const D=X0*(SO237^X1)*(pH37^X2)*exp(X3*SO237+X4*pH37); AH=10^(9-pH37); SIMULATION CHIP: CARB CO2 = 0.02226*PCO237*(XHb(1)+(XHb(2)*AH+XHb(3))/(AH*AH)+XHb(4)*D/AH ... +XHb(5)*(1-SO237)/((AH/D)^2+AH*XHb(6)/D+XHb(7)*PCO237) ... +XHb(8)*SO237 /((AH/D)^2+AH*XHb(9)/D+XHb(10)*PCO237)); CD3! 821& &!3&;12 23&!3&2& 21 12!4"1!!1123163!!!" !">! ;22"1&;!22 254& &" E ,F$GHD.GFH+FH$H0D+21 23&I%DHJF); >2 K&>"& ;25!&2!> 10 MEFANET 2010 ^ # # %' ) $# )@ $ $( )$#%.#%#+(UR]SRMRYiQtDRSČWRYQpKR]DSRMRYiQtMHGQRWOLYêFKUHJXODþQtFK YD]HE T) %.# (%'% %(- ORNiOQČ VOHGRYDW RGH]YX MHGQRWOLYêFK I\]LRORJLFNêFKVXEV\VWpPĤ(%#$#($#)%((% %' V(%'%O()(PRåQRVWÄRGSRMHQtUHJXODFH³$#%$# :H!16162 3!13> !>& >!"%! 6") 1 !3 " !/// &!1(! 11 MEFANET 2010 $#($#))#H&%''$%IK5ZMT)%.# (.%(-(&(%)$$% (%()##' '$#%.##%&#(%#')$# $# %.# #+ - & ,(% # $# % D,%,%,)$#,_((*#(+$% %%)--(()##.%$#%-('' KQPXQZM > (- %# ($# -%) %- +), %( %%(%.#(%#))& &(%#%.$# $#+ "'*%'-(%.#)%#$($((6(- ' % ($#: ) #),( ')( -$# +-'#$-$$%$(%'"&$%)#%)%,,# -),(%))%-()%#$#(+'( -),(+(%-(%.#-),(( ?#-)%('$())#%-J)(# $%$#%0VSRMHQtYêNODGXVHVLPXODþQtKURX''(-%-,# $#%'-$#$#+ "% (-#(%((%.#(+&%$%%)( )#..#$WODVXI\]LRORJLHDSDWRI\]LRORJLH6#788#( 8: $ ( %) $ (%. # ( $# (+6 N: -#&('( ',#1%KNM 1%KNLMD,$#%)% '&%- #(%('#(%'+ÄåLYp³LQWHUDNWLYQtJ(SURPČQQêFKVLPXODþQtKRPRGHOX )]PČQRXREUi]NX"($##%)(- (%. # - $ ' ' ( (#% ( %$#(#(&,(#&.$#% ))+),## "& %)(#''(# 9 $#$%$#(%'+KQM 03/,;3#-,-)0";34" 2(% & EORNRYČ RULHQWRYDQêP VLPXODþQtP MD]\NĤP %(-@%) ..()$# +/$(%$%) .# . % + ,, ## Y [ (%. ')()$#%(-%(-@%)&#%%()$### %&'$#(^%% #%)&)()$(+ ( (%.)#)$#($#J))$)(%$.%B&( NDX]iOQtPPRGHORYiQt")' +#+ #%-(+- $ > )$# # () '& (. J ) %% )' % # &'' ) % $.# % )( .( % ' 6& &+:$%## %") +'-,SRVWXSYêSRþWX -%%%( > , $) $# ÄDNDX]iOQtFK³ ')+ % (%.# (+^'%%'(')&',))(-) .'(%&(MDNRVRXVWDYXURYQLFDQLNROLMDNRDOJRULWPXVĜHãHQtWČFKWRURYQLF^'(+ )6%)(%%%((#(%$.