Sampled data systems. Discrete
Transkript
Sampled data systems. Discrete
Sampled data systems. Discrete‐time equivalents. Martin Hromcik. Automatic Control 2012. 12‐IV‐12 Simple discretization procedures. Automatické řízení - Kybernetika a robotika digital Cont.time controller ctrl law shaper forward Euler rule (explicit) dx(t ) x(t + h) − x(t ) z −1 ≈ sx ≈ x dt h h sh z = e ≈ 1 + sh z −1 s≈ h backward Euler rule (implicit) dx(t ) x(t ) − x(t − h) ≈ dt h z = e sh ≈ Michael Šebek z −1 sx ≈ x zh 1 1 − sh ARI‐21‐2011 z −1 s≈ zh 2 Tustin method Automatické řízení - Kybernetika a robotika bilinear transformation 2 z −1 s≈ h z +1 1 + sh 2 z=e ≈ 1 − sh 2 sh (... compare to 1st order Pade approximation of time delay ...) >> c2d(f,h,'tustin') replace s with respective prescription ‐ suitable for simple pen‐and‐paper situations ‐ s‐plane mappings: forward rule backward rule Tustin 3 ‐ mind state space implications (A quite clear, B is affected as well though!) Michael Šebek ARI‐21‐2011 Discrete-time PID controllers (PSD) Automatické řízení - Kybernetika a robotika P: u(t ) = Ke(t ) u(s) = Ke(s) u( z) = Ke( z) u(k ) = Ke(k ) I: forward rule K t u(t ) = ∫ e(τ )dτ TI 0 K u ( s) = e(s) TI s K h u( z ) = e( z) TI z −1 Kh u(k + 1) = u(k ) + e(k ) TI D: backward rule u(t ) = KTDe&(t ) u(s) = KTD se(s) KTD z −1 u(k + 1) = u( z) = KTD e( z) ( e(k +1) − e(k )) h zh Michael Šebek ARI‐21‐2011 4 Discrete-time PID controllers (PSD) Automatické řízení - Kybernetika a robotika • PSD ⎡ h 1 TD z −1⎤ + u( z) = K ⎢1 + ⎥ e( z) ⎣ TI z −1 h z ⎦ • Alternatives: ⎡ ⎤ 1 u(s) = K ⎢1 + + TD s ⎥ e(s) ⎣ TI s ⎦ Michael Šebek ule r . fw d Tu stin ⎡ h z TD z −1⎤ + u( z) = K ⎢1 + ⎥ e( z) ⎣ TI z −1 h z ⎦ ⎡ h z + 1 2TD z −1⎤ + u( z) = K ⎢1 + ⎥ e( z) ⎣ 2TI z −1 h z + 1⎦ ARI‐21‐2011 5 State feedback & discretization Automatické řízení - Kybernetika a robotika x& = Ax + Bu , y = Cx u (t ) = MuC (t ) − Kx(t ) K dis = K ( I + ( A − BK ) h 2 ) M dis = ( I − KB h 2 ) M -better correspondance of CL dynamics (in CT and DT) ... -cont.time: A, B A-BK -discretization, Tustin rule: (I-Ah/2) \ (I+Ah/2), (I-Ah/2) \ B (I-Ah/2) \ (I+Ah/2) - (I-Ah/2) \ B K(I+(A-BK)h/2) = = (I-Ah/2) \ (I+Ah/2 – BK(I+(A-BK)h/2) = (I-Ah/2) \ (I+Ah/2 – BK – BKAh/2 – BKBKh/2) ... Michael Šebek ARI‐21‐2011 6 ZOH discretization. Automatické řízení - Kybernetika a robotika r( z) D( z) r (t ) r (kh) h digital Diferenční u(kh) rovnice ctrl law D/A D/A a tvarovač shaper u(t ) G (s) y(t ) e(kh) clock hodiny senzor A/D Michael Šebek y(t ) y(kh) h ARI‐21‐2011 1 G( z) 7 Systémy ZOH a řízení u(s) ZOH u(kh) G(s) u(t) y(s) Y(s) y(t) u( z) u(kh) y(kh) G( z ) y( z) y(kh) u(kh) = 1 k = 0 u(kh) = 0 k ≠ 0 ZOH ZOH ZOH impulse impulse response response 1 1 − hs − e s s u(t ) = 1(t ) −1(t − h) system dynamics G(s) Y (s) = (1− e ) s −hs Michael Šebek - ČVUT - 2006 8 Systémy Discrete-time description a řízení u(s) notation G ( z ) = Z {_ y (kT )} ZOH = Z {_L−1 {Y ( s )}} = Z {_Y ( s )} { = Z _(1 − e − hs ) G(s) s } { } { G(s) G ( s) G( z) = Z _ − Z _e−Ts s s { Z _e − hs } u(kh) G(s) u(t) u( z) } u(kh) y(s) Y(s) y(t) G( z ) y(kh) y( z) y(kh) { } G(s) G(s) == z −1Z _ s s { } G ( s) G ( z ) = (1 − z −1 ) Z _ s Michael Šebek - ČVUT - 2006 c2d(G,h,'zoh') c2d(G,h) 9 Systémy ZOH & state-space u(t) u(kh) ZOH x& = Ax + Bu y = Cx + Du y(t) Y(s) a řízení u(kh) y(kh) xk +1 = Φxk + Γuk yk = Cxk + Duk y(kh) x& = Ax + Bu y = Cx + Du x(t ) = e A ( t − t0 ) t x(t0 ) + ∫ e A(t −τ ) Bu (τ )dτ Michael Šebek - ČVUT - 2006 t0 10 Systémy ZOH & state-space tk a řízení tk +1 uk = u (τ ),τ ∈ [tk , tk +1 ) h = tk +1 − tk x(tk +1 ) = e A ( tk +1 −tk ) x(tk ) + ∫ tk +1 tk = e x(tk ) + ∫ Ah tk +1 tk = e x(tk ) + Ah (∫ h 0 e A(tk +1 −τ ) Bu (τ )dτ e A(tk +1 −τ ) dτ Bu (tk ) ) ν = tk +1 − τ e Aν dν Bu (tk ) x(tk +1 ) = Φx(tk ) + Γu (tk ) y (tk ) = Cx(tk ) + Du (tk ) Michael Šebek - ČVUT - 2006 Φ = eAh Γ= (∫ h 0 ) eAν dν B 11
Podobné dokumenty
15 – State feedback
State feedback and robust reference tracking (integral control)
Automatické řízení - Kybernetika a robotika
1(0 person, plural 1TV % 1(0 person, singular e!# % 2nd person
" O<(5*0&)Q'$'10OTQ4=>(5#* =[Q4r &'109#(+$¡Q R+"<$)%_ $'&)(
* O<(5*0&)Q'$'10OTQ4=>(5#* =[Q4r &'109#(+$¡Q R+"<$),_ +.-0/1(32(
4 $'"%&'10/[Qs3Q'=2R5"O<(+*0&¡Q4$)10O%Q'=>(+5* =2Q'r R5"<...