cauchys teorém
Transkript
12 – Frequency‐domain CTRL design Martin Hromcik Automatic control 2012 9‐III‐12 Nyquist’s stability criterion Automatické řízení - Kybernetika a robotika Cauchy’s theorem of argument, for general function of complex variable ... . Corollary: Nyquist test (for closed‐loop stability assessment, based on open‐loop frequency response characteristics). OL = L = b/a, CL = 1/(1+L) = a/(a+b) • critical point ‐1 encircled clockwise by the OL Nyquist graph as many times as is # CL unstable poles ‐ # CL unstable zeros (=OL unstable poles) • alternatiuvely: # CL unstable poles = ... • counterclockwise ‐> counted with negative sign Nyquist’s stability criterion: CL stable # of encirclements of ‐1 counterclockwise = # unstable OL poles Special case – OL stable: CL stable Ù OL Nyquist does not encircle ‐1 Michael Šebek Pr‐ARI‐12‐2012 2 Gain Margin Automatické řízení - Kybernetika a robotika ω180 L( jω) K =3 K =2 K =1 o ω180 o • o phase crossover frequency ω180o :∠L( jω180o ) = −180 • Gain Margin: GM = 1 L( jω180o ) • • that simple only for OL stable systems ... for unstable OL: same idea, more careful treatment (more more crossovers, GM’s for each of them, ...) Michael Šebek 3 Phase Margin Automatické řízení - Kybernetika a robotika L( jω) ωC ωC : L( jωC ) = 1 = 0 dB • Gain crossover frequency • Phase Margin: • Time‐delay equivalent formulation: Michael Šebek PM = 180o + ∠L( jωC ) θmax = PMrad ωc = (π 180) PMdeg ωc ARI‐12‐2012 4 GM and PM Automatické řízení - Kybernetika a robotika • GM: robustness w.r.t. gain variations; typical requirement GM > 2 (=6dB) • PM: robustness w.r.t. delays in the loop; typical requirement PM >30° 1− ωc ω180 GM [dB] 1 GM 1 GM ω180 PM PM Michael Šebek ωc ω180 ARI‐12‐2012 ωc 5 Reversed case ... Automatické řízení - Kybernetika a robotika <= ... stabilizing stable OL ... 1 GM PM L( jω) ... stabilizing unstable OL ... => PM L( jω ) 1 GM Michael Šebek ARI‐12‐2012 6 GM and more crossovers ... Automatické řízení - Kybernetika a robotika • GM interval ( Kmin , Kmax ) • if CL stable for L(s) = L0 (s) • then CL remains stable for all L(s) = kL0 (s) kmin < k < kmax ( • 0 ≤ kmin ≤ 1 ) 1 ≤ kmax ≤ ∞ CL unstable (already) for L(s) = kmin L0 (s) L(s) = kmax L0 (s) Michael Šebek ARI‐12‐2012 7 PM and more crossovers Automatické řízení - Kybernetika a robotika (φmin , φmax ) • PM interval • • If CL stable for L(s) = L0 (s) then CL remains stable for all L( s ) = e − jφ L0 ( s ) • φmin < φ < φmax and becomes unstable for and • L( s ) = e − jφmin L0 ( s ) L( s ) = e − jφmax L0 ( s ) Note that −π ≤ φmin ≤ 0 0 ≤ φmax ≤ π Michael Šebek ARI‐12‐2012 8 Co je špatného na klasických pojmech ? Automatické řízení - Kybernetika a robotika • GMs and PMs are most common indicators of controllers robustness in engineering practice. • Note however that certain GMand PM “safe” systems can be though destabilized easily by combined small gain and phase variation: L ( s ) = kL0 ( s )e − jφ k ∈ [ k min , k max ], φ ∈ [φmin , φmax ] • Solution (generalization of GM/PM concepts): distance (norm) of L from the critical point ‐1. Hinf robust control ... Michael Šebek ARI‐12‐2012 9 CL frequency response Automatické řízení - Kybernetika a robotika OL vs. CL frequency response: • CL: L( s ) T ( s) = 1 + L( s ) • approximately 1 for L( s ) large T (s) ≈ L( s ) for L( s ) small • typically L( s ) • therefore T (s) ≈ Michael Šebek L( s ) T ( s) ω << ωc ω >> ωc large for high freqs small for low freqs 1 L( s ) for low freqs for high freqs ARI‐12‐2012 ωc ω << ωc ω >> ωc 10 Crossover frequency behavior Automatické řízení - Kybernetika a robotika • • PM 90° • PM 45° • L( s ) ≈ 1 , around ωc , depends on PM T ( s) ∠L( jωc ) = −90o T ( jωc ) = 1 ∠L( jωc ) = −135o T ( jωc ) ≈ 1.31 2 ≈ 0.707 for 2nd order system: PM = arctan Mp = Mp 2ς −2ς 2 + 1+ 4ς 4 1 2ς 1− ς 2 Michael Šebek ARI‐12‐2012 11 Bandwidth and crossover frequency Automatické řízení - Kybernetika a robotika P P • 20 dB M ,ω bandwidth = those frequencies (of harmonic 10 M(ω) = T( jω) signals) wich the CL is capable to track crossover ωc reasonably ... 1 0.7 typically, CL = low pass filter: good tracking for ω small ω ( T ≈ 1), but not for large ( T ≈ 1) 0.1 bandwidth formal definition of classical control: bandwidth = frequency whee the output has half energy of input, y 2 = 0.5u 2 ω ω ω Hence Y ( jω ) = ½ U ( jω ) = 0.707 U ( jω ) ⇔ Y ( jω ) dB = U ( jω ) dB − 3dB bandwidth defines “responsivenes” of CL, speed ... higher bandwidth – more aggressive control law – implies faster transients, but often higher sensitivity to parameter changes and noises. lower bandwidth typically opposite. ωc : T ( jωc ) = 1 (0 dB) Crossover frequency: Resonance peak: M P = max{ T ( jω ) }, ω P : M P = T ( jω P ) abs • 0 −3 BW • • • • • • P Michael Šebek ARI‐12‐2012 c 12 − 20
Podobné dokumenty
26 COMMUTATING CAPACITORS (only for spare parts
odpojovačem. Dielektrikum tvoří PP film, impregnovaný
minerálním olejem. Elektrodou je oboustranně
metalizovaný kondenzátorový papír se zesíleným
okrajem. Regenerační schopnost spolu s úplnou
impre...
ELECTRO MATERIAL www . malpro . cz • Přístrojové svorkovnice kl
- Designed for covering boxes with internal diameter of 68mm.
ano - Hippo
rU=solve(f1,f2,’U2,U3’);
rU.U2
rU.U3
P=rU.U2/’U1’
nP=subs(P,{’R’,’C’,’L’},{1e3,22.5e-9,11.25e-3})
[num, den]=numden(nP)
format short e
A=sym2poly(den)
B=sym2poly(num)/A(1)
A=A/A(1)
HV - CoNet
γ , činitel tlumení β , činitel fáze α , délku postupné vlny λ a fázovou rychlost vf .
Ř ešení
worksheet_geographical_regions_CR
Carpathian (Bílé Karpaty) and Javorníky ranges, the westernmost of the Western
Carpathian Mountains that dominate Slovakia.
http://www.britannica.com/place/Czech-Republic#toc39439
slides
Discrete-time system & digital controller ...
Automatické řízení - Kybernetika a robotika
Shaun White
extruded and CNC machined footplate with replaceable grindplate
Deck width 115mm/4,52”; CNC machined fork made of extruded profile;
Headset with pressed-in bearings; Inverted compression system; Ov...