%:J') %' 1%'(')%))$(((&%) & #- )% &( /' !( (#% ) ( '# %'#+J&%'))%))(# 12 MEFANET 2010 &%,$#())#)(/%)%(% <('(%(#%((''#+(.( '.'(.))##%6%- &&('%:)%#'$(&(6 Z:2-),($. - (' %( ) J & ))# ')(( ) )(>2(%%$(%))#%(&,(% $' 6 & -), HT3 (I % . (( , (% #"# :>%'#(%.#')#,+ &,(%( (%&,%'($%'') ;( (%.( )( $ ) &( %'( '% (+ ) 0RGHOLFDKNNQMD #(%.#&2(%%%(+ ;(#( %)'%(6(%&,$ % '# ' &%,$ (': ; ; )% '(2(%%&#),(%(%) Ɖ͘ǀ Ɖ͘ŝ Ŷ͘ǀ Ŷ͘ŝ ZΎŝсǀ Ɖ͘ǀ ǀсƉ͘ǀͲŶ͘ǀ Ɖ͘ŝ ǀ Ŷ͘ŝ ŝсƉ͘ŝ сŶ͘ŝ Ŷ͘ǀ Ŷ͘ŝ Ɖ͘ǀ Ɖ͘ŝ Ŷ͘ǀ Ɖ͘ǀ Ɖ͘ŝ Ŷ͘ǀ Ŷ͘ŝ ŝсΎĚĞƌ;ǀͿ Ɖ͘ǀ Ɖ͘ŝ ǀсƉ͘ǀͲŶ͘ǀ ǀ >ΎĚĞƌ;ŝͿсǀ Ŷ͘ǀ Ɖ͘ǀ Ŷ͘ŝ Ɖ͘ŝ ǀсƉ͘ǀͲŶ͘ǀ ǀ Ŷ͘ǀ Ŷ͘ŝ ŝсƉ͘ŝ сŶ͘ŝ ŝсƉ͘ŝ сŶ͘ŝ BL " " &121 13&";24!23 !H6 "& %)2& "" ;6 "& %)2& "" %"" )? & 3 %J);!2 2 3 &1%1! 1 "& 236 ! "& 2 ) L 6 "&1 2 53; 1&3 1 H6 "1 %D)22!! 5"&M52I& " !!"24 ;!; &2 236 N & ;2 %);2 0/1E "6 %)E &! 1"& ! 1 %$) A " " >! 53 & "> "" 2 ; 3"" 3 3 %;;);>5;5! "2%) 1 %2OO)N P 2 & 2! " >%;); !6 "& 6 %) 13 MEFANET 2010 hǎŝǀĂƚĞůĞŵĚĞĨŝŶŽǀĂŶĄŝŬŽŶĂ ŝŵƉůĞŵĞŶƚĂĐĞĐĠǀŶşŚŽĞůĂƐƚŝĐŬĠŚŽ ŬŽŵƉĂƌƚŵĞŶƚƵ ǀDŽĚĞůŝĐĞ V0 Akaauzální kone ektor: ReferencePo R oint Vol Pressure P e sƐƚƵƉŶşŬŽŶĞŬƚŽƌLJ ExternalPressure Compliance V0 V0 <V0 V0 <V0 StressedVolume V0 Pressure sljƐƚƵƉŶşŬŽŶĞŬƚŽƌLJ Vol ExternalPressure StressedVolume = max(Vol-V0,0); ( , ); Pressure = (StressedVolume/Compliance) + ExternalPressure; V0 ReferencePoint.Flow = der(Vol) ReferencePoint Pressure = Pressure ReferencePoint.Pressure StressedVolume 9!"&"& !2&* -( )%#( & (' #(( " (' %&(&%-,(#('!-&(+-(&& %-(/%%J(&& 6 :"%(- ) ( % &% ( ( % # & % '@/%)( %#%' 1%')%)(%+.7)'&%) J)--%.+),#&)$#%#%$6- %+ -'' ' %(%%): %# ))- # +'' ,# )$# %# )' 0%6E9:(%&((%) %+% 6E9: (% > & )$# ( (#% $ ) )$# $#$#($#)6&'$)E9('' )E9(': "&('(.%-'$((6 4:! # ((% ) - `& - A - %.# %'# )(%6„V0“:)%.'%),((%6R+K ? !! S: .%'''%'Y(% )(% 6RAS:%'# )(%6„V0“: <$ (( (+-( & ) % )( %'( )( ( 6( # & RJ ?S: & $ %( (( )0'(&%)# a RJ ?T/S; a RJ ?? !! S V((% %%%),%&'%7 a ''@„V0“J# )(%)#-- %&% 14 MEFANET 2010 a ),*),#%R+K ? !! S )#((%RDSJ)##(()' $#' ^((% %%%6%':'$%7 a ((('( )(%((%RAS; a (#%%&((%H? !! I >((&(+-(#%% #((A % > ( (% %) #' # ((% ' ; '7 A! +FD U c HTXDWLRQ !!AOK%AIAW;W)U ? !! O% !!A(D)X+K ? !! U %A)OJ ?T/U J ?? !! O? !! U HQGA! +FD ; "%)-## )(%R !!AS %.' )( )((((%RAS#%)#''„V0“6')%(: '&'-# )(%((%(+-%'$(#'( V%#'%)#((((%R? !! S#%# )(% R !!AS; ) RDS *( ( R+K ? !! S ?, )% &('(-)'&&T (-; 7 ? !! I+K ? !! O% !!A(D)U 0& ) ' J )(% R %A)S ' &% RT/S %RJ ?S")%)#%%((%R? !! S #%%)%RJ ? !! S%'((( BH? !! I)'@'$($%(((%J)')(+-( &',( +(J)%'$%6'':('))#(+- $ ( .(% ) &)( ) %'# % ) ) !- # ((% )( %'( ( ,( .& ((% %.' % $# &%,$( )( # ($##((% %%'&,% ;)(%-'&'-+(%"$(+ (%#.%)(' )('#$#(*#(+(-& ((")( ) $ ((. & % (+ $% (%' ;% %%$)(+ (&2(%8; >$#% (%) & ' (( # O% (% K4M 2(%%6 R:;6 : 3' .' O% (% 63% (: &%) (' #% .#%%.(%2(%$(&%)-%# &#%._;'((' %)%( J)&(%.6(:($#((+ +)$#.'#&.,)$#%'(6)%)+ )$#.'##&.,:1%'$#-)),)&% 15 MEFANET 2010 WD >I! >!!"8 1 12 6 63>! >&!!">!! 2 %(%%(%) '+&% )(%(' %% ,//)0);"/"0373)#/)0";(!)=3/,;>7)!");"/ >$# %'# &%% )( %- & (( '## (% $# % $ ) ( &# (%'% H*ROHP 2%% (% #' &,( %% (% ($# %+ 4XDQWLWDWLYH +XPDQ 3K\VLRORJ\ 4+3 '&)(#+XPPRGKLQALXM "&#+(#(%)'#$$%$(%'4XDQWLWDWLYH&LUFXODWRU\3K\VLRORJ\ 4&3 [M $ ,( '( 3( (% +XPDQ K4M '#$# (+ O%%"%)#%-')$%(+&$%# %&((&%9 % ;6#788# %(%8#(9#8:2(%'4&3)(-'#%..& G9"($#)((#6: 2(%' %(-@%) ( # NPR (+ (/%)# % B #(+)(-%' *# % % *#% % . - %(-@%) & &% '&+ + '& ($# $# + 1%& $%& &%#'&+6(%#% +:&%&%,$( ('&( %(- ))# #' &%, 9 ' > $% * (%' .KXPM 2(%'+XPPRG #%)-QRRR($#%. &)(&%) )'#),$($#%;('((%%(-@%) 16 MEFANET 2010 2>!2 17;*A2! 2!> % "" ! );!" " ? ! <; 5 ! !4 6 3>; 1 ! * 1 12!! " (%&%$#+.%&%, D &## (%'% d3" )#- (( ) %- )(W%(%'%(3\\)(%'4+3+XPPRG)%%?#%& #(((%'%(% %%(%(# $ &)(',,%(%% B # # (% 0#( 3( )- 4ZP ' )'%%(%/+%-##(%'%?)- %C;;)'(C;% +2'&.6V<2: &-C;% %#W%(%'%6 L: ; +XPPRG ) ,& ) ( ) % 6( (%' ) &) &%$9 %#788#%((:?#%%)''(C;)%5L5P % # %($# 5XN -'# V (% )% (% ))# ' - %( & &,$# $(+ & $) &$# (%'+ ) ) $# , ,& ) #' ,# (# (*# $# % A & 17 MEFANET 2010 &.%,. (%'%B%(( ) *(%'% B%(( (%'B%(( ()# *%(%'%B%(A ( 7A4 ""! 3"&! YL?ZL 2 > !!"[/!;5214!;!>1 1R11"S! 2"& !? >G6LK>51 23K!53!& ! 5!&! !!!! .521 23K! 33 2&11!12R! S%5! 5#);2 3&11& &5!12 13&\*$! 5 (#O%%%4NLK4M(#=%4N4KLZM0%%& ('$%($$()%21"B=T62(1#"#= T:-)*(%dB"Y.+()% ' ( , . - %( KN5M ' ;%' KXRM ((2(%%),O%+(%44LKNM-6, .%:(%dB"8B%(($(%O%$#%+-'+ ; )( # ($( % )( ' %' >& )( '9$')4+39LHZKQM$% +)$#*+(%& &# %-$#(($##+6 5:0(()(## # (%+XPPRG 18 MEFANET 2010 r 3" cV ei ns cula Vas nts tme r a p Co m Sp l an ch ni ,$73)#= <0311>! 2YL?A/51&! YL?(G6L; 1!"& 5 !& \*$ ! 1&13& ! !; &5 2"1! &1" 2%($(%%(-)*(+)%(&$# (%'+ )$#%$#%( $&)% A &. ) ( ( ' 2%%% ,# (%$)(Ä+XPPRG*ROHPHGLWLRQ³&)@%)(9 $#''#)% 6#788#(8B%((: ) ( / ,# ($# ,# D ($#+(+)(((%)();$%(-@%)( &#)'&%%%(% ;+XPPRG)(&,&&,( ('&%#+ #(' &# & )( '# A - %# ' # % (+)%.'%#(%)'',(%'$% (%. # "& (/ )( (( ) #' ,# +# (*# (% $#%$ )'($%#(%'%*ROHPK5NM '%##%%(%B%((AO(< %) 'QALR ; %(-@%) (% % &% $# $# )+ A #'' )$#'+'$#(+'.(% %'-(%(%$#),(6& (: =$($#(++XPPRG*ROHPHGLWLRQ)$(( &#$%#(%'%H*ROHP ?#,)/)%(%#( (+$)& &,V%#$( (()('#(%'%)$%(+D,(()&% 19 MEFANET 2010 = LI8 +* ! !! 1 ! %DA); 35!;!"&!1; ; &1"&!1; "&!1; " 6; & 6;&"&!! >>&!3&!"A4&2! 2!! " (%' ) $%% (+% -% ( % "& )) %-)( , # 9 $#(%'+ )%KQM 0,/#5-(!/'=;, ?- ' . ) %%+ & &(% ('$# , $( (-( #..+'&$%( 0 # $%# 9% $ ' %- ' $ ) (.#(%.##&),)+ ? '.$( ($( ( +.# $(% + +$# 7 %,$# %.+ ))#- '& ) '( $% ($# + & %' '# % )% & (%.# (+ $%(%.#$+&'&)),%' %(%'%. (+6('+:&%H,)I$ K5XM 1 ( '%' Y.')& -%%$)( &%$)$#')+(')$#.+$(%%(#%)( &( !&'%#')+)& . Y 0 $%$#(+'''+-$%.' 20 MEFANET 2010 @A! ! %DA1&1& 1) CA! !!"" %!D 1&1& 1) 21 MEFANET 2010 :A! !!"" %? & 1&1& 1) BA! !&" %&D 1&1& 1) 22 MEFANET 2010 9 19'A! 6! !" 1!%8., 1&1& 1 7W 1W'A! >2! 6! ! ! 1!%H&J !1&1& 1) 23 MEFANET 2010 37"!$7,!$ [1] ! "##$ %&%'()'&*' &*#$)#%+))#%+ )()'&*'+&%%# $%,)'&*'-%#./(( 0/ 23 $4 5 ,% *($ -6$7 7 8%)- ,%6& 9: /;! <#=6&$&+'>&*&=6&%)&< ?&$@46$A6 2.3 &- B B)& 4- 6$C ? 6 A D! %0 ()&$&%&#%#%&%+*%'&%&& +-*%'5&%&E;(( E;F0FE 2E3 6)GA A&%6&5 .! ))& 2H&3)(@IIJJJ %& I &%I)I&%I)& 2F3 $4 &5 D! )46 &*@&*K&$&',0 2D3 ?*0-* >>5 )A 5%&&5 - ;! 7$#& &%&+((%#+))%($&@7($&*%(%&%&(0 '%&#)*)+0&%&* C+4&GA$(F(( -/0-/. 23 %5 /! A%&(#+'/;;L%&$%%&%# 2H&3)(@II % *IM(I%/.%DGDEEE/EDE+N.N.I'O5O/0 %I $&J 2N3 ' " ,- #5 $C ! A&P*&)&&$ %&@+%6+%&&&%)&* &#%5&%&.F(( .N0FE 2;3 C - /;N.! K54 %()&$()'&*&% ),)'0 &*&D(( /F0/ 2/3 /;;! K&*)#%&0 *#$()'&*' C+,)'&*'&%)&'F.(( EFQED [11] /! $&/ F 2H&3 )(@IJJJ ) * 2/3 &C /DFD! %)%'%($&$ (6 2/.3 A' D! )*+&*&%&$&#&�&% %# #P%&7&*%&5&%&.N(( E0DD 2/E3 L& 7 D! K&**&#+((#*&* &*5& %)*'./(( .E.Q.FN 2/F3 A6& (*? 5&*C A ! *&%&#@% $&J *&%%('/(( .F0.DD 2/D3 -J' ? %)(? ((A ;! ,%#%%#@%#* %&&*&#&#+&*%)&*&* 5&% %)./(( F0./ 2/3 L&>, .! ,&%&(+8%0&&*&#J&)5&% / B&0 '07--, 2/N3 R&9$&&C ?+S6C ,6TU &>U /;N! 5<#=68<&$& &<&$#'%)(%$(&>&='%)$&8%)$<9<8' V<&66<&& 5&%&6&%)46(( N/0N 2/;3 ' C /;! &%#@H$*# $ ,)'& E/(( /.0E/ 23 ' C - /;.! &%'()'&*'@%&%(7 *# ,)&()&@B(' 2/3 ' ' - C /;F! &%'()'&*'77 A'&%%0 +)'W& ,)&()&@B 23 C - E! )(&&*+''&'%&%(*# C 24 MEFANET 2010 ,)'& * 7* ( ,)'& N(( /;0/// 2.3 C 5 ) ?)& ! 7%(#+%(&>)0 (#&&%&#%%&&*@(&&'( )C+780 '7+%#&#%F.(( /DE0/D 2E3 ? 7% -C ;! A&*&A!@ &*#$)#%+)()'&*' ,%&*+5HA75B+0 %4I,0/0/DF(( /;0/.E! 4 2F3 N! #$(%+) ()'&*' )L-C FD 2D3 7% /! '&*'&*#$ ()'&*&%&* C+,)'&*'(&))+(&A%D/ &@/ ///.I8()'& / /FFN(( /0/ 23 &5 $4 /! 4-KH4@+%&# )4%&# (( /.0/.F 2N3 764 5L )&65 /;;! 5+$*#+'W& & -* (( /.F0/DD 2;3 C & N! )(#&&()'&)('%#0 X)7C+&)%&%,%#%F(( /0F 2.3 ?')& ? ,5 A H$'L )(&5 C B&&? C' A N! -%#%)&(&%#+()(#&#&%%&0 %& %&%-*%'5&%&/F(( //DD0//E 2./3 ?+S6C /;N! 5$S:%&>&%6Y$$S)'6$ A&=:(S% ,)@K&$>& ?$$,>L6$9%Y)Y6Z$: 2.3 ?+S6C >C ! HS>6$T%)%)Y6\($T6 ^6$6S +'>&*&FD(( D;0N 2..3 ?+S6C >C /! #+'&*+*#+)%&%# &+_##$()'&*&%$( ,)'&*&%%)F;(( N;/0 ;N/ 2.E3 ?+S6C :65 ?&( F! &&%%#J&) VV 5Z:6, C%$6&H `<(S6$SC ?Y-&!7&%&(&'(%+05%)&0M&0 %0(# (( /E0/F/! ,)@>%)%)&%K&$&'&,* 2.F3 ?+S6C :65 ?&( .! V&(#)&)%&*%( &H-5 VA A L*- -&!,%&*$+)F)7L '(&5. (( E;0ENF! 2.D3 ?+S6C :65 ?&( 596C ! L&'&&*+&0 &%& -M(&%+)&(8% V5 B)'6B -&!)D)B5#%+%'&%'#%7+#% H0 L&K ,%&* Va777 %(((&%#+'&%'#% 7+#%777 (( E;0FD! 2.3 ?+S6C :65 ?&( 596C ! &#%)&(+H-5Q#0 &&+()'&*&%+%# VC 5 ?(>-&!&#&) )5&%%&% (( /F;0/D.! A&*@%&'+(&# 7#&#%& 2.N3 ?+S6C )V A S9$S ?69 V /! H-5Q5#& &+&%%# V , * M-&!5-A74LH/,%0 &*+)/)B*5&%7+#% /E0/ED @7H, 2.;3 ?+S6C &>U R&9$&&C /;NE! 5<&$&&&6&*>&8* &>($&&%&'%)6(&$-V5 VV('&*&=68&&%&68 %)&6& (( ;0/! &&&@5%& 2E3 ?+S6C 5, :65 6, ?&( Bb%)U 9: E! ) &*$(+&%#$#&&%#cJJ&)&#*0 25 MEFANET 2010 ,%&*+)$)7-A7#+%(()&% 7*&* (( /DE0/! )&*'U&%)@)7###+%&% %)*'+A$( 2E/3 ?+S6C 58S65 ,&$&>, /! B&%#%)*' 5+0 (.(( .0; 2E3 ?+S6C 58S65 596 ,&$&>, &5 V%6H N! %) #&&#!('@+#&((&%#&%)&*+()*&%()'0 &*' 5-L4-N AH5,%&*74;N0N0.;0DF0E6+6 (+@(( /0D! @5'6$K&$>& 2E.3 ?+S6C 596 :65 6, Bb%)U ,&$&>, 9: ! +()'&*'0&&#('* V U(&% ? R&=-&!,%0 &*+)D)-KH75*5&*&#V L,(AH5! 5H00,0F@(( /0;! 88@K&$&'+88 2EE3 ?+S6C 5%&*5 L65 R&9$&&C &>U `+ 9: /;NN! -$0 #+%&(&'+%#&*)%)&#)*)&# $# V- , ?((, ?6$%&&&%(( .//0./;! 4Jd6@,, 2EF3 ?+S6C ,6TU Bb%)U &>U R&9$&&C V&*V /;N! ?&0 09==8*8%&8$8'*&> V5 ?$-&!,%&*+)'0 (&&#+'&&*'5&%&,*/;N (( /.0E! ,)@A\ %)&6'^V 2ED3 ?+S6C ,6TU Bb%)U &>U R&9$&&C V&*V /;N! 5<#0 =68<*><$$8%)&6e%)66=f9=8<&$<8'*0 &> V5 ?$-&!,%&*+)'(&&#+'&&*' 5&%&,*/;N (( //0A! ,)@A\%)&6'^V 2E3 ?+S6C ,6TU Bb%)U &>U R&9$&&C V&*V /;N! 5< $$*#=6*&6&9==**>&$<8' V5 ?$ -&!,%&*+)'(&&#+'&&*'5&%&,* /;N (( //0A! ,)@A\%)&6'^V 2EN3 ?+S6C ,&$&>, 596 V%6H &5 ;! %)& *@+J#&&#&&&%%)&* ,%&*+))7L '(&5&*&&&%'*A6*/0/E ;(( EF0E.! 2E;3 ?+S6C >C 596 ! '&**)&+0+*()&%%) &#+%)&*()'&*' V, '-&!%)&%(#*,* L((A0H5(%&* (( /0/.! ,)@c 7#+)&% %)*' 2F3 ?+S6C S9$S )V A $=&` /! 5#&&#*& &%%# V- C ?%6)G5 `6-&!,%&*+-(&# 5#%+%,*/ (( ;;F0;;;! -*@,&)&* 2F/3 ?+S6C V C&%&, ! Q(&+'W& %&0&g#%# ,%&*+7L'(&?* &+J. . 0/ E (( ..0E! HM+@,*-$&%&% 2F3 ?+S6C V ?69 /;;! @%(&+()'&*&%+%0 #g%&%)&* Vd 5 )B B* C H6-&!*%'+/ ' ,%&*+)B*'&# (( E0E//! &*(@7-- &*(%# 2F.3 ?+S6C V C&%&, ?69 /! A&*#%+$& (#J&)Q#&&+()'&*&%+%# VC 5 ?(>-&!&#&))5&%%&%/ (( /F0/DE! A&*@ %&'+(#&#%& 2FE3 ?+S6C VS V C&%&, /! V&(#)Q5#& 26 MEFANET 2010 & V - H&&-&!,%&*+)-(0 +%0&*&&+*&*,(%#$ (( N0.N! @K&$&' 2FF3 ?h&C &5 ;! V&&'(%(&%&&&*&%&0 %#J'M(&% N(( EN0FE 2FD3 C /! &#&&%%#@$&J &#&*.(( ;0 ./E 2F3 )- A & &C +- A%) ! 7%(#**&%0 +%&&(#&)7A$E&& C+A& %&%%)*'/(( N0;. 2FN3 &*)) ? ! )+%&&%&#'&%&#%%()'&%& C0 +7&$5&%&(( F0D; 2F;3 & &%6L '? ?+ .! $'+*&%&#@((&%# %)*'%# ,%/(( FF;0D/. 2D3 5*$V &*JC VV& /! ()&%&#$&+0 &*&#+&*#$()'&*' (5),*&&&%&0 (( #%&(&@/ //DI8 %( / F //(( 2D/3 5%*)&B &V C 5>&, - 5'C ;! +%#&*0 &%%#+&#%)&**&%%# )/DF(( DF0DNF 2D3 5' A A)' N! B0()'&*'%)&*&#,)'&*'& ))&&*)('! 2H&3)(@II(%& 6& I)I&M ()( 2D.3 5&C , & ' /;N;! &# (('+$&**()'&*&%&%%( 7 C 7 0 ( E(( E/0FE 2DE3 ? )- A F! A&J&$&J@JJJ & * A&%)0 *')(#%(( E/0FE 2DF3 &*>0 (>04$C 5 ;! %)&*&*#$()'&*'&*) _##$%&%'()'&*'%&%&)@$#+)0 &*M(&% $%&,)'&*'-%#.(( .E0.// 2DD3 ? N! ))&'+&%&# C+&#%.(( /F0/DD 2D3 $ 5 N! &&%$&J+*&%&#i(((%#$ B C+*'.(( /E/0/EN 2DN3 J' ? )(5 B )A * ;! 5&P%#+) &'7%7*K&&%#6& &#&)% E(( /E0/N 2D;3 )& ,&B C 5)&d , ;! V&#+4$V& &'#%& C+-*'.(( F.0FN 23 &**05 &**0H /;;F! HM'**&)$&.J&) ((&%# %)%.;((/(( /.0 2/3 &* A(( .=6Y$'S:E! ),)'&*&j=6Y $'S:@+'>&*&=$<6D $' ! *@*)&V*=6Y$'S:,)@ 23 &* *L /;;N=6Y$'S:/! %),)()'&*& *@ *)&V*=6Y$'S:,)@ 2.3 ) %&, L%$C L%&C &L , 9: N! ,7@()'&%+'W&)&(*# ,)&0 ()&%%#+)'%&'.DD(( ./F0./; 2E3 &5 /! 7%#()'&%&*J&)5&% 4J5%)K@ ?J%&%,&) 2F3 VH H( L E! -75@&%#$+'&*)*0 27 MEFANET 2010 &+"J$+ ;(( /DF0/DN 2D3 VV& 4 5&C , F! &%#W&$% V7*#$,)'0 &*'&),&%,&%* (( E.0DD! , 23 V&*V V /;N! '<''6'$6&=68&%&&&*&& 4%)0 &%#40;/@')&(%&*'&%&! ,' 6&=68&*&&FF(( /0/D 2N3 B'A A&J& L&*C L5 C 6C 5%*)&B N! &0 #0%#&($_&'+%&*%&%( %&%%)&*)(& )/..(( FD0D/ 2;3 B)& C ,)C D! )A&*&@&*&* '+(%&&%%)(# %#%D(( .0N 2N3 Bb%)U /;E! &6'#6$$T%+'>&*& ^6$6S+'>&*&(( FD;0F. 2N/3 Bb%)U /;D;! 5&&Y6Z6Y6'#6'US6:6%(%&6'>(\'(&0 6%:! ,)@K=:M'$'6T%)96K?L6$9%Y)Y6Z$:,4 2N3 Bb%)U 8 /;ND! ?%(%$T6'&6'#6'$6>+'>&*& ^6$0 6S+'>&*&.F(( .NF0.ND )0-)*>#5 "' $%$#&$#(%'+)(()')%2>>A LRRALPQLXRPRN)(;"Te0=58ZX4 28
Podobné dokumenty
MUDr. Jiří Kofránek, CSc.
systémů spustitelných na personálním počítači. Objevily se také i vývojové nástroje určené pro tvorbu simulačních modelů – např. Matlab/Simulink od firmy Mathworks. Následný rozvoj informačních
a k...
Untitled - Creative connections
tvořící certifikační řetězec nebo ke všem vztažným informacím o stavu revokace certifikátu. V takovém případě jsou možné dva přístupy řešení:
• Všechny položky validačních údajů jsou součástí EP. ...
Untitled - Creative connections
tohoto typu byly již provedeny (např. v [1]), některé další (detailnější) budou
ještě následovat.
Komplexní model acidobazické rovnováhy.
pro vyhodnocování acidobazické rovnováhy, byl původně experimentálně
získán při teplotě 38°C a za předpokladu normální koncentrace plazmatických bílkovin. V klinické praxi je však nomogram (dnes vě...